1
|
Singh K, Kumar P, Bhatia R, Mehta V, Kumar B, Akhtar MJ. Nipecotic acid as potential lead molecule for the development of GABA uptake inhibitors; structural insights and design strategies. Eur J Med Chem 2022; 234:114269. [DOI: 10.1016/j.ejmech.2022.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 11/04/2022]
|
2
|
Synthesis and biological evaluation of novel N-substituted nipecotic acid derivatives with tricyclic cage structures in the lipophilic domain as GABA uptake inhibitors. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02647-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractA new class of GABA reuptake inhibitors with sterically demanding, highly rigid tricyclic cage structures as the lipophilic domain was synthesized and investigated in regard to their biological activity at the murine GABA transporters (mGAT1–mGAT4). The construction of these compounds, consisting of nipecotic acid, a symmetric tricyclic amine, and a plain hydrocarbon linker connecting the two subunits via their amino nitrogens, was accomplished via reductive amination of a nipecotic acid derivative with an N-alkyl substituent displaying a terminal aldehyde function with tricyclic secondary amines. The target compounds varied with regard to spacer length, the bridge size of one of the bridges, and the substituents of the tricyclic skeleton to study the impact of these changes on their potency. Among the tested compounds nipecotic acid ethyl ester derivates with phenyl residues attached to the cage subunit showed reasonable inhibitory potency and subtype selectivity in favor of mGAT3 and mGAT4, respectively.
Collapse
|
3
|
Łątka K, Jończyk J, Bajda M. γ-Aminobutyric acid transporters as relevant biological target: Their function, structure, inhibitors and role in the therapy of different diseases. Int J Biol Macromol 2020; 158:S0141-8130(20)32987-1. [PMID: 32360967 DOI: 10.1016/j.ijbiomac.2020.04.126] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022]
Abstract
γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the nervous system. It plays a crucial role in many physiological processes. Upon release from the presynaptic element, it is removed from the synaptic cleft by reuptake due to the action of GABA transporters (GATs). GATs belong to a large SLC6 protein family whose characteristic feature is sodium-dependent relocation of neurotransmitters through the cell membrane. GABA transporters are characterized in many contexts, but their spatial structure is not fully known. They are divided into four types, which differ in occurrence and role. Herein, the special attention was paid to these transporting proteins. This comprehensive review presents the current knowledge about GABA transporters. Their distribution in the body, physiological functions and possible utilization in the therapy of different diseases were fully discussed. The important structural features were described based on published data, including sequence analysis, mutagenesis studies, and comparison with known SLC6 transporters for leucine (LeuT), dopamine (DAT) and serotonin (SERT). Moreover, the most important inhibitors of GABA transporters of various basic scaffolds, diverse selectivity and potency were presented.
Collapse
Affiliation(s)
- Kamil Łątka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland
| | - Jakub Jończyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland
| | - Marek Bajda
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland.
| |
Collapse
|
4
|
Application of the concept of oxime library screening by mass spectrometry (MS) binding assays to pyrrolidine-3-carboxylic acid derivatives as potential inhibitors of γ-aminobutyric acid transporter 1 (GAT1). Bioorg Med Chem 2019; 27:2753-2763. [PMID: 31097402 DOI: 10.1016/j.bmc.2019.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/15/2019] [Accepted: 05/01/2019] [Indexed: 11/20/2022]
Abstract
In the present study, the concept of oxime library screening by MS Binding Assays was successfully extended to N-substituted lipophilic pyrrolidine-3-carboxylic acid derivatives in the pursuit of varying the amino acid motif in order to identify new inhibitors for GAT1 and to broaden structure-activity-relationships for this target, the most abundant GABA transporter in the central nervous system. For the screening, 28 different oxime sub-libraries were employed that were generated by simple condensation reaction of an excess of pyrrolidine-3-carboxylic acid derivatives carrying a hydroxylamine functionality with various sub-libraries each assembled of eight aldehydes with broadly varying chemical structures and functionalities. The compounds responsible for the activity of an oxime sub-library were identified by deconvolution experiments performed by employing single oximes. Binding affinities of the oxime hits were confirmed in full-scale competitive MS Binding Assays. Thereby, oxime derivatives with a 1,1'-biphenyl moiety were found as the first inhibitors of mGAT1 comprising a pyrrolidine-3-carboxylic acid motif with affinities in the submicromolar range.
Collapse
|
5
|
Schaarschmidt M, Höfner G, Wanner KT. Synthesis and Biological Evaluation of Nipecotic Acid and Guvacine Derived 1,3-Disubstituted Allenes as Inhibitors of Murine GABA Transporter mGAT1. ChemMedChem 2019; 14:1135-1151. [PMID: 30957949 DOI: 10.1002/cmdc.201900170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/18/2022]
Abstract
A new class of nipecotic acid and guvacine derivatives has been synthesized and characterized for their inhibitory potency at mGAT1-4 and binding affinity for mGAT1. Compounds of the described class are defined by a four-carbon-atom allenyl spacer connecting the nitrogen atom of the nipecotic acid or guvacine head with an aromatic residue. Among the compounds investigated, the mixture of nipecotic acid derivatives rac-{(Ra )-1-[4-([1,1':2',1''-terphenyl]-2-yl)buta-2,3-dien-1-yl](3R)-piperidine-3-carboxylic acid} and rac-{(Sa )-1-[4-([1,1':2',1''-terphenyl]-2-yl)buta-2,3-dien-1-yl](3R)-piperidine-3-carboxylic acid} (21 p), possessing an o-terphenyl residue, was identified as highly selective and the most potent mGAT1 inhibitor in this study. For the (R)-nipecotic acid derived form of 21 p, the inhibitory potency in [3 H]GABA uptake assays was determined as pIC50 =6.78±0.08, and the binding affinity in MS Binding Assays as pKi =7.10±0.12. The synthesis of the designed compounds was carried out by a two-step procedure, generating the allene moiety via allenylation of terminal alkynes which allows broad variation of the terminal phenyl and biphenyl subunit.
Collapse
Affiliation(s)
- Maren Schaarschmidt
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 7-13, 81377, Munich, Germany
| | - Georg Höfner
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 7-13, 81377, Munich, Germany
| | - Klaus T Wanner
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 7-13, 81377, Munich, Germany
| |
Collapse
|
6
|
Kern F, Wanner KT. Screening oxime libraries by means of mass spectrometry (MS) binding assays: Identification of new highly potent inhibitors to optimized inhibitors γ-aminobutyric acid transporter 1. Bioorg Med Chem 2019; 27:1232-1245. [PMID: 30777661 DOI: 10.1016/j.bmc.2019.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/07/2019] [Indexed: 11/26/2022]
Abstract
Generation and screening of oxime libraries by competitive MS Binding Assays represents a powerful tool for the identification of new compounds, with affinity to mGAT1, the most abundant plasma membrane bound GABA transporter in the CNS. By screening a guvacine derived oxime library, new potent inhibitors of mGAT1 had been revealed. In the present study, oxime libraries generated by reaction of a large excess of a rac-nipecotic acid derivative displaying a hydroxylamine functionality in which various aldehydes under suitable conditions, were examined for new potent inhibitors of mGAT1. The pKi values obtained of the best hits were compared with those of related compounds displaying a guvacine instead of a nipecotic acid subunit as hydrophilic moiety. Amongst the new compounds one of the most affine ligands of mGAT1 known so far (pKi = 8.55 ± 0.04) was found.
Collapse
Affiliation(s)
- Felix Kern
- Department Pharmacy - Center for Drug Research, Ludwig-Maximilians-University München, Butenandtstr. 7, 81377 Munich, Germany
| | - Klaus T Wanner
- Department Pharmacy - Center for Drug Research, Ludwig-Maximilians-University München, Butenandtstr. 7, 81377 Munich, Germany.
| |
Collapse
|
7
|
Huber SK, Höfner G, Wanner KT. Identification of Pyrrolidine‐3‐acetic Acid Derived Oximes as Potent Inhibitors of γ‐Aminobutyric Acid Transporter 1 through Library Screening with MS Binding Assays. ChemMedChem 2018; 13:2488-2503. [DOI: 10.1002/cmdc.201800556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Simone K. Huber
- Department of Pharmacy, Center of Drug ResearchLudwig Maximilians University of Munich Butenandtstr. 7 81377 Munich Germany
| | - Georg Höfner
- Department of Pharmacy, Center of Drug ResearchLudwig Maximilians University of Munich Butenandtstr. 7 81377 Munich Germany
| | - Klaus T. Wanner
- Department of Pharmacy, Center of Drug ResearchLudwig Maximilians University of Munich Butenandtstr. 7 81377 Munich Germany
| |
Collapse
|
8
|
Liberato JL, Godoy LD, Cunha AOS, Mortari MR, de Oliveira Beleboni R, Fontana ACK, Lopes NP, Dos Santos WF. Parawixin2 Protects Hippocampal Cells in Experimental Temporal Lobe Epilepsy. Toxins (Basel) 2018; 10:toxins10120486. [PMID: 30469496 PMCID: PMC6316435 DOI: 10.3390/toxins10120486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is considered as one of the major disabling neuropathologies. Almost one third of adult patients with temporal lobe epilepsy (TLE) do not respond to current antiepileptic drugs (AEDs). Additionally, most AEDs do not have neuroprotective effects against the inherent neurodegenerative process underlying the hippocampal sclerosis on TLE. Dysfunctions in the GABAergic neurotransmission may contribute not only to the onset of epileptic activity but also constitute an important system for therapeutic approaches. Therefore, molecules that enhance GABA inhibitory effects could open novel avenues for the understanding of epileptic plasticity and for drug development. Parawixin2, a compound isolated from Parawixia bistriata spider venom, inhibits both GABA and glycine uptake and has an anticonvulsant effect against a wide range of chemoconvulsants. The neuroprotective potential of Parawixin2 was analyzed in a model of TLE induced by a long-lasting Status Epilepticus (SE), and its efficiency was compared to well-known neuroprotective drugs, such as riluzole and nipecotic acid. Neuroprotection was assessed through histological markers for cell density (Nissl), astrocytic reactivity (GFAP) and cell death labeling (TUNEL), which were performed 24 h and 72 h after SE. Parawixin2 treatment resulted in neuroprotective effects in a dose dependent manner at 24 h and 72 h after SE, as well as reduced reactive astrocytes and apoptotic cell death. Based on these findings, Parawixin2 has a great potential to be used as a tool for neuroscience research and as a probe to the development of novel GABAergic neuroprotective agents.
Collapse
Affiliation(s)
- José Luiz Liberato
- Neurobiology and Venoms Laboratory (LNP), Department of Biology, College of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901 São Paulo, Brazil.
- Neuroscience Behavioral Institute (INEC), Av. do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil.
| | - Lívea Dornela Godoy
- Neurobiology and Venoms Laboratory (LNP), Department of Biology, College of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901 São Paulo, Brazil.
- Neuroscience Behavioral Institute (INEC), Av. do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil.
| | - Alexandra Olimpio Siqueira Cunha
- Neurobiology and Venoms Laboratory (LNP), Department of Biology, College of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901 São Paulo, Brazil.
| | - Marcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF 70910-900 Brasília, Brazil.
| | - Rene de Oliveira Beleboni
- Department of Biotechnology/School of Medicine, University of Ribeirão Preto, Av. Costábile Romano, 2201, Ribeirão Preto, 14096-900 São Paulo, Brazil.
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102, USA.
| | - Norberto Peporine Lopes
- NPPNS, Department of Physics and Chemistry, College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil, Av. do Cafe s/n, Ribeirão Preto, 14040-903 São Paulo, Brazil.
| | - Wagner Ferreira Dos Santos
- Neurobiology and Venoms Laboratory (LNP), Department of Biology, College of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901 São Paulo, Brazil.
- Neuroscience Behavioral Institute (INEC), Av. do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil.
| |
Collapse
|
9
|
Design, synthesis, evaluation and molecular modeling studies of some novel N-substituted piperidine-3-carboxylic acid derivatives as potential anticonvulsants. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2141-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
van der Vlag R, Hirsch A. Analytical Methods in Protein-Templated Dynamic Combinatorial Chemistry. COMPREHENSIVE SUPRAMOLECULAR CHEMISTRY II 2017. [PMCID: PMC7150222 DOI: 10.1016/b978-0-12-409547-2.12559-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Synthesis and biological evaluation of a series of N -alkylated imidazole alkanoic acids as mGAT3 selective GABA uptake inhibitors. Eur J Med Chem 2016; 124:852-880. [DOI: 10.1016/j.ejmech.2016.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/21/2016] [Accepted: 09/03/2016] [Indexed: 11/20/2022]
|
12
|
Petrera M, Wein T, Allmendinger L, Sindelar M, Pabel J, Höfner G, Wanner KT. Development of Highly Potent GAT1 Inhibitors: Synthesis of Nipecotic Acid Derivatives by Suzuki-Miyaura Cross-Coupling Reactions. ChemMedChem 2015; 11:519-38. [DOI: 10.1002/cmdc.201500490] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 12/29/2022]
Affiliation(s)
| | - Thomas Wein
- Department of Pharmacy; Center for Drug Research; Ludwigs-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Lars Allmendinger
- Department of Pharmacy; Center for Drug Research; Ludwigs-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Miriam Sindelar
- Department Pharmacology; Weill Cornell Medical College; LC-428 1300 York Avenue New York NY 10021 USA
| | - Jörg Pabel
- Department of Pharmacy; Center for Drug Research; Ludwigs-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Georg Höfner
- Department of Pharmacy; Center for Drug Research; Ludwigs-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Klaus T. Wanner
- Department of Pharmacy; Center for Drug Research; Ludwigs-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| |
Collapse
|
13
|
Jurik A, Zdrazil B, Holy M, Stockner T, Sitte HH, Ecker GF. A binding mode hypothesis of tiagabine confirms liothyronine effect on γ-aminobutyric acid transporter 1 (GAT1). J Med Chem 2015; 58:2149-58. [PMID: 25679268 PMCID: PMC4360375 DOI: 10.1021/jm5015428] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Elevating
GABA levels in the synaptic cleft by inhibiting its reuptake
carrier GAT1 is an established approach for the treatment of CNS disorders
like epilepsy. With the increasing availability of crystal structures
of transmembrane transporters, structure-based approaches to elucidate
the molecular basis of ligand–transporter interaction also
become feasible. Experimental data guided docking of derivatives of
the GAT1 inhibitor tiagabine into a protein homology model of GAT1
allowed derivation of a common binding mode for this class of inhibitors
that is able to account for the distinct structure–activity
relationship pattern of the data set. Translating essential binding
features into a pharmacophore model followed by in silico screening
of the DrugBank identified liothyronine as a drug potentially exerting
a similar effect on GAT1. Experimental testing further confirmed the
GAT1 inhibiting properties of this thyroid hormone.
Collapse
Affiliation(s)
- Andreas Jurik
- University of Vienna , Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
14
|
Kern FT, Wanner KT. Generation and Screening of Oxime Libraries Addressing the Neuronal GABA Transporter GAT1. ChemMedChem 2014; 10:396-410. [DOI: 10.1002/cmdc.201402376] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Indexed: 01/03/2023]
|
15
|
Quandt G, Höfner G, Pabel J, Dine J, Eder M, Wanner KT. First Photoswitchable Neurotransmitter Transporter Inhibitor: Light-Induced Control of γ-Aminobutyric Acid Transporter 1 (GAT1) Activity in Mouse Brain. J Med Chem 2014; 57:6809-21. [DOI: 10.1021/jm5008566] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriele Quandt
- Department
für Pharmazie—Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Georg Höfner
- Department
für Pharmazie—Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Jörg Pabel
- Department
für Pharmazie—Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Julien Dine
- Max-Planck-Institut für Psychiatrie, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Matthias Eder
- Max-Planck-Institut für Psychiatrie, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Klaus T. Wanner
- Department
für Pharmazie—Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
16
|
Jurik A, Reicherstorfer R, Zdrazil B, Ecker GF. Classification of High-Activity Tiagabine Analogs by Binary QSAR Modeling. Mol Inform 2013; 32:415-419. [PMID: 23956803 PMCID: PMC3743161 DOI: 10.1002/minf.201300020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/28/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Andreas Jurik
- University of Vienna, Department of Medicinal Chemistry Althanstraße 14, A-1090 Vienna, Austria phone/fax: +431-4277-55110/-9551
| | | | | | | |
Collapse
|
17
|
Gelfuso EA, Liberato JL, Cunha AOS, Mortari MR, Beleboni RO, Lopes NP, Dos Santos WF. Parawixin2, a novel non-selective GABA uptake inhibitor from Parawixia bistriata spider venom, inhibits pentylenetetrazole-induced chemical kindling in rats. Neurosci Lett 2013; 543:12-6. [PMID: 23562887 DOI: 10.1016/j.neulet.2013.02.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/05/2013] [Accepted: 02/24/2013] [Indexed: 12/20/2022]
Abstract
The aims of the present work were to investigate the effects of the repeated administration of Parawixin2 (2-amino-5-ureidopentanamide; formerly FrPbAII), a novel GABA and glycine uptake inhibitor, in rats submitted to PTZ-induced kindling. Wistar rats were randomly divided in groups (n=6-8) for different treatments. Systemic injections of PTZ were administered every 48 h in the dose of 33 mg/kg; i.p., that is sufficient to induce fully kindled seizures in saline i.c.v. treated rats in a short period of time (28 days). Treatments in two types of positive controls (diazepam - DZP and nipecotic acid - NA groups) consisted in daily systemic injections of DZP (2mg/kg; i.p.) or i.c.v. injections of NA (12 μg/μL), while in experimental groups in daily i.c.v. injections of different doses of Parawixin2 (0.15; 0.075; 0.015 μg/μL). Seizures were analyzed using the Lamberty & Klitgaard score and kindling was considered as established after at least three consecutive seizures of score 4 or 5. Cumulative seizure scores for each group were analyzed using repeated measures of ANOVA followed by Tukey test. PTZ induced 4 and 5-score seizures after 12 injections in saline treated rats, whereas daily injection of Parawixin2 inhibited the onset of seizures in a dose dependent manner. Also, the challenging administration of PTZ did not raise seizure score in animals treated with the highest dose of Parawixin2 or those treated with DZP or NA. These findings together with previous data from our laboratory show that Parawixin2 could be a useful probe to design new antiepileptic drugs.
Collapse
Affiliation(s)
- Erica A Gelfuso
- Neurobiology and Venoms Laboratory, Department of Biology, College of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Quandt G, Höfner G, Wanner KT. Synthesis and evaluation of N-substituted nipecotic acid derivatives with an unsymmetrical bis-aromatic residue attached to a vinyl ether spacer as potential GABA uptake inhibitors. Bioorg Med Chem 2013; 21:3363-78. [PMID: 23598250 DOI: 10.1016/j.bmc.2013.02.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 11/18/2022]
Abstract
γ-Amino butyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system (CNS). A malfunction of the GABAergic neurotransmission is connected to several neuronal disorders like epilepsy, Alzheimer's disease, neuropathic pain, and depression. One possibility to enhance GABA levels in the synaptic cleft is to inhibit mGAT1, one of the four known plasma membrane bound GABA transporters, which is considered the most important GABA transporter subtype, being in charge of the removal of GABA from the synaptic cleft after a neuronal impulse. Lipophilic derivatives of nipecotic acid like Tiagabine (Gabitril®), an approved drug used in add-on therapy of epilepsy, are known to inhibit uptake of mGAT1 with high subtype selectivity and affinity. We synthesized new N-substituted nipecotic acid derivatives with a vinyl ether spacer and an unsymmetrical bis-aromatic residue, which carries fluorine substituents at various positions of the aromatic ring-system. The new compounds were characterized with respect to their potency and subtype selectivity as mGAT1 inhibitors.
Collapse
Affiliation(s)
- Gabriele Quandt
- Ludwig-Maximilians-University Munich, Department Pharmacy, Center for Drug Research, Butenandtstr. 7, 81377 Munich, Germany
| | | | | |
Collapse
|
19
|
Sindelar M, Lutz TA, Petrera M, Wanner KT. Focused Pseudostatic Hydrazone Libraries Screened by Mass Spectrometry Binding Assay: Optimizing Affinities toward γ-Aminobutyric Acid Transporter 1. J Med Chem 2013; 56:1323-40. [DOI: 10.1021/jm301800j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Miriam Sindelar
- Center for Drug Research, Department
of Pharmacy, Ludwig Maximilians University at Munich, Butenandtstrasse
9-13, D-81377 Munich, Germany
| | - Toni A. Lutz
- Center for Drug Research, Department
of Pharmacy, Ludwig Maximilians University at Munich, Butenandtstrasse
9-13, D-81377 Munich, Germany
| | - Marilena Petrera
- Center for Drug Research, Department
of Pharmacy, Ludwig Maximilians University at Munich, Butenandtstrasse
9-13, D-81377 Munich, Germany
| | - Klaus T. Wanner
- Center for Drug Research, Department
of Pharmacy, Ludwig Maximilians University at Munich, Butenandtstrasse
9-13, D-81377 Munich, Germany
| |
Collapse
|
20
|
Sindelar M, Wanner KT. Library Screening by Means of Mass Spectrometry (MS) Binding Assays-Exemplarily Demonstrated for a Pseudostatic Library Addressing γ-Aminobutyric Acid (GABA) Transporter 1 (GAT1). ChemMedChem 2012; 7:1678-90. [DOI: 10.1002/cmdc.201200201] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Indexed: 11/06/2022]
|
21
|
Faggion SA, Cunha AOS, Fachim HA, Gavin AS, dos Santos WF, Pereira AMS, Beleboni RO. Anticonvulsant profile of the alkaloids (+)-erythravine and (+)-11-α-hydroxy-erythravine isolated from the flowers of Erythrina mulungu Mart ex Benth (Leguminosae-Papilionaceae). Epilepsy Behav 2011; 20:441-6. [PMID: 21277832 DOI: 10.1016/j.yebeh.2010.12.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/17/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
Abstract
Neural mechanisms underlying the onset and maintenance of epileptic seizures involve alterations in inhibitory and/or excitatory neurotransmitter pathways. Thus, the prospecting of novel molecules from natural products that target both inhibition and excitation systems has deserved interest in the rational design of new anticonvulsants. We isolated the alkaloids (+)-erythravine and (+)-11-α-hydroxy-erythravine from the flowers of Erythrina mulungu and evaluated the action of these compounds against chemically induced seizures in rats. Our results showed that the administration of different doses of (+)-erythravine inhibited seizures evoked by bicuculline, pentylenetetrazole, and kainic acid at maximum of 80, 100, and 100%, respectively, whereas different doses of (+)-11-α-hydroxy-erythravine inhibited seizures at a maximum of 100% when induced by bicuculline, NMDA, and kainic acid, and, to a lesser extent, PTZ (60%). The analysis of mean latency to seizure onset of nonprotected animals, for specific doses of alkaloids, showed that (+)-erythravine increased latencies to seizures induced by bicuculline. Although (+)-erythravine exhibited very weak anticonvulsant action against seizures induced by NMDA, this alkaloid increased the latency in this assay. The increase in latency to onset of seizures promoted by (+)-11-α-hydroxy-erythravine reached a maximum of threefold in the bicuculline test. All animals were protected against death when treated with different doses of (+)-11-α-hydroxy-erythravine in the tests using the four chemical convulsants. Identical results were obtained when using (+)-erythravine in the tests of bicuculline, NMDA, and PTZ, and, to a lesser extent, kainic acid. Therefore, these data validate the anticonvulsant properties of the tested alkaloids, which is of relevance in consideration of the ethnopharmacological/biotechnological potential of E. mulungu.
Collapse
|
22
|
King FD, Aliev AE, Caddick S, Tocher DA. A novel synthesis of (di)-benzazocinones via an endocyclic N-acyliminium ion cyclisation. Org Biomol Chem 2011; 9:1547-54. [DOI: 10.1039/c0ob00559b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Pizzi DA, Leslie CP, Di Fabio R, Seri C, Bernasconi G, Squaglia M, Carnevale G, Falchi A, Greco E, Mangiarini L, Negri M. Stereospecific synthesis and structure-activity relationships of unsymmetrical 4,4-diphenylbut-3-enyl derivatives of nipecotic acid as GAT-1 inhibitors. Bioorg Med Chem Lett 2010; 21:602-5. [PMID: 21134748 DOI: 10.1016/j.bmcl.2010.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/03/2010] [Accepted: 09/04/2010] [Indexed: 11/29/2022]
Abstract
Two complementary stereospecific synthetic approaches for the preparation of unsymmetrical ortho-substituted N-(4,4-diphenylbut-3-enyl) derivatives of nipecotic acid are described. Determination of the activity of the prepared compounds at the GAT-1 transporter highlighted differing SAR requirements of the E- and Z-phenyl rings, and led to the discovery of a compound with comparable potency to tiagabine. Some attempts to replace nipecotic acid with alternative novel amino acids are also described.
Collapse
Affiliation(s)
- Domenica A Pizzi
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Medicines Research Centre, Via A Fleming 4, 37135 Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs. Pharmacol Ther 2010; 125:394-401. [DOI: 10.1016/j.pharmthera.2009.11.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 11/24/2009] [Indexed: 12/23/2022]
|
25
|
Zhuang W, Zhao X, Zhao G, Guo L, Lian Y, Zhou J, Fang D. Synthesis and biological evaluation of 4-fluoroproline and 4-fluoropyrrolidine-2-acetic acid derivatives as new GABA uptake inhibitors. Bioorg Med Chem 2009; 17:6540-6. [PMID: 19703775 DOI: 10.1016/j.bmc.2009.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 11/26/2022]
Abstract
Preparation for the N-alkylated derivatives of enantiomerically pure (2S)-4-fluoroproline and (2S)-4-fluoropyrrolidine-2-acetic acid is described. The final compounds were evaluated as potential GAT-1 uptake inhibitors via cultured cell lines expressing mouse GAT-1. Compared with their corresponding 4-hydroxy compounds, these derivatives exhibited slight improvement on their inhibitory potency, but still much weaker than their corresponding compounds with no substituents at the C-4 of the pyrrolidine moiety, with the most potent affinity being about 1/15 fold as that of Tiagabine. The drastic decrease of their affinity may arise from sharp reduction of their basicity due to strong inductive effect of the 4-fluorine. However the configuration of the C-4 linking fluorine did not have much influence on their affinity for GAT-1.
Collapse
Affiliation(s)
- Weiping Zhuang
- Fujian Institute of Microbiology, No. 25, Jinbu road, Fuzhou 350007, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Mortari MR, Cunha AOS, Ferreira LB, dos Santos WF. Neurotoxins from invertebrates as anticonvulsants: From basic research to therapeutic application. Pharmacol Ther 2007; 114:171-83. [PMID: 17399793 DOI: 10.1016/j.pharmthera.2007.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 12/21/2022]
Abstract
Invertebrate venoms have attracted considerable interest as a potential source of bioactive substances, especially neurotoxins. These molecules have proved to be extremely useful tools for the understanding of synaptic transmission events, and they have contributed to the design of novel drugs for the treatment of neurological disorders and pain. In this context, as epilepsy involves neuronal substrates, which are sites of action of many neurotoxins; venoms may be particularly useful for antiepileptic drug (AED) research. Epilepsy is a chronic disease whose treatment consists of controlling seizures with antiepileptics that very often induce strong undesirable side effects that may limit treatment. Here, we review the vast, but yet unexplored, world of neurotoxins from invertebrates used as probes in pharmacological screening for novel and less toxic antiepileptics. We briefly review (1) the molecular basis of epilepsy, as well as the sites of action of commonly used anticonvulsants (we bring a comprehensive review of the elements from invertebrate venoms which are mostly studied in neuroscience research and may be useful for drug development); (2) peptides from conus snails; (3) peptides and polyamine toxins from spiders and wasps; and (4) peptides from scorpions.
Collapse
Affiliation(s)
- Márcia Renata Mortari
- Neurobiology and Venoms Laboratory, Department of Biology, School of Philosophy, Sciences and Literature, University of São Paulo Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
27
|
Gelfuso EA, Cunha AOS, Mortari MR, Liberato JL, Paraventi KH, Beleboni RO, Coutinho-Netto J, Lopes NP, dos Santos WF. Neuropharmacological profile of FrPbAII, purified from the venom of the social spider Parawixia bistriata (Araneae, Araneidae), in Wistar rats. Life Sci 2007; 80:566-72. [PMID: 17083949 DOI: 10.1016/j.lfs.2006.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/03/2006] [Accepted: 10/07/2006] [Indexed: 11/16/2022]
Abstract
The aims of the present study were to investigate the anticonvulsant activity and behavioral toxicity of FrPbAII using freely moving Wistar rats. Moreover, the effectiveness of this compound against chemical convulsants was compared to that of the inhibitor of the GABAergic uptake, nipecotic acid. Our results show that FrPbAII was effective against seizures induced by the i.c.v. injection of pilocarpine (ED(50) = 0.05 microg/animal), picrotoxin (ED(50) = 0.02 microg/animal), kainic acid (ED(50) = 0.2 microg/animal) and the systemic administration of PTZ (ED(50) = 0.03 microg/animal). The anticonvulsant effect of FrPbAII differed from that of nipecotic acid in potency, as the doses needed to block the seizures were more than 10 folds lower. Toxicity assays revealed that in the rotarod, the toxic dose of the FrPbAII is 1.33 microg/animal, and the therapeutic indexes were calculated for each convulsant. Furthermore, the spontaneous locomotor activity of treated animals was not altered when compared to control animals but differed from the animals treated with nipecotic acid. Still, FrPbAII did not induce changes in any of the behavioral parameters analyzed. Finally, when tested for cognitive impairments in the Morris water maze, the i.c.v. injection of FrPbAII did not alter escape latencies of treated animals. These findings indicate that the novel GABA uptake inhibitor is a potent anticonvulsant with mild side-effects when administered to Wistar rats.
Collapse
Affiliation(s)
- Erica Aparecida Gelfuso
- Neurobiology and Venoms Laboratory, Department of Biology, Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Clausen RP, Madsen K, Larsson OM, Frølund B, Krogsgaard-Larsen P, Schousboe A. Structure–Activity Relationship and Pharmacology of γ‐Aminobutyric Acid (GABA) Transport Inhibitors. GABA 2006; 54:265-84. [PMID: 17175818 DOI: 10.1016/s1054-3589(06)54011-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rasmus Praetorius Clausen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
29
|
Wang H, Hussain AA, Wedlund PJ. Nipecotic Acid: Systemic Availability and Brain Delivery After Nasal Administration of Nipecotic Acid and n-Butyl Nipecotate to Rats. Pharm Res 2005; 22:556-62. [PMID: 15846463 DOI: 10.1007/s11095-005-2491-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 12/28/2004] [Indexed: 10/25/2022]
Abstract
PURPOSE The purpose of this research was to characterize nipecotic acid pharmacokinetics in blood and brain after intravenous (i.v.) and nasal administration of nipecotic acid and its n-butyl ester. METHODS Nipecotic acid and its n-butyl ester were administered to rats i.v. and intranasally (n = 5 rats/drug per route), and nipecotic acid pharmacokinetics in blood were characterized. Nipecotic acid concentration-time profiles were determined in blood by noncompartmental and compartmental methods. Nipecotic acid was also dosed i.v. and its n-butyl ester was dosed by nasal and i.v. routes, and brain levels of nipecotic acid over the subsequent 4 h (n = 5 rats/time point per route) were assessed. RESULTS The absolute systemic availability of nipecotic acid after nasal dosing was 14%. After i.v. and nasal dosing of the n-butyl ester, nipecotic acid systemic availability was 97% and 92%, respectively. Both i.v. and nasal administration of the n-butyl ester resulted in a significantly longer terminal half-life and larger mean resident time and volume of distribution for nipecotic acid than was observed after an i.v. nipecotic acid dose. Total brain exposure to nipecotic acid was not significantly different after nasal and i.v. dosing of the n-butyl ester. However, the brain/blood nipecotic acid ratio declined significantly with time after i.v. and nasal dosing of the ester prodrug. Nipecotic acid was not detectable in brain after i.v. dosing of nipecotic acid. CONCLUSIONS The use of an ester formulation was crucial to delivering nipecotic acid to the brain. Preliminary evidence strongly suggests ester hydrolysis is rate limiting to nipecotic acid brain delivery. Once nipeoctic acid was formed, it displayed tissue trapping in brain. Parenteral dosing of nipecotic acid esters is unnecessary for systemic or brain delivery of nipecotic acid and possibly other CNS active zwitterion esters.
Collapse
Affiliation(s)
- Hongna Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
30
|
Clausen RP, Moltzen EK, Perregaard J, Lenz SM, Sanchez C, Falch E, Frølund B, Bolvig T, Sarup A, Larsson OM, Schousboe A, Krogsgaard-Larsen P. Selective inhibitors of GABA uptake: synthesis and molecular pharmacology of 4-N-methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol analogues. Bioorg Med Chem 2005; 13:895-908. [PMID: 15653355 DOI: 10.1016/j.bmc.2004.10.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 10/12/2004] [Indexed: 11/23/2022]
Abstract
A series of lipophilic diaromatic derivatives of the glia-selective GABA uptake inhibitor (R)-4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol [(R)-exo-THPO, 4] were synthesized via reductive amination of 3-ethoxy-4,5,6,7-tetrahydrobenzo[d]isoxazol-4-one (9) or via N-alkylation of O-alkylatedracemic 4. The effects of the target compounds on GABA uptake mechanisms in vitro were measured using a rat brain synaptosomal preparation or primary cultures of mouse cortical neurons and glia cells (astrocytes), as well as HEK cells transfected with cloned mouse GABA transporter subtypes (GAT1-4). The activity against isoniazid-induced convulsions in mice after subcutaneous administration of the compounds was determined. All of the compounds were potent inhibitors of synaptosomal uptake the most potent compound being (RS)-4-[N-(1,1-diphenylbut-1-en-4-yl)amino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (17a, IC50 = 0.14 microM). The majority of the compounds showed a weak preference for glial, as compared to neuronal, GABA uptake. The highest degree of selectivity was 10-fold corresponding to the glia selectivity of (R)-N-methyl-exo-THPO (5). All derivatives showed a preference for the GAT1 transporter, as compared with GAT2-4, with the exception of (RS)-4-[N-[1,1-bis(3-methyl-2-thienyl)but-1-en-4-yl]-N-methylamino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (28d), which quite surprisingly turned out to be more potent than GABA at both GAT1 and GAT2 subtypes. The GAT1 activity was shown to reside in (R)-28d whereas (R)-28d and (S)-28d contributed equally to GAT2 activity. This makes (S)-28d a GAT2 selective compound, and (R)-28d equally effective in inhibition of GAT1 and GAT2 mediated GABA transport. All compounds tested were effective as anticonvulsant reflecting that these compounds have blood-brain barrier permeating ability.
Collapse
Affiliation(s)
- Rasmus P Clausen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Beleboni RO, Carolino ROG, Pizzo AB, Castellan-Baldan L, Coutinho-Netto J, dos Santos WF, Coimbra NC. Pharmacological and biochemical aspects of GABAergic neurotransmission: pathological and neuropsychobiological relationships. Cell Mol Neurobiol 2004; 24:707-28. [PMID: 15672674 PMCID: PMC11529967 DOI: 10.1007/s10571-004-6913-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1. The GABAergic neurotransmission has been implicated in the modulation of many neural networks in forebrain, midbrain and hindbrain, as well as, in several neurological disorders. 2. The complete comprehension of GABA system neurochemical properties and the search for approaches in identifying new targets for the treatment of neural diseases related to GABAergic pathway are of the extreme relevance. 3. The present review will be focused on the pharmacology and biochemistry of the GABA metabolism, GABA receptors and transporters. In addition, the pathological and psychobiological implications related to GABAergic neurotransmission will be considered.
Collapse
Affiliation(s)
- Renê Oliveira Beleboni
- Departament of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ruither Oliveira Gomes Carolino
- Departament of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Andrea Baldocchi Pizzo
- Departament of Biology, Ribeirão Preto Faculty of Philosophy, Sciences and Literature, University of São Paulo, São Paulo, Brazil
| | - Lissandra Castellan-Baldan
- Laboratory of Neuroanatomy and Neuropsychobiology, Departament of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Joaquim Coutinho-Netto
- Departament of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Wagner Ferreira dos Santos
- Departament of Biology, Ribeirão Preto Faculty of Philosophy, Sciences and Literature, University of São Paulo, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Departament of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Rodrigues MCA, Beleboni RDO, Coutinho-Netto J, dos Santos WF, Garcia-Cairasco N. Behavioral effects of bicuculline microinjection in the dorsal versus ventral hippocampal formation of rats, and control of seizures by nigral muscimol. Epilepsy Res 2004; 58:155-65. [PMID: 15120746 DOI: 10.1016/j.eplepsyres.2004.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 02/04/2004] [Accepted: 02/05/2004] [Indexed: 11/20/2022]
Abstract
This work aims to describe behavioral/electroencephalographic (EEG) seizures induced by bicuculline microinjection intracerebroventricularly (ICV) and in the dorsal hippocampal formation (DHF) or ventral hippocampal formation/amygdala area (VHF-AMY). We also test if GABAergic manipulation in the substantia nigra pars reticulata (SNPR) is capable of controlling those seizures. ICV injection of bicuculline induced a progressive sequence of convulsive responses, jumps and escapes from the open-field. This effect was partially reached by bicuculline injection in the DHF or VHF-AMY injection. Also: muscimol injection, but not GABA uptake blockers (nipecotic acid or a spider venom neurotoxin FrPbA2), into the SNPR abolished seizures induced by bicuculline injection in the DHF. It was concluded that different neuronal circuitry in the hippocampal formation are modulated, at least partially by nigral GABAergic mechanisms.
Collapse
Affiliation(s)
- Marcelo Cairrão Araujo Rodrigues
- Laboratório de Neurobiologia e Peçonhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|