1
|
Meng L, Su H, Qu Z, Lu P, Tao J, Li H, Zhang J, Zhang W, Liu N, Cao P, Jin J. Genome-wide identification and analysis of WD40 proteins reveal that NtTTG1 enhances drought tolerance in tobacco (Nicotiana tabacum). BMC Genomics 2024; 25:133. [PMID: 38302866 PMCID: PMC10835901 DOI: 10.1186/s12864-024-10022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND WD40 proteins, which are highly prevalent in eukaryotes, play important roles in plant development and stress responses. However, systematic identification and exploration of WD40 proteins in tobacco have not yet been conducted. RESULTS In this study, a total of 399 WD40 regulatory genes were identified in common tobacco (Nicotiana tabacum). Gene structure and motif analysis revealed structural and functional diversity among different clades of tobacco WD40 regulatory genes. The expansion of tobacco WD40 regulatory genes was mainly driven by segmental duplication and purifying selection. A potential regulatory network of NtWD40s suggested that NtWD40s might be regulated by miRNAs and transcription factors in various biological processes. Expression pattern analysis via transcriptome analysis and qRT-PCR revealed that many NtWD40s exhibited tissue-specific expression patterns and might be involved in various biotic and abiotic stresses. Furthermore, we have validated the critical role of NtTTG1, which was located in the nuclei of trichome cells, in enhancing the drought tolerance of tobacco plants. CONCLUSIONS Our study provides comprehensive information to better understand the evolution of WD40 regulatory genes and their roles in different stress responses in tobacco.
Collapse
Grants
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
Collapse
Affiliation(s)
- Lijun Meng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Huan Su
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Zechao Qu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Jiemeng Tao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - He Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Wei Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Nan Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- Beijing Life Science Academy, Beijing, 102200, China.
| |
Collapse
|
2
|
Wang R, Chen Y, Xu S, Wei E, He P, Wang Q, Zhang Y, Tang X, Shen Z. Ssn6 Interacts with Polar Tube Protein 2 and Transcriptional Repressor for RNA Polymerase II: Insight into Its Involvement in the Biological Process of Microsporidium Nosema bombycis. J Fungi (Basel) 2023; 9:990. [PMID: 37888246 PMCID: PMC10608102 DOI: 10.3390/jof9100990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Nosema bombycis is a representative species of Microsporidia, and is the pathogen that causes pebrine disease in silkworms. In the process of infection, the polar tube of N. bombycis is injected into the host cells. During proliferation, N. bombycis recruits the mitochondria of host cells. The general transcriptional corepressor Ssn6 contains six tetratricopeptide repeats (TPR) and undertakes various important functions. In this study, we isolated and characterized Nbssn6 of the microsporidium N. bombycis. The Nbssn6 gene contains a complete ORF of 1182 bp in length that encodes a 393 amino acid polypeptide. Indirect immunofluorescence assay showed that the Ssn6 protein was mainly distributed in the cytoplasm and nucleus at the proliferative phase of N. bombycis. We revealed the interaction of Nbssn6 with polar tube protein 2 (Nbptp2) and the transcriptional repressor for RNA polymerase II (Nbtrrp2) by Co-IP and yeast two-hybrid assays. Results from RNA interference further confirmed that the transcriptional level of Nbptp2 and Nbtrrp2 was regulated by Nbssn6. These results suggest that Nbssn6 impacts the infection and proliferation of N. bombycis via interacting with the polar tube protein and transcriptional repressor for RNA polymerase II.
Collapse
Affiliation(s)
- Runpeng Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.W.); (Y.C.); (S.X.); (E.W.); (P.H.); (Q.W.); (Y.Z.); (X.T.)
| | - Yong Chen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.W.); (Y.C.); (S.X.); (E.W.); (P.H.); (Q.W.); (Y.Z.); (X.T.)
| | - Sheng Xu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.W.); (Y.C.); (S.X.); (E.W.); (P.H.); (Q.W.); (Y.Z.); (X.T.)
| | - Erjun Wei
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.W.); (Y.C.); (S.X.); (E.W.); (P.H.); (Q.W.); (Y.Z.); (X.T.)
| | - Ping He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.W.); (Y.C.); (S.X.); (E.W.); (P.H.); (Q.W.); (Y.Z.); (X.T.)
| | - Qiang Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.W.); (Y.C.); (S.X.); (E.W.); (P.H.); (Q.W.); (Y.Z.); (X.T.)
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yiling Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.W.); (Y.C.); (S.X.); (E.W.); (P.H.); (Q.W.); (Y.Z.); (X.T.)
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xudong Tang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.W.); (Y.C.); (S.X.); (E.W.); (P.H.); (Q.W.); (Y.Z.); (X.T.)
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhongyuan Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.W.); (Y.C.); (S.X.); (E.W.); (P.H.); (Q.W.); (Y.Z.); (X.T.)
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
3
|
Özden-Yılmaz G, Savas B, Bursalı A, Eray A, Arıbaş A, Senturk S, Karaca E, Karakülah G, Erkek-Ozhan S. Differential Occupancy and Regulatory Interactions of KDM6A in Bladder Cell Lines. Cells 2023; 12:cells12060836. [PMID: 36980177 PMCID: PMC10047809 DOI: 10.3390/cells12060836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Epigenetic deregulation is a critical theme which needs further investigation in bladder cancer research. One of the most highly mutated genes in bladder cancer is KDM6A, which functions as an H3K27 demethylase and is one of the MLL3/4 complexes. To decipher the role of KDM6A in normal versus tumor settings, we identified the genomic landscape of KDM6A in normal, immortalized, and cancerous bladder cells. Our results showed differential KDM6A occupancy in the genes involved in cell differentiation, chromatin organization, and Notch signaling depending on the cell type and the mutation status of KDM6A. Transcription factor motif analysis revealed HES1 to be enriched at KDM6A peaks identified in the T24 bladder cancer cell line; moreover, it has a truncating mutation in KDM6A and lacks a demethylase domain. Our co-immunoprecipitation experiments revealed TLE co-repressors and HES1 as potential truncated and wild-type KDM6A interactors. With the aid of structural modeling, we explored how truncated KDM6A could interact with TLE and HES1, as well as RUNX and HHEX transcription factors. These structures provide a solid means of studying the functions of KDM6A independently of its demethylase activity. Collectively, our work provides important contributions to the understanding of KDM6A malfunction in bladder cancer.
Collapse
Affiliation(s)
| | - Busra Savas
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Ahmet Bursalı
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
| | - Aleyna Eray
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Alirıza Arıbaş
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | | |
Collapse
|
4
|
The structural biology of canonical Wnt signalling. Biochem Soc Trans 2021; 48:1765-1780. [PMID: 32725184 PMCID: PMC7458405 DOI: 10.1042/bst20200243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
The Wnt signalling pathways are of great importance in embryonic development and oncogenesis. Canonical and non-canonical Wnt signalling pathways are known, with the canonical (or β-catenin dependent) pathway being perhaps the best studied of these. While structural knowledge of proteins and interactions involved in canonical Wnt signalling has accumulated over the past 20 years, the pace of discovery has increased in recent years, with the structures of several key proteins and assemblies in the pathway being released. In this review, we provide a brief overview of canonical Wnt signalling, followed by a comprehensive overview of currently available X-ray, NMR and cryoEM data elaborating the structures of proteins and interactions involved in canonical Wnt signalling. While the volume of structures available is considerable, numerous gaps in knowledge remain, particularly a comprehensive understanding of the assembly of large multiprotein complexes mediating key aspects of pathway, as well as understanding the structure and activation of membrane receptors in the pathway. Nonetheless, the presently available data affords considerable opportunities for structure-based drug design efforts targeting canonical Wnt signalling.
Collapse
|
5
|
Collins J, O'Grady K, Chen S, Gurley W. The C-terminal WD40 repeats on the TOPLESS co-repressor function as a protein-protein interaction surface. PLANT MOLECULAR BIOLOGY 2019; 100:47-58. [PMID: 30783952 DOI: 10.1007/s11103-019-00842-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
The two predicted WD40 propellers on TOPLESS function as protein-protein interaction domains. The 1st WD40 propeller mediates interaction with RAV1, and the 2nd WD40 propeller mediates interaction with VRN5. The TOPLESS/TOPLESS-RELATED (TPL/TPR) co-repressor family proteins are known to interact with a wide variety of proteins including transcription factors, Mediator subunits, histone deacetylases, and histone tails. Through these interactions, TPL/TPR act to repress transcription in an increasingly diverse array of plant pathways. Proteins that bind TPL/TPR typically contain one or more Repression Domains (RDs) that mediate the interaction. For example, the well-characterized Ethylene response factor-associated Amphiphilic Repression (EAR) motif is known to facilitate interaction by binding the TOPLESS Domain (TPD) located in the N-terminus. Here we show that in yeast two-hybrid assays, the non-EAR protein, Related to ABI3/VP1-1 (RAV1), binds a novel region located within the first nine WD40-repeats of TPL. Protein modeling and in silico analysis suggest that these nine WD40 repeats may form the first of two WD40 propellers located on C-terminus of TPL. The interaction between RAV1 and the 1st WD40 propeller is conserved with another RAV family member, TEMPRANILLO1 (TEM1) and is mediated by the B3 Repression Domain (BRD) located on both RAV1 and TEM1. Also, the predicted 2nd WD40 propeller was shown in yeast cells to bind Vernalization 5 (VRN5), which contains several unconfirmed partial RDs. Furthermore, we demonstrate that the 1st WD40 propeller of TPL can form a complex with RAV1 both in yeast and in Arabidopsis protoplasts.
Collapse
Affiliation(s)
- Joe Collins
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | - Kevin O'Grady
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - William Gurley
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA.
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA.
| |
Collapse
|
6
|
Shen T, Gao JM, Shou T, Li L, Zhang JP, Zhao Q, Yan XM. Identification of a homozygous BBS7 frameshift mutation in two (related) Chinese Miao families with Bardet-Biedl Syndrome. J Chin Med Assoc 2019; 82:110-114. [PMID: 30839500 DOI: 10.1097/jcma.0000000000000011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Bardet-Biedl Syndrome (BBS) is a genetically heterogeneous autosomal recessive disorder with a wide spectrum of clinical features. To date, mutations in 21 different genes (BBS1-21) have been identified as causing isolated or complex BBS phenotypes. In this report, we present three Chinese Miao ethnic patients who were diagnosed with BBS on the basis of characteristic clinical features and investigated the exsome of these patients. METHODS To evaluate disease genes, the Agilent SureSelect system and Illumina HiSeq 2000 platform for whole exome enrichment and sequencing (WES) were used on the proband and her mother. Variants that fit a recessive model of inheritance only were compared and filtered using public databases. Variants detected by exome sequencing were validated by Sanger sequencing. A total of 981 phenotypically normal subjects were enrolled as control data set. RESULTS A frameshift homozygous germline mutation in BBS7 was detected by WES and identified by Sanger sequencing in affected individuals. This mutation was predicted to result in premature termination of exon5 (c.389_390delAC, p.Asn130ThrfsX3; RefSeq NM_176824.2) and lead to a 133 amino acid truncated protein. The inheritance patterns in the families are consistent with autosomal recessive inheritance, and no such homozygous mutation was found in the other 981 controls. CONCLUSION This mutation has not yet been described in any reported literature, and this is the first report on BBS7 mutation in Chinese Miao families with BBS phenotypes.
Collapse
Affiliation(s)
- Tao Shen
- Institute of Basic and Clinical Medicine, Key laboratory of Clinical Virology, Key Laboratory for Birth Defects and Genetic Diseases, the First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Jian-Mei Gao
- Institute of Basic and Clinical Medicine, Key laboratory of Clinical Virology, Key Laboratory for Birth Defects and Genetic Diseases, the First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Tao Shou
- Oncology Department, the First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Li Li
- Institute of Basic and Clinical Medicine, Key laboratory of Clinical Virology, Key Laboratory for Birth Defects and Genetic Diseases, the First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Jin-Ping Zhang
- Institute of Basic and Clinical Medicine, Key laboratory of Clinical Virology, Key Laboratory for Birth Defects and Genetic Diseases, the First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Qian Zhao
- Institute of Basic and Clinical Medicine, Key laboratory of Clinical Virology, Key Laboratory for Birth Defects and Genetic Diseases, the First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Xin-Min Yan
- Institute of Basic and Clinical Medicine, Key laboratory of Clinical Virology, Key Laboratory for Birth Defects and Genetic Diseases, the First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| |
Collapse
|
7
|
Sena E, Rocques N, Borday C, Amin HSM, Parain K, Sitbon D, Chesneau A, Durand BC. Barhl2 maintains T-cell factors as repressors, and thereby switches off the Wnt/β-Catenin response driving Spemann organizer formation. Development 2019; 146:dev.173112. [DOI: 10.1242/dev.173112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
A hallmark of Wnt/β-Catenin signaling is the extreme diversity of its transcriptional response, which varies depending on cell and developmental context. What controls this diversity is poorly understood. In all cases, the switch from transcriptional repression to activation depends on a nuclear increase in β-Catenin, which detaches the transcription factor T-cell Factor-7 like 1 (Tcf7l1) bound to Groucho (Gro) transcriptional co-repressors from its DNA binding sites and transiently converts Tcf7/Lymphoid enhancer binding factor 1 (Lef1) into a transcriptional activator. One of the earliest and evolutionarily conserved functions of Wnt/β-Catenin signaling is the induction of the blastopore lip organizer. Here, we demonstrate that the evolutionarily conserved BarH-like homeobox-2 (Barhl2) protein stabilizes the Tcf7l1-Gro complex and maintains repressed expression of Tcf target genes by a mechanism that depends on histone deacetylase 1 (Hdac-1) activity. In this way, Barhl2 switches off the Wnt/β-Catenin-dependent early transcriptional response, thereby limiting the formation of the organizer in time and/or space. This study reveals a novel nuclear inhibitory mechanism of Wnt/Tcf signaling that switches off organizer fate determination.
Collapse
Affiliation(s)
- Elena Sena
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
| | - Nathalie Rocques
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
| | - Caroline Borday
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Harem Sabr Muhamad Amin
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, S1.7 CNRS 8197, INSERM U1024 46 rue d'Ulm 75005, Paris F-75005, France
| | - Karine Parain
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - David Sitbon
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Albert Chesneau
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Béatrice C. Durand
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, S1.7 CNRS 8197, INSERM U1024 46 rue d'Ulm 75005, Paris F-75005, France
| |
Collapse
|
8
|
Satou Y, Minami K, Hosono E, Okada H, Yasuoka Y, Shibano T, Tanaka T, Taira M. Phosphorylation states change Otx2 activity for cell proliferation and patterning in the Xenopus embryo. Development 2018; 145:dev.159640. [PMID: 29440302 DOI: 10.1242/dev.159640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022]
Abstract
The homeodomain transcription factor Otx2 has essential roles in head and eye formation via the negative and positive regulation of its target genes, but it remains elusive how this dual activity of Otx2 affects cellular functions. In the current study, we first demonstrated that both exogenous and endogenous Otx2 are phosphorylated at multiple sites. Using Xenopus embryos, we identified three possible cyclin-dependent kinase (Cdk) sites and one Akt site, and analyzed the biological activities of phosphomimetic (4E) and nonphosphorylatable (4A) mutants for those sites. In the neuroectoderm, the 4E but not the 4A mutant downregulated the Cdk inhibitor gene p27xic1 (cdknx) and posterior genes, and promoted cell proliferation, possibly forming a positive-feedback loop consisting of Cdk, Otx2 and p27xic1 for cell proliferation, together with anteriorization. Conversely, the 4A mutant functioned as an activator on its own and upregulated the expression of eye marker genes, resulting in enlarged eyes. Consistent with these results, the interaction of Otx2 with the corepressor Tle1 is suggested to be phosphorylation dependent. These data suggest that Otx2 orchestrates cell proliferation, anteroposterior patterning and eye formation via its phosphorylation state.
Collapse
Affiliation(s)
- Yumeko Satou
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Minami
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Erina Hosono
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hajime Okada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuuri Yasuoka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Takashi Shibano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiaki Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Kokabu S, Nakatomi C, Matsubara T, Ono Y, Addison WN, Lowery JW, Urata M, Hudnall AM, Hitomi S, Nakatomi M, Sato T, Osawa K, Yoda T, Rosen V, Jimi E. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor. J Biol Chem 2017; 292:12885-12894. [PMID: 28607151 DOI: 10.1074/jbc.m116.774570] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/08/2017] [Indexed: 11/06/2022] Open
Abstract
Satellite cells are skeletal muscle stem cells that provide myonuclei for postnatal muscle growth, maintenance, and repair/regeneration in adults. Normally, satellite cells are mitotically quiescent, but they are activated in response to muscle injury, in which case they proliferate extensively and exhibit up-regulated expression of the transcription factor MyoD, a master regulator of myogenesis. MyoD forms a heterodimer with E proteins through their basic helix-loop-helix domain, binds to E boxes in the genome and thereby activates transcription at muscle-specific promoters. The central role of MyoD in muscle differentiation has increased interest in finding potential MyoD regulators. Here we identified transducin-like enhancer of split (TLE3), one of the Groucho/TLE family members, as a regulator of MyoD function during myogenesis. TLE3 was expressed in activated and proliferative satellite cells in which increased TLE3 levels suppressed myogenic differentiation, and, conversely, reduced TLE3 levels promoted myogenesis with a concomitant increase in proliferation. We found that, via its glutamine- and serine/proline-rich domains, TLE3 interferes with MyoD function by disrupting the association between the basic helix-loop-helix domain of MyoD and E proteins. Our findings indicate that TLE3 participates in skeletal muscle homeostasis by dampening satellite cell differentiation via repression of MyoD transcriptional activity.
Collapse
Affiliation(s)
- Shoichiro Kokabu
- Divisions of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu 803-8580, Japan; Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115.
| | - Chihiro Nakatomi
- Divisions of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Takuma Matsubara
- Divisions of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8102, Japan
| | - William N Addison
- Research Unit, Department of Human Genetics, Shriners Hospitals for Children, McGill University, Montreal, Quebec H4A 0A9, Canada
| | - Jonathan W Lowery
- Division of Biomedical Science, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana 46222
| | - Mariko Urata
- Divisions of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Aaron M Hudnall
- Division of Biomedical Science, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana 46222
| | - Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Kenji Osawa
- Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Tetsuya Yoda
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Eijiro Jimi
- Divisions of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu 803-8580, Japan; Oral Health Brain Health Total Health, Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Copley RR. The Unicellular Ancestry of Groucho-Mediated Repression and the Origins of Metazoan Transcription Factors. Genome Biol Evol 2016; 8:1859-67. [PMID: 27189982 PMCID: PMC4943189 DOI: 10.1093/gbe/evw118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Groucho is a co-repressor that interacts with many transcription factors playing a crucial role in animal development. The evolutionary origins of Groucho are not clear. It is generally regarded as being a distinct animal-specific protein, although with similarities to the yeast Tup-like proteins. Here, it is shown that Groucho has true orthologs in unicellular relatives of animals. Based on their phylogenetic distribution, and an analysis of ligand-binding residues, these genes are unlikely to be orthologs of the fungal Tup-like genes. By identifying conserved candidate Groucho interaction motifs (GIMs) in nonmetazoan transcription factors, it is demonstrated that the details of molecular interactions between Groucho and transcription factors are likely to have been established prior to the origin of animals, but that the association of GIMs with many transcription factor types can be regarded as a metazoan innovation.
Collapse
Affiliation(s)
- Richard R Copley
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 181 chemin du Lazaret, 06230 Villefranche-sur-mer, France
| |
Collapse
|
11
|
Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:3753581. [PMID: 27298623 PMCID: PMC4889852 DOI: 10.1155/2016/3753581] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/05/2016] [Indexed: 01/18/2023] Open
Abstract
Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3), which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment.
Collapse
|
12
|
Wang C, Dong X, Han L, Su XD, Zhang Z, Li J, Song J. Identification of WD40 repeats by secondary structure-aided profile-profile alignment. J Theor Biol 2016; 398:122-9. [PMID: 27021623 DOI: 10.1016/j.jtbi.2016.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/20/2016] [Accepted: 03/16/2016] [Indexed: 12/31/2022]
Abstract
A WD40 protein typically contains four or more repeats of ~40 residues ended with the Trp-Asp dipeptide, which folds into β-propellers with four β strands in each repeat. They often function as scaffolds for protein-protein interactions and are involved in numerous fundamental biological processes. Despite their important functional role, the "velcro" closure of WD40 propellers and the diversity of WD40 repeats make their identification a difficult task. Here we develop a new WD40 Repeat Recognition method (WDRR), which uses predicted secondary structure information to generate candidate repeat segments, and further employs a profile-profile alignment to identify the correct WD40 repeats from candidate segments. In particular, we design a novel alignment scoring function that combines dot product and BLOSUM62, thereby achieving a great balance of sensitivity and accuracy. Taking advantage of these strategies, WDRR could effectively reduce the false positive rate and accurately identify more remote homologous WD40 repeats with precise repeat boundaries. We further use WDRR to re-annotate the Pfam families in the β-propeller clan (CL0186) and identify a number of WD40 repeat proteins with high confidence across nine model organisms. The WDRR web server and the datasets are available at http://protein.cau.edu.cn/wdrr/.
Collapse
Affiliation(s)
- Chuan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Xiaobao Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Lei Han
- Center for Cancer Molecular Diagnosis, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
| | - Xiao-Dong Su
- State Key Laboratory of Protein and Plant Gene Research and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jinyan Li
- Advanced Analytics Institute and Centre for Health Technologies, University of Technology Sydney, 81 Broadway, Sydney, NSW 2007, Australia.
| | - Jiangning Song
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Melbourne, VIC 3800, Australia; Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
13
|
Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD. Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Chem Rev 2016; 116:6424-62. [PMID: 26922996 DOI: 10.1021/acs.chemrev.5b00548] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding signaling and other complex biological processes requires elucidating the critical roles of intrinsically disordered proteins (IDPs) and regions (IDRs), which represent ∼30% of the proteome and enable unique regulatory mechanisms. In this review, we describe the structural heterogeneity of disordered proteins that underpins these mechanisms and the latest progress in obtaining structural descriptions of conformational ensembles of disordered proteins that are needed for linking structure and dynamics to function. We describe the diverse interactions of IDPs that can have unusual characteristics such as "ultrasensitivity" and "regulated folding and unfolding". We also summarize the mounting data showing that large-scale assembly and protein phase separation occurs within a variety of signaling complexes and cellular structures. In addition, we discuss efforts to therapeutically target disordered proteins with small molecules. Overall, we interpret the remodeling of disordered state ensembles due to binding and post-translational modifications within an expanded framework for allostery that provides significant insights into how disordered proteins transmit biological information.
Collapse
Affiliation(s)
- Veronika Csizmok
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada
| | - Ariele Viacava Follis
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center , Memphis, Tennessee 38163, United States
| | - Julie D Forman-Kay
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto , Toronto, ON M5S 1A8, Canada
| |
Collapse
|
14
|
Agarwal M, Kumar P, Mathew SJ. The Groucho/Transducin-like enhancer of split protein family in animal development. IUBMB Life 2015; 67:472-81. [PMID: 26172616 DOI: 10.1002/iub.1395] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 01/30/2023]
Abstract
Corepressors are proteins that cannot bind DNA directly but repress transcription by interacting with partner proteins. The Groucho/Transducin-Like Enhancer of Split (TLE) are a conserved family of corepressor proteins present in animals ranging from invertebrates such as Drosophila to vertebrates such as mice and humans. Groucho/TLE proteins perform important functions throughout the life span of animals, interacting with several pathways and regulating fundamental processes such as metabolism. However, these proteins have especially crucial functions in animal development, where they are required in multiple tissues in a temporally regulated manner. In this review, we summarize the functions of the Groucho/TLE proteins during animal development, emphasizing on specific tissues where they play essential roles.
Collapse
Affiliation(s)
- Megha Agarwal
- Regional Centre for Biotechnology, NCR Bio-Science Cluster, Faridabad, Haryana, India
| | - Pankaj Kumar
- Regional Centre for Biotechnology, NCR Bio-Science Cluster, Faridabad, Haryana, India
| | - Sam J Mathew
- Regional Centre for Biotechnology, NCR Bio-Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
15
|
Marcin W, Neira JL, Bravo J. The carboxy-terminal domain of Erb1 is a seven-bladed ß-propeller that binds RNA. PLoS One 2015; 10:e0123463. [PMID: 25880847 PMCID: PMC4400149 DOI: 10.1371/journal.pone.0123463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/04/2015] [Indexed: 11/19/2022] Open
Abstract
Erb1 (Eukaryotic Ribosome Biogenesis 1) protein is essential for the maturation of the ribosomal 60S subunit. Functional studies in yeast and mammalian cells showed that altogether with Nop7 and Ytm1 it forms a stable subcomplex called PeBoW that is crucial for a correct rRNA processing. The exact function of the protein within the process remains unknown. The N-terminal region of the protein includes a well conserved region shown to be involved in PeBoW complex formation whereas the carboxy-terminal half was predicted to contain seven WD40 repeats. This first structural report on Erb1 from yeast describes the architecture of a seven-bladed β-propeller domain that revealed a characteristic extra motif formed by two α-helices and a β-strand that insert within the second WD repeat. We performed analysis of molecular surface and crystal packing, together with multiple sequence alignment and comparison of the structure with other β-propellers, in order to identify areas that are more likely to mediate protein-protein interactions. The abundance of many positively charged residues on the surface of the domain led us to investigate whether the propeller of Erb1 might be involved in RNA binding. Three independent assays confirmed that the protein interacted in vitro with polyuridilic acid (polyU), thus suggesting a possible role of the domain in rRNA rearrangement during ribosome biogenesis.
Collapse
Affiliation(s)
- Wegrecki Marcin
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, c/ Jaime Roig 11, 46010 Valencia, Spain
| | - Jose Luis Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. del Ferrocarril s/n, 03202 Elche (Alicante), Spain
- Instituto de Biocomputación y Física de los Sistemas Complejos (BIFI), 50009 Zaragoza, Spain
| | - Jeronimo Bravo
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, c/ Jaime Roig 11, 46010 Valencia, Spain
- * E-mail:
| |
Collapse
|
16
|
Zhang C, Zhang F. The Multifunctions of WD40 Proteins in Genome Integrity and Cell Cycle Progression. J Genomics 2015; 3:40-50. [PMID: 25653723 PMCID: PMC4316180 DOI: 10.7150/jgen.11015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic genome encodes numerous WD40 repeat proteins, which generally function as platforms of protein-protein interactions and are involved in numerous biological process, such as signal transduction, gene transcriptional regulation, protein modifications, cytoskeleton assembly, vesicular trafficking, DNA damage and repair, cell death and cell cycle progression. Among these diverse functions, genome integrity maintenance and cell cycle progression are extremely important as deregulation of them is clinically linked to uncontrolled proliferative diseases such as cancer. Thus, we mainly summarize and discuss the recent understanding of WD40 proteins and their molecular mechanisms linked to genome stability and cell cycle progression in this review, thereby demonstrating their pervasiveness and importance in cellular networks.
Collapse
Affiliation(s)
- Caiguo Zhang
- 1. Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Fan Zhang
- 2. Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
17
|
Kaul A, Schuster E, Jennings BH. The Groucho co-repressor is primarily recruited to local target sites in active chromatin to attenuate transcription. PLoS Genet 2014; 10:e1004595. [PMID: 25165826 PMCID: PMC4148212 DOI: 10.1371/journal.pgen.1004595] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/03/2014] [Indexed: 12/25/2022] Open
Abstract
Gene expression is regulated by the complex interaction between transcriptional activators and repressors, which function in part by recruiting histone-modifying enzymes to control accessibility of DNA to RNA polymerase. The evolutionarily conserved family of Groucho/Transducin-Like Enhancer of split (Gro/TLE) proteins act as co-repressors for numerous transcription factors. Gro/TLE proteins act in several key pathways during development (including Notch and Wnt signaling), and are implicated in the pathogenesis of several human cancers. Gro/TLE proteins form oligomers and it has been proposed that their ability to exert long-range repression on target genes involves oligomerization over broad regions of chromatin. However, analysis of an endogenous gro mutation in Drosophila revealed that oligomerization of Gro is not always obligatory for repression in vivo. We have used chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) to profile Gro recruitment in two Drosophila cell lines. We find that Gro predominantly binds at discrete peaks (<1 kilobase). We also demonstrate that blocking Gro oligomerization does not reduce peak width as would be expected if Gro oligomerization induced spreading along the chromatin from the site of recruitment. Gro recruitment is enriched in “active” chromatin containing developmentally regulated genes. However, Gro binding is associated with local regions containing hypoacetylated histones H3 and H4, which is indicative of chromatin that is not fully open for efficient transcription. We also find that peaks of Gro binding frequently overlap the transcription start sites of expressed genes that exhibit strong RNA polymerase pausing and that depletion of Gro leads to release of polymerase pausing and increased transcription at a bona fide target gene. Our results demonstrate that Gro is recruited to local sites by transcription factors to attenuate rather than silence gene expression by promoting histone deacetylation and polymerase pausing. Repression by transcription factors plays a central role in gene regulation. The Groucho/Transducin-Like Enhancer of split (Gro/TLE) family of co-repressors interacts with many different transcription factors and has many essential roles during animal development. Groucho/TLE proteins form oligomers that are necessary for target gene repression in some contexts. We have profiled the genome-wide recruitment of the founding member of this family, Groucho (from Drosophila) to gain insight into how and where it binds with respect to target genes and to identify factors associated with its binding. We find that Groucho binds in discrete peaks, frequently at transcription start sites, and that blocking Groucho from forming oligomers does not significantly change the pattern of Groucho recruitment. Although Groucho acts as a repressor, Groucho binding is enriched in chromatin that is permissive for transcription, and we find that it acts to attenuate rather than completely silence target gene expression. Thus, Groucho does not act as an “on/off” switch on target gene expression, but rather as a “mute” button.
Collapse
Affiliation(s)
- Aamna Kaul
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Eugene Schuster
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Barbara H. Jennings
- UCL Cancer Institute, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Abstract
Hermansky-Pudlak Syndrome (HPS) is a set of genetically heterogeneous diseases caused by mutations in one of nine known HPS genes. HPS patients display oculocutaneous hypopigmentation and bleeding diathesis and, depending on the disease subtype, pulmonary fibrosis, congenital nystagmus, reduced visual acuity, and platelet aggregation deficiency. Mouse models for all known HPS subtypes have contributed greatly to our understanding of the disease, but many of the molecular and cellular mechanisms underlying HPS remain unknown. Here, we characterize ocular defects in the zebrafish (Danio rerio) mutant snow white (snw), which possesses a recessive, missense mutation in hps5 (hps5I76N). Melanosome biogenesis is disrupted in snw/hps5 mutants, resulting in hypopigmentation, a significant decrease in the number, size, and maturity of melanosomes, and the presence of ectopic multi-melanosome clusters throughout the mutant retina and choroid. snw/hps5I76N is the first Hps5 mutation identified within the N-terminal WD40 repeat protein-protein binding domain. Through in vitro coexpression assays, we demonstrate that Hps5I76N retains the ability to bind its protein complex partners, Hps3 and Hps6. Furthermore, while Hps5 and Hps6 stabilize each other's expression, this stabilization is disrupted by Hps5I76N. The snw/hps5I76N mutant provides a valuable resource for structure-function analyses of Hps5 and enables further elucidation of the molecular and cellular mechanisms underlying HPS.
Collapse
|
19
|
Wu XH, Wang Y, Zhuo Z, Jiang F, Wu YD. Identifying the hotspots on the top faces of WD40-repeat proteins from their primary sequences by β-bulges and DHSW tetrads. PLoS One 2012; 7:e43005. [PMID: 22916195 PMCID: PMC3419727 DOI: 10.1371/journal.pone.0043005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/16/2012] [Indexed: 11/19/2022] Open
Abstract
The analysis of 36 available crystal structures of WD40 repeat proteins reveals widespread existence of a beta-bulge formed at the beginning of strand a and the end of strand b, termed as WDb–a bulge: among a total of 259 WD40 blades, there are 243 such β-bulges. The R1 positions in these WDb–a bulges have fair distributions of Arg, His, Ile, Leu, Lys, Met, Phe, Trp, Tyr and Val residues. These residues protrude on the top face of the WD40 proteins and can serve as hotspots for protein-protein interactions. An analysis of 29 protein complexes formed by 17 WD proteins reveals that these R1 residues, along with two other residues (R1-2 and D-1), are indeed widely involved in protein-protein interactions. Interestingly, these WDb–a bulges can be easily identified by the 4-amino acid sequences of (V, L, I), R1, R2, (V, L, I), along with some other significant amino acids. Thus, the hotspots of WD40 proteins on the top face can be readily predicted based on the primary sequences of the proteins. The literature-reported mutagenesis studies for Met30, MDV1, Tup11, COP1 and SPA1, which crystal structures are not available, can be readily understood based on the feature-based method. Applying the method, the twelve potential hotspots on the top face of Tup11 from S. japonicas have been identified. Our ITC measurements confirm seven of them, Tyr382, Arg284, Tyr426, Tyr508, Leu559, Lys575 and Ile601, are essential for recognizing Fep1. The ITC measurements further convinced that the feature-based method provides accurate prediction of hotspots on the top face.
Collapse
Affiliation(s)
- Xian-Hui Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, People’s Republic of China
- * E-mail: (XHW); (YDW)
| | - Yang Wang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, People’s Republic of China
| | - Zhu Zhuo
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, People’s Republic of China
| | - Fan Jiang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, People’s Republic of China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, People’s Republic of China
- College of Chemistry, Peking University, Beijing, People’s Republic of China
- * E-mail: (XHW); (YDW)
| |
Collapse
|
20
|
Abstract
Drosophila Groucho (Gro) is the founding member of a family of metazoan corepressors. Gro mediates repression through interactions with a myriad of DNA-binding repressor proteins to direct the silencing of genes involved in many developmental processes, including neurogenesis and patterning of the main body axis, as well as receptor tyrosine kinase/Ras/MAPK, Notch, Wingless (Wg)/Wnt, and Decapentaplegic (Dpp) signaling. Gro mediates repression by multiple molecular mechanisms, depending on the regulatory context. Because Gro is a broadly expressed nuclear factor, whereas its repressor partners display restricted temporal and spatial distribution, it was presumed that this corepressor played permissive rather than instructive roles in development. However, a wide range of studies demonstrates that this is not the case. Gro can sense and integrate many cellular inputs to modulate the expression of variety of genes, making it a versatile corepressor with crucial instructive roles in development and signaling.
Collapse
Affiliation(s)
- Wiam Turki-Judeh
- Department of Chemistry & Biochemistry and Molecular Biology Institute, University of California, Los Angeles, California, USA
| | | |
Collapse
|
21
|
Cartier A, Parent A, Labrecque P, Laroche G, Parent JL. WDR36 acts as a scaffold protein tethering a G-protein-coupled receptor, Gαq and phospholipase Cβ in a signalling complex. J Cell Sci 2011; 124:3292-304. [DOI: 10.1242/jcs.085795] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We identified the WD-repeat-containing protein, WDR36, as an interacting partner of the β isoform of thromboxane A2 receptor (TPβ) by yeast two-hybrid screening. We demonstrated that WDR36 directly interacts with the C-terminus and the first intracellular loop of TPβ by in vitro GST-pulldown assays. The interaction in a cellular context was observed by co-immunoprecipitation, which was positively affected by TPβ stimulation. TPβ–WDR36 colocalization was detected by confocal microscopy at the plasma membrane in non-stimulated HEK293 cells but the complex translocated to intracellular vesicles following receptor stimulation. Coexpression of WDR36 and its siRNA-mediated knockdown, respectively, increased and inhibited TPβ-induced Gαq signalling. Interestingly, WDR36 co-immunoprecipitated with Gαq, and promoted TPβ–Gαq interaction. WDR36 also associated with phospholipase Cβ (PLCβ) and increased the interaction between Gαq and PLCβ, but prevented sequestration of activated Gαq by GRK2. In addition, the presence of TPβ in PLCβ immunoprecipitates was augmented by expression of WDR36. Finally, disease-associated variants of WDR36 affected its ability to modulate Gαq-mediated signalling by TPβ. We report that WDR36 acts as a new scaffold protein tethering a G-protein-coupled receptor, Gαq and PLCβ in a signalling complex.
Collapse
Affiliation(s)
- Andréane Cartier
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Institut de Pharmacologie de Sherbrooke and Centre de Recherche Clinique Etienne-Lebel, Sherbrooke, QC J1H 5N4, Canada
| | - Audrey Parent
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Institut de Pharmacologie de Sherbrooke and Centre de Recherche Clinique Etienne-Lebel, Sherbrooke, QC J1H 5N4, Canada
| | - Pascale Labrecque
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Institut de Pharmacologie de Sherbrooke and Centre de Recherche Clinique Etienne-Lebel, Sherbrooke, QC J1H 5N4, Canada
| | - Geneviève Laroche
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Institut de Pharmacologie de Sherbrooke and Centre de Recherche Clinique Etienne-Lebel, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Luc Parent
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Institut de Pharmacologie de Sherbrooke and Centre de Recherche Clinique Etienne-Lebel, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
22
|
Chen CKM, Chan NL, Wang AHJ. The many blades of the β-propeller proteins: conserved but versatile. Trends Biochem Sci 2011; 36:553-61. [PMID: 21924917 DOI: 10.1016/j.tibs.2011.07.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 07/14/2011] [Accepted: 07/18/2011] [Indexed: 11/20/2022]
Abstract
The β-propeller is a highly symmetrical structure with 4-10 repeats of a four-stranded antiparallel β-sheet motif. Although β-propeller proteins with different blade numbers all adopt disc-like shapes, they are involved in a diverse set of functions, and defects in this family of proteins have been associated with human diseases. However, it has remained ambiguous how variations in blade number could alter the function of β-propellers. In addition to the regularly arranged β-propeller topology, a recently discovered β-pinwheel propeller has been found. Here, we review the structural and functional diversity of β-propeller proteins, including β-pinwheels, as well as recent advances in the typical and atypical propeller structures.
Collapse
Affiliation(s)
- Cammy K-M Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | |
Collapse
|
23
|
Kamata T, Bong YS, Mood K, Park MJ, Nishanian TG, Lee HS. EphrinB1 interacts with the transcriptional co-repressor Groucho/xTLE4. BMB Rep 2011; 44:199-204. [PMID: 21429299 DOI: 10.5483/bmbrep.2011.44.3.199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ephrin signaling is involved in various morphogenetic events, such as axon guidance, hindbrain segmentation, and angiogenesis. We conducted a yeast two-hybrid screen using the intracellular domain (ICD) of EphrinB1 to gain biochemical insightinto the function of the EphrinB1 ICD. We identified the transcriptional co-repressor xTLE1/Groucho as an EphrinB1 interacting protein. Whole-mount in situ hybridization of Xenopus embryos confirmed the co-localization of EphrinB1 and a Xenopus counterpart to TLE1, xTLE4, during various stages of development. The EphrinB1/xTLE4 interaction was confirmed by co-immunoprecipitation experiments. Further characterization of the interaction revealed that the carboxy-terminal PDZ binding motif of EphrinB1 and the SP domain of xTLE4 are required for binding. Additionally, phosphorylation of EphrinB1 by a constitutively activated fibroblast growth factor receptor resulted in loss of the interaction, suggesting that the interaction is modulated by tyrosine phosphorylation of the EphrinB1 ICD.
Collapse
Affiliation(s)
- Teddy Kamata
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
24
|
Flowers EB, Poole RJ, Tursun B, Bashllari E, Pe'er I, Hobert O. The Groucho ortholog UNC-37 interacts with the short Groucho-like protein LSY-22 to control developmental decisions in C. elegans. Development 2010; 137:1799-805. [PMID: 20431118 DOI: 10.1242/dev.046219] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transcriptional co-repressors of the Groucho/TLE family are important regulators of development in many species. A subset of Groucho/TLE family members that lack the C-terminal WD40 domains have been proposed to act as dominant-negative regulators of Groucho/TLE proteins, yet such a role has not been conclusively proven. Through a mutant screen for genes controlling a left/right asymmetric cell fate decision in the nervous system of the nematode C. elegans, we have retrieved loss-of-function alleles in two distinct loci that display identical phenotypes in neuronal fate specification and in other developmental contexts. Using the novel technology of whole-genome sequencing, we find that these loci encode the C. elegans ortholog of Groucho, UNC-37, and, surprisingly, a short Groucho-like protein, LSY-22, that is similar to truncated Groucho proteins in other species. Besides their phenotypic similarities, unc-37 and lsy-22 show genetic interactions and UNC-37 and LSY-22 proteins also physically bind to each other in vivo. Our findings suggest that rather than acting as negative regulators of Groucho, small Groucho-like proteins may promote Groucho function. We propose that Groucho-mediated gene regulatory events involve heteromeric complexes of distinct Groucho-like proteins.
Collapse
Affiliation(s)
- Eileen B Flowers
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
25
|
Cirhin up-regulates a canonical NF-κB element through strong interaction with Cirip/HIVEP1. Exp Cell Res 2009; 315:3086-98. [DOI: 10.1016/j.yexcr.2009.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 08/18/2009] [Accepted: 08/25/2009] [Indexed: 11/20/2022]
|
26
|
Abraham AL, Pothier J, Rocha EPC. Alternative to homo-oligomerisation: the creation of local symmetry in proteins by internal amplification. J Mol Biol 2009; 394:522-34. [PMID: 19769988 DOI: 10.1016/j.jmb.2009.09.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 09/11/2009] [Accepted: 09/15/2009] [Indexed: 11/18/2022]
Abstract
The biologically active state of many proteins requires their prior homo-oligomerisation. Such complexes are typically symmetrical, a feature that has been proposed to increase their stability and facilitate the evolution of allosteric regulation. We wished to examine the possibility that similar structures and properties could arise from genetic amplifications leading to internal symmetrical repeats. For this, we identified internal structural repeats in a nonredundant Protein Data Bank subset. While testing if repeats in proteins tend to be symmetrical, we found that about half of the large internal repeats are symmetrical, most frequently around a rotation axis of 180 degrees . These repeats were most likely created by genetic amplification processes because they show significant sequence similarity. Symmetrical repeats tend to have a fixed number of copies corresponding to their rotational symmetry order, that is, two for 180 degrees rotation axis, whereas asymmetrical repeats are in longer proteins and show copy number variability. When possible, we confirmed that proteins with symmetrical repeats folding as an n-mer have homologues lacking the repeat with a higher oligomerisation number corresponding to the rotation symmetry order of the repeat. Phylogenetic analyses of these protein families suggest that typically, but not always, symmetrical repeats arise in one single event from proteins that are homo-oligomers. These results suggest that oligomerisation and amplification of internal sequences can interplay in evolutionary terms because they result in functional analogues when the latter exhibit rotational symmetry.
Collapse
Affiliation(s)
- Anne-Laure Abraham
- Atelier de BioInformatique, Université Pierre et Marie Curie-Paris 06, Paris, France.
| | | | | |
Collapse
|
27
|
Phylogenetic, structural and functional relationships between WD- and Kelch-repeat proteins. Subcell Biochem 2008; 48:6-19. [PMID: 18925367 DOI: 10.1007/978-0-387-09595-0_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The beta-propeller domain is a widespread protein organizational motif. Typically, beta-propeller proteins are encoded by repeated sequences where each repeat unit corresponds to a twisted beta-sheet structural motif; these beta-sheets are arranged in a circle around a central axis to generate the beta-propeller structure. Two superfamilies of beta-propeller proteins, the WD-repeat and Kelch-repeat families, exhibit similarities not only in structure, but, remarkably, also in the types of molecular functions they perform. While it is unlikely that WD and Kelch repeats evolved from a common ancestor, their evolution into diverse families of similar function may reflect the evolutionary advantages of the stable core beta-propeller fold. In this chapter, we examine the relationships between these two widespread protein families, emphasizing recently published work relating to the structure and function of both Kelch and WD-repeat proteins.
Collapse
|
28
|
Ullah H, Scappini EL, Moon AF, Williams LV, Armstrong DL, Pedersen LC. Structure of a signal transduction regulator, RACK1, from Arabidopsis thaliana. Protein Sci 2008; 17:1771-80. [PMID: 18715992 DOI: 10.1110/ps.035121.108] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The receptor for activated C-kinase 1 (RACK1) is a highly conserved WD40 repeat scaffold protein found in a wide range of eukaryotic species from Chlamydymonas to plants and humans. In tissues of higher mammals, RACK1 is ubiquitously expressed and has been implicated in diverse signaling pathways involving neuropathology, cellular stress, protein translation, and developmental processes. RACK1 has established itself as a scaffold protein through physical interaction with a myriad of signaling proteins ranging from kinases, phosphatases, ion channels, membrane receptors, G proteins, IP3 receptor, and with widely conserved structural proteins associated with the ribosome. In the plant Arabidopsis thaliana, RACK1A is implicated in diverse developmental and environmental stress pathways. Despite the functional conservation of RACK1-mediated protein-protein interaction-regulated signaling modes, the structural basis of such interactions is largely unknown. Here we present the first crystal structure of a RACK1 protein, RACK1 isoform A from Arabidopsis thaliana, at 2.4 A resolution, as a C-terminal fusion of the maltose binding protein. The structure implicates highly conserved surface residues that could play critical roles in protein-protein interactions and reveals the surface location of proposed post-transcriptionally modified residues. The availability of this structure provides a structural basis for dissecting RACK1-mediated cellular signaling mechanisms in both plants and animals.
Collapse
Affiliation(s)
- Hemayet Ullah
- Department of Biology, Howard University, Washington, DC 20059, USA
| | | | | | | | | | | |
Collapse
|
29
|
Suganuma T, Pattenden SG, Workman JL. Diverse functions of WD40 repeat proteins in histone recognition. Genes Dev 2008; 22:1265-8. [PMID: 18483215 DOI: 10.1101/gad.1676208] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
WD40 repeat proteins have been shown to bind the histone H3 tail at the center of their beta-propeller structure. In contrast, in this issue of Genes & Development, Song and colleagues (pp. 1313-1318) demonstrate that the WD40 repeat protein p55 binds a structured region of H4 through a novel binding pocket on the side of beta-propeller, illustrating a diversity of histone recognition by WD40 repeat proteins.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
30
|
Buscarlet M, Perin A, Laing A, Brickman JM, Stifani S. Inhibition of cortical neuron differentiation by Groucho/TLE1 requires interaction with WRPW, but not Eh1, repressor peptides. J Biol Chem 2008; 283:24881-8. [PMID: 18611861 DOI: 10.1074/jbc.m800722200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In both invertebrates and vertebrates, transcriptional co-repressors of the Groucho/transducin-like Enhancer of split (Gro/TLE) family regulate a number of developmental mechanisms, including neuronal differentiation. The pleiotropic activity of Gro/TLE depends on context-specific interactions with a variety of DNA-binding proteins. Most of those factors engage Gro/TLE through two different types of short peptide motifs, the WRP(W/Y) tetrapeptide and the Engrailed homology 1 (Eh1) sequence (FXIXXIL). The aim of this study was to elucidate the contribution of WRP(W/Y) and Eh1 motifs to mammalian Gro/TLE anti-neurogenic activity. Here we describe point mutations within the C-terminal WD40 repeat domain of Gro/TLE1 that do not perturb protein folding but disrupt the ability of Gro/TLE1 to inhibit the differentiation of cerebral cortex neural progenitor cells into neurons. One of those mutations, L743F, selectively blocks binding to Hes1, an anti-neurogenic basic helix-loop-helix protein that harbors a WRPW motif. In contrast, the L743F mutation does not disrupt binding to Engrailed1 and FoxG1, which both contain Eh1 motifs, nor to Tcf3, which binds to the Gro/TLE N terminus. These results demonstrate that the recruitment of transcription factors harboring WRP(W/Y) tetrapeptides is essential to the anti-neurogenic function of Gro/TLE1.
Collapse
Affiliation(s)
- Manuel Buscarlet
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
31
|
Valeyev NV, Downing AK, Sondek J, Deane C. Electrostatic and functional analysis of the seven-bladed WD beta-propellers. Evol Bioinform Online 2008; 4:203-16. [PMID: 19204818 PMCID: PMC2614187 DOI: 10.4137/ebo.s743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
beta-propeller domains composed of WD repeats are highly ubiquitous and typically used as multi-site docking platforms to coordinate and integrate the activities of groups of proteins. Here, we have used extensive homology modelling of the WD40-repeat family of seven-bladed beta-propellers coupled with subsequent structural classification and clustering of these models to define subfamilies of beta-propellers with common structural, and probable, functional characteristics. We show that it is possible to assign seven-bladed WD beta-propeller proteins into functionally different groups based on the information gained from homology modelling. We examine general structural diversity within the WD40-repeat family of seven-bladed beta-propellers and demonstrate that seven-bladed beta-propellers composed of WD-repeats are structurally distinct from other seven-bladed beta-propellers. We further provide some insights into the multifunctional diversity of the seven-bladed WD beta-propeller surfaces. This report once again reinforces the importance of structural data and the usefulness of homology models in functional classification.
Collapse
Affiliation(s)
- Najl V Valeyev
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | | | | | | |
Collapse
|
32
|
Giuseppe PO, Neves FO, Nascimento ALTO, Guimarães BG. The leptospiral antigen Lp49 is a two-domain protein with putative protein binding function. J Struct Biol 2008; 163:53-60. [PMID: 18508281 DOI: 10.1016/j.jsb.2008.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/07/2008] [Accepted: 04/08/2008] [Indexed: 11/18/2022]
Abstract
Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 A resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date.
Collapse
Affiliation(s)
- Priscila Oliveira Giuseppe
- Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Rua Giuseppe Máximo Scolfaro 10000, PO Box 6192, Campinas 13083-970, SP, Brazil
| | | | | | | |
Collapse
|
33
|
Liu Z, Karmarkar V. Groucho/Tup1 family co-repressors in plant development. TRENDS IN PLANT SCIENCE 2008; 13:137-44. [PMID: 18314376 DOI: 10.1016/j.tplants.2007.12.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/05/2007] [Accepted: 12/14/2007] [Indexed: 05/23/2023]
Abstract
Transcription repression is emerging as a key regulatory mechanism underlying cell fate specification and body patterning in both animals and plants. In animals and fungi, the Groucho (Gro)/Tup1 family co-repressors generate the repressed chromatin state in genetic loci that control major developmental decisions ranging from dorsal-ventral patterning to eye development. In higher plants, information about the Gro/Tup1 co-repressors is beginning to emerge. Several recent publications have revealed both conserved and unique structural and mechanistic features of plant Gro/Tup1 co-repressors, including LEUNIG (LUG), TOPLESS (TPL) and WUSCHEL-INTERACTING PROTEINS (WSIPs). These co-repressors regulate key developmental processes in floral organ identity specification, embryo apical-basal fate determination, and stem cell maintenance at the shoot apex.
Collapse
Affiliation(s)
- Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
34
|
Abstract
The Groucho family of co-repressor proteins are essential for development and may also have a role in some human cancers.
Collapse
Affiliation(s)
- Barbara H Jennings
- Developmental Genetics Laboratory, Cancer Research UK, Lincoln's Inn Fields, London, WC2A 3PX, UK
| | | |
Collapse
|
35
|
Differential in vivo requirements for oligomerization during Groucho-mediated repression. EMBO Rep 2007; 9:76-83. [PMID: 18034187 DOI: 10.1038/sj.embor.7401122] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 10/17/2007] [Accepted: 10/19/2007] [Indexed: 11/09/2022] Open
Abstract
The Groucho (Gro)/transducin-like enhancer of split family of transcriptional corepressors are implicated in many signalling pathways that are important in development and disease, including those mediated by Notch, Wnt and Hedgehog. Here, we describe a genetic screen in Drosophila that yielded 50 new gro alleles, including the first protein-null allele, and has two mutations in the conserved Q oligomerization domain that have been proposed to have an essential role in corepressor activity. One of these latter mutations, encoding an amino-terminal protein truncation that lacks part of the Q domain, abolishes oligomerization in vitro and renders the protein unstable in vivo. Nevertheless, the mutation is not a null: maternal mutant embryos have intermediate segmentation phenotypes and relatively normal terminal patterning suggesting that the mutant protein retains partial corepressor activity. Our results show that homo-oligomerization of Gro is not obligatory for its action in vivo, and that Gro represses transcription through more than one molecular mechanism.
Collapse
|
36
|
Sun H, Nelms BL, Sleiman SF, Chamberlin HM, Hanna-Rose W. Modulation of Caenorhabditis elegans transcription factor activity by HIM-8 and the related Zinc-Finger ZIM proteins. Genetics 2007; 177:1221-6. [PMID: 17720937 PMCID: PMC2034626 DOI: 10.1534/genetics.107.070847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The previously reported negative regulatory activity of HIM-8 on the Sox protein EGL-13 is shared by the HIM-8-related ZIM proteins. Furthermore, mutation of HIM-8 can modulate the effects of substitution mutations in the DNA-binding domains of at least four other transcription factors, suggesting broad regulatory activity by HIM-8.
Collapse
Affiliation(s)
- Hongliu Sun
- Intercollege Graduate Degree Program in Genetics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
37
|
Buscarlet M, Stifani S. The 'Marx' of Groucho on development and disease. Trends Cell Biol 2007; 17:353-61. [PMID: 17643306 DOI: 10.1016/j.tcb.2007.07.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/19/2007] [Accepted: 07/02/2007] [Indexed: 10/23/2022]
Abstract
Groucho proteins are abundant and broadly expressed nuclear factors that lack intrinsic DNA-binding activity but can interact with a variety of DNA-binding proteins. The recruitment of Groucho to specific gene regulatory sequences results in transcriptional repression. In both invertebrates and vertebrates, Groucho family members act as important regulators of several signaling mechanisms, including the Notch, Wingless/Wnt and Dpp/BMP/TGF-beta signaling pathways. Recent studies of embryonic development in several species point to an important role for Groucho in the regulation of multiple patterning and differentiation events. Moreover, a deregulated expression of human Groucho family members is correlated with several neoplastic conditions. Here we focus on the functions of Groucho proteins during body patterning and their implication in tumorigenesis.
Collapse
Affiliation(s)
- Manuel Buscarlet
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
38
|
Fagerström-Billai F, Durand-Dubief M, Ekwall K, Wright APH. Individual subunits of the Ssn6-Tup11/12 corepressor are selectively required for repression of different target genes. Mol Cell Biol 2006; 27:1069-82. [PMID: 17101775 PMCID: PMC1800702 DOI: 10.1128/mcb.01674-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae Ssn6 and Tup1 proteins form a corepressor complex that is recruited to target genes by DNA-bound repressor proteins. Repression occurs via several mechanisms, including interaction with hypoacetylated N termini of histones, recruitment of histone deacetylases (HDACs), and interactions with the RNA polymerase II holoenzyme. The distantly related fission yeast, Schizosaccharomyces pombe, has two partially redundant Tup1-like proteins that are dispensable during normal growth. In contrast, we show that Ssn6 is an essential protein in S. pombe, suggesting a function that is independent of Tup11 and Tup12. Consistently, the group of genes that requires Ssn6 for their regulation overlaps but is distinct from the group of genes that depend on Tup11 or Tup12. Global chip-on-chip analysis shows that Ssn6 is almost invariably found in the same genomic locations as Tup11 and/or Tup12. All three corepressor subunits are generally bound to genes that are selectively regulated by Ssn6 or Tup11/12, and thus, the subunit specificity is probably manifested in the context of a corepressor complex containing all three subunits. The corepressor binds to both the intergenic and coding regions of genes, but differential localization of the corepressor within genes does not appear to account for the selective dependence of target genes on the Ssn6 or Tup11/12 subunits. Ssn6, Tup11, and Tup12 are preferentially found at genomic locations at which histones are deacetylated, primarily by the Clr6 class I HDAC. Clr6 is also important for the repression of corepressor target genes. Interestingly, a subset of corepressor target genes, including direct target genes affected by Ssn6 overexpression, is associated with the function of class II (Clr3) and III (Hst4 and Sir2) HDACs.
Collapse
|
39
|
Jennings BH, Pickles LM, Wainwright SM, Roe SM, Pearl LH, Ish-Horowicz D. Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor. Mol Cell 2006; 22:645-55. [PMID: 16762837 DOI: 10.1016/j.molcel.2006.04.024] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Revised: 03/20/2006] [Accepted: 04/24/2006] [Indexed: 11/18/2022]
Abstract
The Groucho (Gro)/TLE/Grg family of corepressors operates in many signaling pathways (including Notch and Wnt). Gro/TLE proteins recognize a wide range of transcriptional repressors by binding to divergent short peptide sequences, including a C-terminal WRPW/Y motif (Hairy/Hes/Runx) and internal eh1 motifs (FxIxxIL; Engrailed/Goosecoid/Pax/Nkx). Here, we identify several missense mutations in Drosophila Gro, which demonstrate peptide binding to the central pore of the WD (WD40) beta propeller domain in vitro and in vivo. We define these interactions at the molecular level with crystal structures of the WD domain of human TLE1 bound to either WRPW or eh1 peptides. The two distinct peptide motifs adopt markedly different bound conformations but occupy overlapping sites across the central pore of the beta propeller. Our structural and functional analysis explains the rigid conservation of the WRPW motif, the sequence flexibility of eh1 motifs, and other aspects of repressor recognition by Gro in vivo.
Collapse
Affiliation(s)
- Barbara H Jennings
- Developmental Genetics Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Malavé TM, Dent SYR. Transcriptional repression by Tup1–Ssn6This paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:437-43. [PMID: 16936817 DOI: 10.1139/o06-073] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Tup1–Ssn6 complex from budding yeast is one of the best studied corepressors and has served as a model for the study of similar corepressor complexes in higher eukaryotes. Tup1–Ssn6 represses multiple subsets of genes when recruited to promoters by sequence-specific DNA binding repressors. Tup1–Ssn6 mediated repression involves interactions among the corepressor and hypoacetylated histones, histone deacetylases, and the RNA transcriptional machinery. Nucleosome positioning is also involved in repression of a subset of Tup1–Ssn6 regulated genes. These findings highlight the importance of chromatin modification states in Tup1–Ssn6 mediated repression. Here we review the multiple mechanisms involved in repression and discuss Tup1–Ssn6 homolog functions in higher organisms. We also present a model for how repression by Tup1–Ssn6 may be established.
Collapse
Affiliation(s)
- Tania M Malavé
- Department of Biochemistry and Molecular Biology, U.T. M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
41
|
Schlager B, Röseler W, Zheng M, Gutierrez A, Sommer RJ. HAIRY-like Transcription Factors and the Evolution of the Nematode Vulva Equivalence Group. Curr Biol 2006; 16:1386-94. [PMID: 16860737 DOI: 10.1016/j.cub.2006.06.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/02/2006] [Accepted: 06/06/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND Nematode vulva formation provides a paradigm to study the evolution of pattern formation and cell-fate specification. The Caenorhabditis elegans vulva is generated from three of six equipotent cells that form the so-called vulva equivalence group. During evolution, the size of the vulva equivalence group has changed: Panagrellus redivivus has eight, C. elegans six, and Pristionchus pacificus only three cells that are competent to form vulval tissue. In P. pacificus, programmed cell death of individual vulval precursor cells alters the size of the vulva equivalence group. RESULTS We have identified the genes controlling this cell-death event and the molecular mechanism of the reduction of the vulva equivalence group. Mutations in Ppa-hairy, a gene that is unknown from C. elegans, result in the survival of two precursor cells, which expands the vulva equivalence group. Mutations in Ppa-groucho cause a similar phenotype. Ppa-HAIRY and Ppa-GROUCHO form a molecular module that represses the Hox gene Ppa-lin-39 and thereby reduces the size of the vulva equivalence group. The C. elegans genome does not encode a similar hairy-like gene, and no typical HAIRY/GROUCHO module exists. CONCLUSIONS We conclude that the vulva equivalence group in Pristionchus is patterned by a HAIRY/GROUCHO module, which is absent in Caenorhabditis. Thus, changes in the number, structure, and function of nematode hairy-like transcription factors are involved in the evolutionary alteration of this equivalence group.
Collapse
Affiliation(s)
- Benjamin Schlager
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | |
Collapse
|
42
|
Duan HY, Li FG, Wu XD, Ma DM, Wang M, Hou YX. The cloning and sequencing of a cDNA encoding a WD repeat protein in cotton (Gossypium hirsutum L.). ACTA ACUST UNITED AC 2006; 17:49-55. [PMID: 16753817 DOI: 10.1080/10425170500476418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this research, one 1156 bp cDNA containing full open reading frame and encoding a novel 24-kDa protein with four tandem WD repeat motifs was cloned from cotton, therefore was named GhWDR and the GenBank accession number is AY870657. By search of GhWDR cDNA and amino acid sequences in the database, we found that GhWDR and OSJNBa0003G23.2 from Oryza sativa show 90% sequence identity and 84% identity to WD-repeat protein from Arabidopsis thaliana, and also has high sequence identity to other WD repeat proteins, most of which are similar to Pop3 from fission yeast (accession number T39922) and Lst8p from Saccharomyces cerevisiae (accession number NP014392). Therefore, we proposed that GhWDR could act in some cellular processes as pop3 or LST8 does. In addition, the expression of GhWDR in various tissues was studied by RT-PCR, and it is expressed in all of the studied tissues, but the level of expression is low in the leaves when compared to that of other tissues.
Collapse
Affiliation(s)
- Hong Y Duan
- College of Biological Sciences, China Agriculture University, Beijing 100094, P. R. China
| | | | | | | | | | | |
Collapse
|
43
|
Ju JH, Maeng JS, Zemedkun M, Ahronovitz N, Mack JW, Ferretti JA, Gelmann EP, Gruschus JM. Physical and functional interactions between the prostate suppressor homeoprotein NKX3.1 and serum response factor. J Mol Biol 2006; 360:989-99. [PMID: 16814806 DOI: 10.1016/j.jmb.2006.05.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 04/29/2006] [Accepted: 05/30/2006] [Indexed: 11/15/2022]
Abstract
The NKX3.1 transcription factor is an NK family homeodomain protein and a tumor suppressor gene that is haploinsufficient and down-regulated in the early phases of prostate cancer. Like its cardiac homolog, NKX2.5, NKX3.1 acts synergistically with serum response factor (SRF) to activate expression from the smooth muscle gamma-actin (SMGA) gene promoter. Using NMR spectroscopy, three conserved motifs in a construct containing the N-terminal region and homeodomain of NKX3.1 were observed to interact with the MADS box domain of SRF. These motifs interacted both in the absence of DNA and when both proteins were bound to a SMGA promoter DNA sequence. No significant interaction was seen between the homeodomain and SRF MADS box. One of the SRF-interacting regions was the tinman (TN) or engrailed homology-1 motif (EH-1), residues 29-35 (FLIQDIL), which for other NK proteins is the site of interaction with the repressor protein Groucho. A second hydrophobic interacting region was designated the SRF-interacting (SI) motif and included residues 99-105 (LGSYLLD). A third interacting motif was the acidic region adjacent to the SI motif including residues 88-96 (ETLAETEPE). The acidic domain (AD) motif signals also showed strengthening upon the NKX3.1 homeodomain binding to DNA in the absence of SRF, consistent with the acidic region weakly interacting with the homeodomain in the unbound state. The importance of these linear motifs in the transcriptional interaction of NKX3.1 and SRF was demonstrated by targeted mutagenesis of an NKX3.1 expression vector in a SMGA reporter assay. The results implicate the NKX3.1 N-terminal region in regulation of transcriptional activity of this tumor suppressor.
Collapse
Affiliation(s)
- Jeong Ho Ju
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road, NW, Washington, DC 20007, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Nikkhah M, Jawad-Alami Z, Demydchuk M, Ribbons D, Paoli M. Engineering of beta-propeller protein scaffolds by multiple gene duplication and fusion of an idealized WD repeat. ACTA ACUST UNITED AC 2006; 23:185-94. [PMID: 16651025 DOI: 10.1016/j.bioeng.2006.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 01/10/2006] [Accepted: 01/16/2006] [Indexed: 10/24/2022]
Abstract
The ability to design specific amino acid sequences that fold into desired structures is central to engineering novel proteins. Protein design is also a good method to assess our understanding of sequence-structure and structure-function relationships. While beta-sheet structures are important elements of protein architecture, it has traditionally been more difficult to design beta-proteins than alpha-helical proteins. Taking advantage of the tandem repeated sequences that form the structural building blocks in a group of beta-propeller proteins; we have used a consensus design approach to engineer modular and relatively large scaffolds. An idealized WD repeat was designed from a structure-based sequence alignment with a set of structural guidelines. Using a plasmid sequential ligation strategy, artificial concatemeric genes with up to 10 copies of this idealized repeat were then constructed. Corresponding proteins with 4 through to 10 WD repeats were soluble when over-expressed in Escherichia coli. Notably, they were sufficiently stable in vivo surviving attack from endogenous proteases, and maintained a homogeneous, non-aggregated form in vitro. The results show that the beta-propeller scaffold is an attractive platform for future engineering work, particularly in experiments in which directed evolution techniques might improve the stability of the molecules and/or tailor them for a specific function.
Collapse
Affiliation(s)
- Maryam Nikkhah
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | | | | | | | | |
Collapse
|
45
|
Marçal N, Patel H, Dong Z, Belanger-Jasmin S, Hoffman B, Helgason CD, Dang J, Stifani S. Antagonistic effects of Grg6 and Groucho/TLE on the transcription repression activity of brain factor 1/FoxG1 and cortical neuron differentiation. Mol Cell Biol 2006; 25:10916-29. [PMID: 16314515 PMCID: PMC1316978 DOI: 10.1128/mcb.25.24.10916-10929.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Groucho (Gro)/TLE transcriptional corepressors are involved in a variety of developmental mechanisms, including neuronal differentiation. They contain a conserved C-terminal WD40 repeat domain that mediates interactions with several DNA-binding proteins. In particular, Gro/TLE1 interacts with forkhead transcription factor brain factor 1 (BF-1; also termed FoxG1). BF-1 is an essential regulator of neuronal differentiation during cerebral cortex development and represses transcription together with Gro/TLE1. Gro/TLE-related gene product 6 (Grg6) shares with Gro/TLEs a conserved WD40 repeat domain but is more distantly related at its N-terminal half. We demonstrate that Grg6 is expressed in cortical neural progenitor cells and interacts with BF-1. In contrast to Gro/TLE1, however, Grg6 does not promote, but rather suppresses, BF-1-mediated transcriptional repression. Consistent with these observations, Grg6 interferes with the binding of Gro/TLE1 to BF-1 and does not repress transcription when targeted to DNA. Moreover, coexpression of Grg6 and BF-1 in cortical progenitor cells leads to a decrease in the number of proliferating cells and increased neuronal differentiation. Conversely, Grg6 knockdown by RNA interference causes decreased neurogenesis. These results identify a new role for Grg6 in cortical neuron development and establish a functional link between Grg6 and BF-1.
Collapse
Affiliation(s)
- Nathalie Marçal
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Vander Kooi CW, Ohi MD, Rosenberg JA, Oldham ML, Newcomer ME, Gould KL, Chazin WJ. The Prp19 U-box crystal structure suggests a common dimeric architecture for a class of oligomeric E3 ubiquitin ligases. Biochemistry 2006; 45:121-30. [PMID: 16388587 PMCID: PMC2570371 DOI: 10.1021/bi051787e] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prp19 is an essential splicing factor and a member of the U-box family of E3 ubiquitin ligases. Prp19 forms a tetramer via a central coiled-coil domain. Here, we show the U-box domain of Prp19 exists as a dimer within the context of the Prp19 tetramer. A high-resolution structure of the homodimeric state of the Prp19 U-box was determined by X-ray crystallography. Mutation of the U-box dimer interface abrogates U-box dimer formation and is lethal in vivo. The structure of the U-box dimer enables construction of a complete model of Prp19 providing insights into how the tetrameric protein functions as an E3 ligase. Finally, comparison of the Prp19 U-box homodimer with the heterodimeric complex of BRCA1/BARD1 RING-finger domains uncovers a common architecture for a family of oligomeric U-box and RING-finger E3 ubiquitin ligases, which has mechanistic implications for E3 ligase-mediated polyubiquitination and E4 polyubiquitin ligases.
Collapse
Affiliation(s)
- Craig W Vander Kooi
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Cerna D, Wilson DK. The structure of Sif2p, a WD repeat protein functioning in the SET3 corepressor complex. J Mol Biol 2005; 351:923-35. [PMID: 16051270 DOI: 10.1016/j.jmb.2005.06.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 06/07/2005] [Accepted: 06/09/2005] [Indexed: 11/22/2022]
Abstract
In Saccharomyces cerevisiae, the SIF2 gene product is an integral component of the Set3 complex (SET3C), an assembly of proteins with some homology to the human SMRT and N-CoR corepressor complexes. SET3C has histone deacetylase activity that is responsible for repressing a set of meiotic genes. We have determined the X-ray crystal structure of a 46 kDa C-terminal domain of a SET3C core protein, Sif2p to 1.55 A resolution and a crystallographic R-factor of 19.0%. This domain contains an unusual eight-bladed beta-propeller structure, which differs from other transcriptional corepressor structures such as yeast Tup1p and human groucho (Gro)/TLE1, which have only seven. We have demonstrated intact Sif2p is a tetramer and the N-terminal LisH (Lis-homology)-containing domain mediates tetramerization and interaction with another component of SET3C, Snt1p. Multiple sequence alignments indicate that a surface on the "top" of the protein is conserved among species, suggesting that it may play a common role in binding partner proteins. Since Sif2p appears to be the yeast homolog of human TBL1 and TBLR1, which function in the N-CoR/SMRT complexes, its structural and oligomeric properties are likely to be very similar.
Collapse
Affiliation(s)
- David Cerna
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
48
|
Stewart L, Stifani S. Dendritic localization of the transcriptional co-repressor Groucho/TLE1 in cortical and cerebellar neurons. ACTA ACUST UNITED AC 2005; 140:106-10. [PMID: 16081186 DOI: 10.1016/j.molbrainres.2005.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/17/2005] [Accepted: 06/27/2005] [Indexed: 11/30/2022]
Abstract
In the present study we show that the transcription factor Groucho/TLE1 (TLE1) is expressed in virtually all major cortical subdivisions, hippocampus, amygdala, and thalamus, as well as in the cerebellum of the adult rat brain. In both neocortex and subcortical structures, TLE1 expression was mostly localized to neurons. In addition to the expected nuclear localization, TLE1 immunoreactivity was also detected in apical dendritic shafts of neocortical layer III and V pyramidal cells and in Purkinje cell dendrites. These results demonstrate that TLE1 expression occurs in the mature nervous system and suggest that this protein may perform new functions outside of the nucleus in selected cortical and cerebellar neurons.
Collapse
Affiliation(s)
- Lee Stewart
- Center for Neuronal Survival, Montreal Neurological Institute, Montreal, Quebec, Canada
| | | |
Collapse
|
49
|
Wilson DK, Cerna D, Chew E. The 1.1-Å Structure of the Spindle Checkpoint Protein Bub3p Reveals Functional Regions. J Biol Chem 2005; 280:13944-51. [PMID: 15644329 DOI: 10.1074/jbc.m412919200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bub3p is a protein that mediates the spindle checkpoint, a signaling pathway that ensures correct chromosome segregation in organisms ranging from yeast to mammals. It is known to function by co-localizing at least two other proteins, Mad3p and the protein kinase Bub1p, to the kinetochore of chromosomes that are not properly attached to mitotic spindles, ultimately resulting in cell cycle arrest. Prior sequence analysis suggested that Bub3p was composed of three or four WD repeats (also known as WD40 and beta-transducin repeats), short sequence motifs appearing in clusters of 4-16 found in many hundreds of eukaryotic proteins that fold into four-stranded blade-like sheets. We have determined the crystal structure of Bub3p from Saccharomyces cerevisiae at 1.1 angstrom and a crystallographic R-factor of 15.3%, revealing seven authentic repeats. In light of this, it appears that many of these repeats therefore remain hidden in sequences of other proteins. Analysis of random and site-directed mutants identifies the surface of Bub3p involved in checkpoint function through binding of Bub1p and Mad3p. Sequence alignments indicate that these surfaces are mostly conserved across Bub3 proteins from diverse species. A structural comparison with other proteins containing WD repeats suggests that these folds may bind partner proteins using similar surface areas on the top and sides of the propeller. The sequences composing these regions are the most divergent within the repeat across all WD repeat proteins and could potentially be modulated to provide specificity in partner protein binding without perturbation of the core structure.
Collapse
Affiliation(s)
- David K Wilson
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
50
|
Green SR, Johnson AD. Genome-wide analysis of the functions of a conserved surface on the corepressor Tup1. Mol Biol Cell 2005; 16:2605-13. [PMID: 15788561 PMCID: PMC1142409 DOI: 10.1091/mbc.e05-02-0126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The general transcriptional repressor Tup1 is responsible for the regulation of a large, diverse set of genes in Saccharomyces cerevisiae, and functional homologues of Tup1 have been identified in many metazoans. The crystal structure for the C-terminal portion of Tup1 has been solved and, when sequences of Tup1 homologues from fungi and metazoans were compared, a highly conserved surface was revealed. In this article, we analyze five point mutations that lie on this conserved surface. A statistical analysis of expression microarrays demonstrates that the mutant alleles are deficient in the repression of different subsets of Tup1-regulated genes. We were able to rank the mutant alleles of TUP1 based on the severity of their repression defects measured both by the number of genes derepressed and by the magnitude of that derepression. For one particular class of genes, the mutations on the conserved surface disrupted recruitment of Tup1 to the repressed promoters. However, for the majority of the genes derepressed by the Tup1 point mutants, recruitment of Tup1 to the regulated promoters is largely unaffected. These mutations affect the mechanism of repression subsequent to recruitment of the complex and likely represent a disruption of a mechanism that is conserved in fungi and metazoans. This work demonstrates that the evolutionarily conserved surface of Tup1 interacts with two separate types of proteins-sequence-specific DNA-binding proteins responsible for recruiting Tup1 to promoters as well as components that are likely to function in a conserved repression mechanism.
Collapse
Affiliation(s)
- Sarah R Green
- Department of Biochemistry and Molecular Biology, University of California-San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|