1
|
Banani SF, Goychuk A, Natarajan P, Zheng MM, Dall’Agnese G, Henninger JE, Kardar M, Young RA, Chakraborty AK. Active RNA synthesis patterns nuclear condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.614958. [PMID: 39498261 PMCID: PMC11533426 DOI: 10.1101/2024.10.12.614958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Biomolecular condensates are membraneless compartments that organize biochemical processes in cells. In contrast to well-understood mechanisms describing how condensates form and dissolve, the principles underlying condensate patterning - including their size, number and spacing in the cell - remain largely unknown. We hypothesized that RNA, a key regulator of condensate formation and dissolution, influences condensate patterning. Using nucleolar fibrillar centers (FCs) as a model condensate, we found that inhibiting ribosomal RNA synthesis significantly alters the patterning of FCs. Physical theory and experimental observations support a model whereby active RNA synthesis generates a non-equilibrium state that arrests condensate coarsening and thus contributes to condensate patterning. Altering FC condensate patterning by expression of the FC component TCOF1 impairs ribosomal RNA processing, linking condensate patterning to biological function. These results reveal how non-equilibrium states driven by active chemical processes regulate condensate patterning, which is important for cellular biochemistry and function.
Collapse
Affiliation(s)
- Salman F. Banani
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Current Address: Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Andriy Goychuk
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pradeep Natarajan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ming M. Zheng
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Jonathan E. Henninger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arup K. Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Kofman C, Watkins AM, Kim D, Willi JA, Wooldredge A, Karim A, Das R, Jewett MC. Computationally-guided design and selection of high performing ribosomal active site mutants. Nucleic Acids Res 2022; 50:13143-13154. [PMID: 36484094 PMCID: PMC9825160 DOI: 10.1093/nar/gkac1036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/22/2022] [Indexed: 12/14/2022] Open
Abstract
Understanding how modifications to the ribosome affect function has implications for studying ribosome biogenesis, building minimal cells, and repurposing ribosomes for synthetic biology. However, efforts to design sequence-modified ribosomes have been limited because point mutations in the ribosomal RNA (rRNA), especially in the catalytic active site (peptidyl transferase center; PTC), are often functionally detrimental. Moreover, methods for directed evolution of rRNA are constrained by practical considerations (e.g. library size). Here, to address these limitations, we developed a computational rRNA design approach for screening guided libraries of mutant ribosomes. Our method includes in silico library design and selection using a Rosetta stepwise Monte Carlo method (SWM), library construction and in vitro testing of combined ribosomal assembly and translation activity, and functional characterization in vivo. As a model, we apply our method to making modified ribosomes with mutant PTCs. We engineer ribosomes with as many as 30 mutations in their PTCs, highlighting previously unidentified epistatic interactions, and show that SWM helps identify sequences with beneficial phenotypes as compared to random library sequences. We further demonstrate that some variants improve cell growth in vivo, relative to wild type ribosomes. We anticipate that SWM design and selection may serve as a powerful tool for rRNA engineering.
Collapse
Affiliation(s)
- Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Prescient Design, Genentech, South San Francisco, CA 94080, USA
| | - Do Soon Kim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Inceptive Nucleics, Inc., Palo Alto, CA 94304, USA
| | - Jessica A Willi
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Alexandra C Wooldredge
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Elferich J, Schiroli G, Scadden DT, Grigorieff N. Defocus Corrected Large Area Cryo-EM (DeCo-LACE) for label-free detection of molecules across entire cell sections. eLife 2022; 11:e80980. [PMID: 36382886 PMCID: PMC9711527 DOI: 10.7554/elife.80980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022] Open
Abstract
A major goal of biological imaging is localization of biomolecules inside a cell. Fluorescence microscopy can localize biomolecules inside whole cells and tissues, but its ability to count biomolecules and accuracy of the spatial coordinates is limited by the wavelength of visible light. Cryo-electron microscopy (cryo-EM) provides highly accurate position and orientation information of biomolecules but is often confined to small fields of view inside a cell, limiting biological context. In this study, we use a new data-acquisition scheme called Defocus-Corrected Large-Area cryo-EM (DeCo-LACE) to collect high-resolution images of entire sections (100- to 250-nm-thick lamellae) of neutrophil-like mouse cells, representing 1-2% of the total cellular volume. We use 2D template matching (2DTM) to determine localization and orientation of the large ribosomal subunit in these sections. These data provide maps of ribosomes across entire sections of mammalian cells. This high-throughput cryo-EM data collection approach together with 2DTM will advance visual proteomics and provide biological insight that cannot be obtained by other methods.
Collapse
Affiliation(s)
- Johannes Elferich
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Howard Hughes Medical InstituteWorcesterUnited States
| | - Giulia Schiroli
- Department of Stem Cell and Regenerative Biology, Harvard UniversityCambridgeUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard UniversityCambridgeUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Nikolaus Grigorieff
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Howard Hughes Medical InstituteWorcesterUnited States
| |
Collapse
|
4
|
Grant TD. Reply to: Limitations of the iterative electron density reconstruction algorithm from solution scattering data. Nat Methods 2021; 18:246-248. [PMID: 33649588 PMCID: PMC8284390 DOI: 10.1038/s41592-021-01083-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 02/01/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas D Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
5
|
Terashi G, Kagaya Y, Kihara D. MAINMASTseg: Automated Map Segmentation Method for Cryo-EM Density Maps with Symmetry. J Chem Inf Model 2020; 60:2634-2643. [PMID: 32197044 DOI: 10.1021/acs.jcim.9b01110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuki Kagaya
- Graduate School of Information Sciences, Tohoku University, Aramaki Aza, Aoba 6-3-09, Aoba-Ku, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Cryo-EM structure of a Marseilleviridae virus particle reveals a large internal microassembly. Virology 2018; 516:239-245. [PMID: 29407382 DOI: 10.1016/j.virol.2018.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) blur the line between viruses and cells. Melbournevirus (MelV, family Marseilleviridae) belongs to a new family of NCLDVs. Here we present an electron cryo-microscopy structure of the MelV particle, with the large triangulation number T = 309 constructed by 3080 pseudo-hexagonal capsomers. The most distinct feature of the particle is a large and dense body (LDB) consistently found inside all particles. Electron cryo-tomography of 147 particles shows that the LDB is preferentially located in proximity to the probable lipid bilayer. The LDB is 30 nm in size and its density matches that of a genome/protein complex. The observed LDB reinforces the structural complexity of MelV, setting it apart from other NCLDVs.
Collapse
|
7
|
Wu X, Subramaniam S, Case DA, Wu KW, Brooks BR. Targeted conformational search with map-restrained self-guided Langevin dynamics: application to flexible fitting into electron microscopic density maps. J Struct Biol 2013; 183:429-440. [PMID: 23876978 DOI: 10.1016/j.jsb.2013.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 11/30/2022]
Abstract
We present a map-restrained self-guided Langevin dynamics (MapSGLD) simulation method for efficient targeted conformational search. The targeted conformational search represents simulations under restraints defined by experimental observations and/or by user specified structural requirements. Through map-restraints, this method provides an efficient way to maintain substructures and to set structure targets during conformational searching. With an enhanced conformational searching ability of self-guided Langevin dynamics, this approach is suitable for simulating large-scale conformational changes, such as the formation of macromolecular assemblies and transitions between different conformational states. Using several examples, we illustrate the application of this method in flexible fitting of atomic structures into density maps derived from cryo-electron microscopy.
Collapse
Affiliation(s)
- Xiongwu Wu
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Sriram Subramaniam
- Laboratory of Cell Biology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - David A Case
- BioMaPS Institute and Dept. of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Katherine W Wu
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Sander B, Golas MM. Visualization of bionanostructures using transmission electron microscopical techniques. Microsc Res Tech 2010; 74:642-63. [DOI: 10.1002/jemt.20963] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 10/01/2010] [Indexed: 11/10/2022]
|
9
|
Taylor DJ, Devkota B, Huang AD, Topf M, Narayanan E, Sali A, Harvey SC, Frank J. Comprehensive molecular structure of the eukaryotic ribosome. Structure 2009; 17:1591-1604. [PMID: 20004163 PMCID: PMC2814252 DOI: 10.1016/j.str.2009.09.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/16/2009] [Accepted: 09/18/2009] [Indexed: 01/02/2023]
Abstract
Despite the emergence of a large number of X-ray crystallographic models of the bacterial 70S ribosome over the past decade, an accurate atomic model of the eukaryotic 80S ribosome is still not available. Eukaryotic ribosomes possess more ribosomal proteins and ribosomal RNA than do bacterial ribosomes, which are implicated in extraribosomal functions in the eukaryotic cells. By combining cryo-EM with RNA and protein homology modeling, we obtained an atomic model of the yeast 80S ribosome complete with all ribosomal RNA expansion segments and all ribosomal proteins for which a structural homolog can be identified. Mutation or deletion of 80S ribosomal proteins can abrogate maturation of the ribosome, leading to several human diseases. We have localized one such protein unique to eukaryotes, rpS19e, whose mutations are associated with Diamond-Blackfan anemia in humans. Additionally, we characterize crucial interactions between the dynamic stalk base of the ribosome with eukaryotic elongation factor 2.
Collapse
Affiliation(s)
- Derek J Taylor
- Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | - Batsal Devkota
- School of Biology and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Andrew D Huang
- School of Biology and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Maya Topf
- Department of Bioengineering and Therapeutical Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, Mission Bay Byers Hall, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Eswar Narayanan
- Department of Bioengineering and Therapeutical Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, Mission Bay Byers Hall, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutical Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, Mission Bay Byers Hall, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Stephen C Harvey
- School of Biology and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Joachim Frank
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology and Department of Biological Sciences, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
10
|
Alber F, Eswar N, Sali A. Structure Determination of Macromolecular Complexes by Experiment and Computation. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-3-540-74268-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
11
|
Cryo-EM study of the spinach chloroplast ribosome reveals the structural and functional roles of plastid-specific ribosomal proteins. Proc Natl Acad Sci U S A 2007; 104:19315-20. [PMID: 18042701 DOI: 10.1073/pnas.0709856104] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein synthesis in the chloroplast is carried out by chloroplast ribosomes (chloro-ribosome) and regulated in a light-dependent manner. Chloroplast or plastid ribosomal proteins (PRPs) generally are larger than their bacterial counterparts, and chloro-ribosomes contain additional plastid-specific ribosomal proteins (PSRPs); however, it is unclear to what extent these proteins play structural or regulatory roles during translation. We have obtained a three-dimensional cryo-EM map of the spinach 70S chloro-ribosome, revealing the overall structural organization to be similar to bacterial ribosomes. Fitting of the conserved portions of the x-ray crystallographic structure of the bacterial 70S ribosome into our cryo-EM map of the chloro-ribosome reveals the positions of PRP extensions and the locations of the PSRPs. Surprisingly, PSRP1 binds in the decoding region of the small (30S) ribosomal subunit, in a manner that would preclude the binding of messenger and transfer RNAs to the ribosome, suggesting that PSRP1 is a translation factor rather than a ribosomal protein. PSRP2 and PSRP3 appear to structurally compensate for missing segments of the 16S rRNA within the 30S subunit, whereas PSRP4 occupies a position buried within the head of the 30S subunit. One of the two PSRPs in the large (50S) ribosomal subunit lies near the tRNA exit site. Furthermore, we find a mass of density corresponding to chloro-ribosome recycling factor; domain II of this factor appears to interact with the flexible C-terminal domain of PSRP1. Our study provides evolutionary insights into the structural and functional roles that the PSRPs play during protein synthesis in chloroplasts.
Collapse
|
12
|
Nilsson J, Sengupta J, Gursky R, Nissen P, Frank J. Comparison of fungal 80 S ribosomes by cryo-EM reveals diversity in structure and conformation of rRNA expansion segments. J Mol Biol 2007; 369:429-38. [PMID: 17434183 PMCID: PMC1976601 DOI: 10.1016/j.jmb.2007.03.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 02/28/2007] [Accepted: 03/10/2007] [Indexed: 10/23/2022]
Abstract
Compared to the prokaryotic 70 S ribosome, the eukaryotic 80 S ribosome contains additional ribosomal proteins and extra segments of rRNA, referred to as rRNA expansion segments (ES). These eukaryotic-specific rRNA ES are mainly on the periphery of the 80 S ribosome, as revealed by cryo-electron microscopy (cryo-EM) studies, but their precise function is not known. To address the question of whether the rRNA ES are structurally conserved among 80 S ribosomes of different fungi we performed cryo-electron microscopy on 80 S ribosomes from the thermophilic fungus Thermomyces lanuginosus and compared it to the Saccharomyces cerevisiae 80 S ribosome. Our analysis reveals general structural conservation of the rRNA expansion segments but also changes in ES27 and ES7/39, as well as the absence of a tertiary interaction between ES3 and ES6 in T. lanuginosus. The differences provide a hint on the role of rRNA ES in regulating translation. Furthermore, we show that the stalk region and interactions with elongation factor 2 (eEF2) are different in T. lanuginosus, exhibiting a more extensive contact with domain I of eEF2.
Collapse
Affiliation(s)
- Jakob Nilsson
- Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK-8000 Aarhus C, Denmark
| | - Jayati Sengupta
- Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| | - Richard Gursky
- Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| | - Poul Nissen
- Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK-8000 Aarhus C, Denmark
| | - Joachim Frank
- Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
- Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, New York 12201-0509, USA
| |
Collapse
|
13
|
Sousa D, Grigorieff N. Ab initio resolution measurement for single particle structures. J Struct Biol 2006; 157:201-10. [PMID: 17029845 DOI: 10.1016/j.jsb.2006.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 08/03/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
A computational method is described that allows the measurement of the signal-to-noise ratio and resolution of a three-dimensional structure obtained by single particle electron microscopy and reconstruction. The method does not rely on the availability of the original image data or the calculation of several structures from different parts of the data that are needed for the commonly used Fourier Shell Correlation criterion. Instead, the correlation between neighboring Fourier pixels is calculated and used to distinguish signal from noise. The new method has been conveniently implemented in a computer program called RMEASURE and is available to the microscopy community.
Collapse
Affiliation(s)
- Duncan Sousa
- Howard Hughes Medical Institute and Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
14
|
Baker ML, Yu Z, Chiu W, Bajaj C. Automated segmentation of molecular subunits in electron cryomicroscopy density maps. J Struct Biol 2006; 156:432-41. [PMID: 16908194 DOI: 10.1016/j.jsb.2006.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 05/25/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
Electron cryomicroscopy (cryoEM) is capable of imaging large macromolecular machines composed of multiple components. However, it is currently only possible to achieve moderate resolution at which it may be possible to computationally extract the individual components in the machine. In this work, we present application details of an automated method for detecting and segmenting the components of a large machine in an experimentally determined density map. This method is applicable to object with and without symmetry and takes advantage of global and local symmetry axes if present. We have applied this segmentation algorithm to several cryoEM data sets already deposited in EMDB with various complexities, symmetries and resolutions and validated the results using manually segmented density and available structures of the components in the PDB. As such, automated segmentation could become a useful tool for the analysis of the ever-increasing number of structures of macromolecular machines derived from cryoEM.
Collapse
Affiliation(s)
- Matthew L Baker
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
15
|
Mears JA, Sharma MR, Gutell RR, McCook AS, Richardson PE, Caulfield TR, Agrawal RK, Harvey SC. A structural model for the large subunit of the mammalian mitochondrial ribosome. J Mol Biol 2006; 358:193-212. [PMID: 16510155 PMCID: PMC3495566 DOI: 10.1016/j.jmb.2006.01.094] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 01/25/2006] [Accepted: 01/27/2006] [Indexed: 11/30/2022]
Abstract
Protein translation is essential for all forms of life and is conducted by a macromolecular complex, the ribosome. Evolutionary changes in protein and RNA sequences can affect the 3D organization of structural features in ribosomes in different species. The most dramatic changes occur in animal mitochondria, whose genomes have been reduced and altered significantly. The RNA component of the mitochondrial ribosome (mitoribosome) is reduced in size, with a compensatory increase in protein content. Until recently, it was unclear how these changes affect the 3D structure of the mitoribosome. Here, we present a structural model of the large subunit of the mammalian mitoribosome developed by combining molecular modeling techniques with cryo-electron microscopic data at 12.1A resolution. The model contains 93% of the mitochondrial rRNA sequence and 16 mitochondrial ribosomal proteins in the large subunit of the mitoribosome. Despite the smaller mitochondrial rRNA, the spatial positions of RNA domains known to be involved directly in protein synthesis are essentially the same as in bacterial and archaeal ribosomes. However, the dramatic reduction in rRNA content necessitates evolution of unique structural features to maintain connectivity between RNA domains. The smaller rRNA sequence also limits the likelihood of tRNA binding at the E-site of the mitoribosome, and correlates with the reduced size of D-loops and T-loops in some animal mitochondrial tRNAs, suggesting co-evolution of mitochondrial rRNA and tRNA structures.
Collapse
Affiliation(s)
- Jason A Mears
- Department of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chiu W, Baker ML, Almo SC. Structural biology of cellular machines. Trends Cell Biol 2006; 16:144-50. [PMID: 16459078 DOI: 10.1016/j.tcb.2006.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 12/06/2005] [Accepted: 01/19/2006] [Indexed: 01/29/2023]
Abstract
Multi-component macromolecular machines contribute to all essential biological processes, from cell motility and signal transduction to information storage and processing. Structural analysis of assemblies at atomic resolution is emerging as the field of structural cell biology. Several recent studies, including those focused on the ribosome, the acrosomal bundle and bacterial flagella, have demonstrated the ability of a hybrid approach that combines imaging, crystallography and computational tools to generate testable atomic models of fundamental biological machines. A complete understanding of cellular and systems biology will require the detailed structural understanding of hundreds of biological machines. The realization of this goal demands a concerted effort to develop and apply new strategies for the systematic identification, isolation, structural characterization and mechanistic analysis of multi-component assemblies at all resolution ranges. The establishment of a database describing the structural and dynamic properties of protein assemblies will provide novel opportunities to define the molecular and atomic mechanisms controlling overall cell physiology.
Collapse
Affiliation(s)
- Wah Chiu
- National Center for Macromolecular Imaging and Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
17
|
Gao H, Ayub MJ, Levin MJ, Frank J. The structure of the 80S ribosome from Trypanosoma cruzi reveals unique rRNA components. Proc Natl Acad Sci U S A 2005; 102:10206-11. [PMID: 16014419 PMCID: PMC1174928 DOI: 10.1073/pnas.0500926102] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present analysis, by cryo-electron microscopy and single-particle reconstruction, of the structure of the 80S ribosome from Trypanosoma cruzi, the kinetoplastid protozoan pathogen that causes Chagas disease. The density map of the T. cruzi 80S ribosome shows the phylogenetically conserved eukaryotic rRNA core structure, together with distinctive structural features in both the small and large subunits. Remarkably, a previously undescribed helical structure appears in the small subunit in the vicinity of the mRNA exit channel. We propose that this rRNA structure likely participates in the recruitment of ribosome onto the 5' end of mRNA, in facilitating and modulating the initiation of translation that is unique to the trypanosomes.
Collapse
Affiliation(s)
- Haixiao Gao
- Howard Hughes Medical Institute, Health Research, Inc., at the Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
18
|
Azubel M, Wolf SG, Sperling J, Sperling R. Three-Dimensional Structure of the Native Spliceosome by Cryo-Electron Microscopy. Mol Cell 2004; 15:833-9. [PMID: 15350226 DOI: 10.1016/j.molcel.2004.07.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 06/24/2004] [Accepted: 06/29/2004] [Indexed: 11/17/2022]
Abstract
Splicing of pre-mRNA occurs in a multicomponent macromolecular machine--the spliceosome. The spliceosome can be assembled in vitro by a stepwise assembly of a number of snRNPs and additional proteins on exogenously added pre-mRNA. In contrast, splicing in vivo occurs in preformed particles where endogenous pre-mRNAs are packaged with all five spliceosomal U snRNPs (penta-snRNP) together with other splicing factors. Here we present a three-dimensional image reconstruction by cryo-electron microscopy of native spliceosomes, derived from cell nuclei, at a resolution of 20 angstroms. The structure revealed an elongated globular particle made up of two distinct subunits connected to each other leaving a tunnel in between. We show here that the larger subunit is a suitable candidate to accommodate the penta-snRNP, and that the tunnel could accommodate the pre-mRNA component of the spliceosome. The features this structure reveals provide new insight into the global architecture of the native splicing machine.
Collapse
Affiliation(s)
- Maia Azubel
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
19
|
Gilbert RJC, Fucini P, Connell S, Fuller SD, Nierhaus KH, Robinson CV, Dobson CM, Stuart DI. Three-Dimensional Structures of Translating Ribosomes by Cryo-EM. Mol Cell 2004; 14:57-66. [PMID: 15068803 DOI: 10.1016/s1097-2765(04)00163-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 02/06/2004] [Accepted: 02/17/2004] [Indexed: 10/26/2022]
Abstract
Cryo-electron microscopy and image reconstruction techniques have been used to obtain three-dimensional maps for E. coli ribosomes stalled following translation of three representative proteins. Comparisons of these electron density maps, at resolutions of between 13 and 16 A, with that of a nontranslating ribosome pinpoint specific structural differences in stalled ribosomes and identify additional material, including tRNAs and mRNA. In addition, the tunnel through the large subunit, the anticipated exit route of newly synthesized proteins, is partially occluded in all the stalled ribosome structures. This observation suggests that significant segments of the nascent polypeptide chains examined here could be located within an expanded tunnel, perhaps in a rudimentary globular conformation. Such behavior could be an important aspect of the folding of at least some proteins in the cellular environment.
Collapse
Affiliation(s)
- Robert J C Gilbert
- Max Planck Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, 14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sharma MR, Koc EC, Datta PP, Booth TM, Spremulli LL, Agrawal RK. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 2003; 115:97-108. [PMID: 14532006 DOI: 10.1016/s0092-8674(03)00762-1] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mitochondrial ribosome is responsible for the biosynthesis of protein components crucial to the generation of ATP in the eukaryotic cell. Because the protein:RNA ratio in the mitochondrial ribosome (approximately 69:approximately 31) is the inverse of that of its prokaryotic counterpart (approximately 33:approximately 67), it was thought that the additional and/or larger proteins of the mitochondrial ribosome must compensate for the shortened rRNAs. Here, we present a three-dimensional cryo-electron microscopic map of the mammalian mitochondrial 55S ribosome carrying a tRNA at its P site, and we find that instead, many of the proteins occupy new positions in the ribosome. Furthermore, unlike cytoplasmic ribosomes, the mitochondrial ribosome possesses intersubunit bridges composed largely of proteins; it has a gatelike structure at its mRNA entrance, perhaps involved in recruiting unique mitochondrial mRNAs; and it has a polypeptide exit tunnel that allows access to the solvent before the exit site, suggesting a unique nascent-polypeptide exit mechanism.
Collapse
Affiliation(s)
- Manjuli R Sharma
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
| | | | | | | | | | | |
Collapse
|
21
|
Beckmann R, Spahn CM, Frank J, Blobel G. The active 80S ribosome-Sec61 complex. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:543-54. [PMID: 12762056 DOI: 10.1101/sqb.2001.66.543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R Beckmann
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Cryoelectron microscopy has made a number of significant contributions to our understanding of the translation process. The method of single-particle reconstruction is particularly well suited for the study of the dynamics of ribosome-ligand interactions. This review follows the events of the functional cycle and discusses the findings in the context provided by the recently published x-ray structures.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Health Research, Inc, at the Wadsworth Center, and Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA.
| |
Collapse
|
23
|
Gilbert RJ, Grimes JM, Stuart DI. Hybrid vigor: hybrid methods in viral structure determination. ADVANCES IN PROTEIN CHEMISTRY 2003; 64:37-91. [PMID: 13677045 DOI: 10.1016/s0065-3233(03)01002-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Robert J Gilbert
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | | |
Collapse
|
24
|
Brodersen DE, Clemons WM, Carter AP, Wimberly BT, Ramakrishnan V. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. J Mol Biol 2002; 316:725-68. [PMID: 11866529 DOI: 10.1006/jmbi.2001.5359] [Citation(s) in RCA: 297] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We present a detailed analysis of the protein structures in the 30 S ribosomal subunit from Thermus thermophilus, and their interactions with 16 S RNA based on a crystal structure at 3.05 A resolution. With 20 different polypeptide chains, the 30 S subunit adds significantly to our data base of RNA structure and protein-RNA interactions. In addition to globular domains, many of the proteins have long, extended regions, either in the termini or in internal loops, which make extensive contact to the RNA component and are involved in stabilizing RNA tertiary structure. Many ribosomal proteins share similar alpha+beta sandwich folds, but we show that the topology of this domain varies considerably, as do the ways in which the proteins interact with RNA. Analysis of the protein-RNA interactions in the context of ribosomal assembly shows that the primary binders are globular proteins that bind at RNA multihelix junctions, whereas proteins with long extensions assemble later. We attempt to correlate the structure with a large body of biochemical and genetic data on the 30 S subunit.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Crystallography, X-Ray
- Microscopy, Electron
- Models, Molecular
- Molecular Sequence Data
- Neutrons
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Subunits
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Scattering, Radiation
- Sequence Alignment
- Thermus thermophilus/chemistry
- Thermus thermophilus/genetics
Collapse
|
25
|
Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J. Structure of the 80S ribosome from Saccharomyces cerevisiae--tRNA-ribosome and subunit-subunit interactions. Cell 2001; 107:373-86. [PMID: 11701127 DOI: 10.1016/s0092-8674(01)00539-6] [Citation(s) in RCA: 390] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A cryo-EM reconstruction of the translating yeast 80S ribosome was analyzed. Computationally separated rRNA and protein densities were used for docking of appropriately modified rRNA models and homology models of yeast ribosomal proteins. The core of the ribosome shows a remarkable degree of conservation. However, some significant differences in functionally important regions and dramatic changes in the periphery due to expansion segments and additional ribosomal proteins are evident. As in the bacterial ribosome, bridges between the subunits are mainly formed by RNA contacts. Four new bridges are present at the periphery. The position of the P site tRNA coincides precisely with its prokaryotic counterpart, with mainly rRNA contributing to its molecular environment. This analysis presents an exhaustive inventory of an eukaryotic ribosome at the molecular level.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cryoelectron Microscopy/methods
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- C M Spahn
- Howard Hughes Medical Institute, Health Research Inc., Albany, NY 12201, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Beckmann R, Spahn CM, Eswar N, Helmers J, Penczek PA, Sali A, Frank J, Blobel G. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 2001; 107:361-72. [PMID: 11701126 DOI: 10.1016/s0092-8674(01)00541-4] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In vitro assembled yeast ribosome-nascent chain complexes (RNCs) containing a signal sequence in the nascent chain were immunopurified and reconstituted with the purified protein-conducting channel (PCC) of yeast endoplasmic reticulum, the Sec61 complex. A cryo-EM reconstruction of the RNC-Sec61 complex at 15.4 A resolution shows a tRNA in the P site. Distinct rRNA elements and proteins of the large ribosomal subunit form four connections with the PCC across a gap of about 10-20 A. Binding of the PCC influences the position of the highly dynamic rRNA expansion segment 27. The RNC-bound Sec61 complex has a compact appearance and was estimated to be a trimer. We propose a binary model of cotranslational translocation entailing only two basic functional states of the translating ribosome-channel complex.
Collapse
Affiliation(s)
- R Beckmann
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sengupta J, Agrawal RK, Frank J. Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proc Natl Acad Sci U S A 2001; 98:11991-6. [PMID: 11593008 PMCID: PMC59823 DOI: 10.1073/pnas.211266898] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2001] [Indexed: 11/18/2022] Open
Abstract
S1 is the largest ribosomal protein, present in the small subunit of the bacterial ribosome. It has a pivotal role in stabilizing the mRNA on the ribosome. Thus far, S1 has eluded structural determination. We have identified the S1 protein mass in the cryo-electron microscopic map of the Escherichia coli ribosome by comparing the map with a recent x-ray crystallographic structure of the 30S subunit, which lacks S1. According to our finding, S1 is located at the junction of head, platform, and main body of the 30S subunit, thus explaining all existing biochemical and crosslinking data. Protein S1 as identified in our map has a complex, elongated shape with two holes in its central portion. The N-terminal domain, forming one of the extensions, penetrates into the head of the 30S subunit. Evidence for direct interaction of S1 with 11 nucleotides of the mRNA, immediately upstream of the Shine-Dalgarno sequence, explains the protein's role in the recognition of the 5' region of mRNA.
Collapse
Affiliation(s)
- J Sengupta
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | |
Collapse
|
28
|
Abstract
Cryo-electron microscopy allows the visualization of macromolecules in their native state. Combined with techniques of three-dimensional reconstruction, cryo-EM images of single molecules can be used to study macromolecular interactions. The ribosome, a large RNA-protein complex with multiple binding interactions, is an excellent test case illustrating the power of these new techniques. Conformational changes during the binding of tRNA and protein factors to the ribosome can now be studied without the interference of crystal packing. Now that the first X-ray structures of ribosomal subunits have become available, conformational changes observed by cryo-EM in different functional states can be traced back to internal rearrangements of the underlying structural framework. Electron microscopy, X-ray crystallography, and modeling should be used together in the endeavor to understand the functioning of the translational machinery.
Collapse
Affiliation(s)
- J Frank
- Howard Hughes Medical Institute, Health Research, Inc. at the Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| |
Collapse
|
29
|
Spahn CM, Blaha G, Agrawal RK, Penczek P, Grassucci RA, Trieber CA, Connell SR, Taylor DE, Nierhaus KH, Frank J. Localization of the ribosomal protection protein Tet(O) on the ribosome and the mechanism of tetracycline resistance. Mol Cell 2001; 7:1037-45. [PMID: 11389850 DOI: 10.1016/s1097-2765(01)00238-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tet(O) belongs to a class of ribosomal protection proteins that mediate tetracycline resistance. It is a G protein that shows significant sequence similarity to elongation factor EF-G. Here we present a cryo-electron microscopic reconstruction, at 16 A resolution, of its complex with the E. coli 70S ribosome. Tet(O) was bound in the presence of a noncleavable GTP analog to programmed ribosomal complexes carrying fMet-tRNA in the P site. Tet(O) is directly visible as a mass close to the A-site region, similar in shape and binding position to EF-G. However, there are important differences. One of them is the different location of the tip of domain IV, which in the Tet(O) case, does not overlap with the ribosomal A site but is directly adjacent to the primary tetracycline binding site. Our findings give insights into the mechanism of tetracycline resistance.
Collapse
Affiliation(s)
- C M Spahn
- Howard Hughes Medical Institute, Health Research Inc. at the Wadsworth Center, Empire State Plaza, Albany, NY 12201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Last year, atomic structures of the 50S ribosomal subunit from Haloarcula marismortui and of the 30S ribosomal subunit from Thermus thermophilus were published. A year before that, a 7.8 A resolution electron density map of the 70S ribosome from T. thermophilus appeared. This information is revolutionizing our understanding of protein synthesis.
Collapse
Affiliation(s)
- V Ramakrishnan
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | | |
Collapse
|
31
|
Spahn CM, Kieft JS, Grassucci RA, Penczek PA, Zhou K, Doudna JA, Frank J. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science 2001; 291:1959-62. [PMID: 11239155 DOI: 10.1126/science.1058409] [Citation(s) in RCA: 380] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Initiation of protein synthesis in eukaryotes requires recruitment of the 40S ribosomal subunit to the messenger RNA (mRNA). In most cases, this depends on recognition of a modified nucleotide cap on the 5' end of the mRNA. However, an alternate pathway uses a structured RNA element in the 5' untranslated region of the messenger or viral RNA called an internal ribosomal entry site (IRES). Here, we present a cryo-electron microscopy map of the hepatitis C virus (HCV) IRES bound to the 40S ribosomal subunit at about 20 A resolution. IRES binding induces a pronounced conformational change in the 40S subunit and closes the mRNA binding cleft, suggesting a mechanism for IRES-mediated positioning of mRNA in the ribosomal decoding center.
Collapse
Affiliation(s)
- C M Spahn
- Howard Hughes Medical Institute, Health Research Inc. at the, Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| | | | | | | | | | | | | |
Collapse
|