1
|
Tiruppathi C, Wang DM, Ansari MO, Bano S, Tsukasaki Y, Mukhopadhyay A, Joshi JC, Loch C, Niessen HWM, Malik AB. Ubiquitin ligase CHFR mediated degradation of VE-cadherin through ubiquitylation disrupts endothelial adherens junctions. Nat Commun 2023; 14:6582. [PMID: 37852964 PMCID: PMC10584835 DOI: 10.1038/s41467-023-42225-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Vascular endothelial cadherin (VE-cadherin) expressed at endothelial adherens junctions (AJs) is vital for vascular integrity and endothelial homeostasis. Here we identify the requirement of the ubiquitin E3-ligase CHFR as a key mechanism of ubiquitylation-dependent degradation of VE-cadherin. CHFR was essential for disrupting the endothelium through control of the VE-cadherin protein expression at AJs. We observe augmented expression of VE-cadherin in endothelial cell (EC)-restricted Chfr knockout (ChfrΔEC) mice. We also observe abrogation of LPS-induced degradation of VE-cadherin in ChfrΔEC mice, suggesting the pathophysiological relevance of CHFR in regulating the endothelial junctional barrier in inflammation. Lung endothelial barrier breakdown, inflammatory neutrophil extravasation, and mortality induced by LPS were all suppressed in ChfrΔEC mice. We find that the transcription factor FoxO1 is a key upstream regulator of CHFR expression. These findings demonstrate the requisite role of the endothelial cell-expressed E3-ligase CHFR in regulating the expression of VE-cadherin, and thereby endothelial junctional barrier integrity.
Collapse
Affiliation(s)
- Chinnaswamy Tiruppathi
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA.
| | - Dong-Mei Wang
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Mohammad Owais Ansari
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Shabana Bano
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yoshikazu Tsukasaki
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Amitabha Mukhopadhyay
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jagdish C Joshi
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | | | - Hans W M Niessen
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA.
| |
Collapse
|
2
|
Márquez-Cantudo L, Ramos A, Coderch C, de Pascual-Teresa B. Proteasomal Degradation of Zn-Dependent Hdacs: The E3-Ligases Implicated and the Designed Protacs That Enable Degradation. Molecules 2021; 26:molecules26185606. [PMID: 34577077 PMCID: PMC8467390 DOI: 10.3390/molecules26185606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Protein degradation by the Ubiquitin-Proteasome System is one of the main mechanisms of the regulation of cellular proteostasis, and the E3 ligases are the key effectors for the protein recognition and degradation. Many E3 ligases have key roles in cell cycle regulation, acting as checkpoints and checkpoint regulators. One of the many important proteins involved in the regulation of the cell cycle are the members of the Histone Deacetylase (HDAC) family. The importance of zinc dependent HDACs in the regulation of chromatin packing and, therefore, gene expression, has made them targets for the design and synthesis of HDAC inhibitors. However, achieving potency and selectivity has proven to be a challenge due to the homology between the zinc dependent HDACs. PROteolysis TArgeting Chimaera (PROTAC) design has been demonstrated to be a useful strategy to inhibit and selectively degrade protein targets. In this review, we attempt to summarize the E3 ligases that naturally ubiquitinate HDACs, analyze their structure, and list the known ligands that can bind to these E3 ligases and be used for PROTAC design, as well as the already described HDAC-targeted PROTACs.
Collapse
|
3
|
Kim GS, Lee I, Kim JH, Hwang DS. The Replication Protein Cdc6 Suppresses Centrosome Over-Duplication in a Manner Independent of Its ATPase Activity. Mol Cells 2017; 40:925-934. [PMID: 29237113 PMCID: PMC5750711 DOI: 10.14348/molcells.2017.0191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 11/27/2022] Open
Abstract
The Cdc6 protein is essential for the initiation of chromosomal replication and functions as a licensing factor to maintain chromosome integrity. During the S and G2 phases of the cell cycle, Cdc6 has been found to inhibit the recruitment of pericentriolar material (PCM) proteins to the centrosome and to suppress centrosome over-duplication. In this report, we analyzed the correlation between these two functions of Cdc6 at the centrosome. Cdc6 depletion increased the population of cells showing centrosome over-duplication and premature centrosome separation; Cdc6 expression reversed these changes. Deletion and fusion experiments revealed that the 18 amino acid residues (197-214) of Cdc6, which were fused to the Cdc6-centrosomal localization signal, suppressed centrosome over-duplication and premature centrosome separation. Cdc6 mutant proteins that showed defective ATP binding or hydrolysis did not exhibit a significant difference in suppressing centrosome over-duplication, compared to the wild type protein. In contrast to the Cdc6-mediated inhibition of PCM protein recruitment to the centrosome, the independence of Cdc6 on its ATPase activity for suppressing centrosome over-duplication, along with the difference between the Cdc6 protein regions participating in the two functions, suggested that Cdc6 controls centrosome duplication in a manner independent of its recruitment of PCM proteins to the centrosome.
Collapse
Affiliation(s)
- Gwang Su Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Inyoung Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Deog Su Hwang
- Department of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
4
|
Iyer LM, Zhang D, Aravind L. Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification. Bioessays 2015; 38:27-40. [PMID: 26660621 PMCID: PMC4738411 DOI: 10.1002/bies.201500104] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
While N6‐methyladenosine (m6A) is a well‐known epigenetic modification in bacterial DNA, it remained largely unstudied in eukaryotes. Recent studies have brought to fore its potential epigenetic role across diverse eukaryotes with biological consequences, which are distinct and possibly even opposite to the well‐studied 5‐methylcytosine mark. Adenine methyltransferases appear to have been independently acquired by eukaryotes on at least 13 occasions from prokaryotic restriction‐modification and counter‐restriction systems. On at least four to five instances, these methyltransferases were recruited as RNA methylases. Thus, m6A marks in eukaryotic DNA and RNA might be more widespread and diversified than previously believed. Several m6A‐binding protein domains from prokaryotes were also acquired by eukaryotes, facilitating prediction of potential readers for these marks. Further, multiple lineages of the AlkB family of dioxygenases have been recruited as m6A demethylases. Although members of the TET/JBP family of dioxygenases have also been suggested to be m6A demethylases, this proposal needs more careful evaluation. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Luo S, Xin X, Du LL, Ye K, Wei Y. Dimerization Mediated by a Divergent Forkhead-associated Domain Is Essential for the DNA Damage and Spindle Functions of Fission Yeast Mdb1. J Biol Chem 2015; 290:21054-21066. [PMID: 26160178 DOI: 10.1074/jbc.m115.642538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Indexed: 01/13/2023] Open
Abstract
MDC1 is a key factor of DNA damage response in mammalian cells. It possesses two phospho-binding domains. In its C terminus, a tandem BRCA1 C-terminal domain binds phosphorylated histone H2AX, and in its N terminus, a forkhead-associated (FHA) domain mediates a phosphorylation-enhanced homodimerization. The FHA domain of the Drosophila homolog of MDC1, MU2, also forms a homodimer but utilizes a different dimer interface. The functional importance of the dimerization of MDC1 family proteins is uncertain. In the fission yeast Schizosaccharomyces pombe, a protein sharing homology with MDC1 in the tandem BRCA1 C-terminal domain, Mdb1, regulates DNA damage response and mitotic spindle functions. Here, we report the crystal structure of the N-terminal 91 amino acids of Mdb1. Despite a lack of obvious sequence conservation to the FHA domain of MDC1, this region of Mdb1 adopts an FHA-like fold and is therefore termed Mdb1-FHA. Unlike canonical FHA domains, Mdb1-FHA lacks all the conserved phospho-binding residues. It forms a stable homodimer through an interface distinct from those of MDC1 and MU2. Mdb1-FHA is important for the localization of Mdb1 to DNA damage sites and the spindle midzone, contributes to the roles of Mdb1 in cellular responses to genotoxins and an antimicrotubule drug, and promotes in vitro binding of Mdb1 to a phospho-H2A peptide. The defects caused by the loss of Mdb1-FHA can be rescued by fusion with either of two heterologous dimerization domains, suggesting that the main function of Mdb1-FHA is mediating dimerization. Our data support that FHA-mediated dimerization is conserved for MDC1 family proteins.
Collapse
Affiliation(s)
- Shukun Luo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaoran Xin
- National Institute of Biological Sciences, Beijing 102206, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China.
| | - Keqiong Ye
- National Institute of Biological Sciences, Beijing 102206, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yi Wei
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
6
|
Xu Q, Deller MC, Nielsen TK, Grant JC, Lesley SA, Elsliger MA, Deacon AM, Wilson IA. Structural insights into the recognition of phosphopeptide by the FHA domain of kanadaptin. PLoS One 2014; 9:e107309. [PMID: 25197798 PMCID: PMC4157861 DOI: 10.1371/journal.pone.0107309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/09/2014] [Indexed: 01/15/2023] Open
Abstract
Kanadaptin is a nuclear protein of unknown function that is widely expressed in mammalian tissues. The crystal structure of the forkhead-associated (FHA) domain of human kanadaptin was determined to 1.6 Å resolution. The structure reveals an asymmetric dimer in which one monomer is complexed with a phosphopeptide mimic derived from a peptide segment from the N-terminus of a symmetry-related molecule as well as a sulfate bound to the structurally conserved phosphothreonine recognition cleft. This structure provides insights into the molecular recognition features utilized by this family of proteins and represents the first evidence that kanadaptin is likely involved in a phosphorylation-mediated signaling pathway. These results will be of use for designing experiments to further probe the function of kanadaptin.
Collapse
Affiliation(s)
- Qingping Xu
- Joint Center for Structural Genomics, La Jolla, California, United States of America
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America
| | - Marc C. Deller
- Joint Center for Structural Genomics, La Jolla, California, United States of America
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tine K. Nielsen
- Protein Production Facility, Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joanna C. Grant
- Joint Center for Structural Genomics, La Jolla, California, United States of America
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Scott A. Lesley
- Joint Center for Structural Genomics, La Jolla, California, United States of America
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Marc-André Elsliger
- Joint Center for Structural Genomics, La Jolla, California, United States of America
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ashley M. Deacon
- Joint Center for Structural Genomics, La Jolla, California, United States of America
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America
| | - Ian A. Wilson
- Joint Center for Structural Genomics, La Jolla, California, United States of America
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Lu J, Sun M, Ye K. Structural and functional analysis of Utp23, a yeast ribosome synthesis factor with degenerate PIN domain. RNA (NEW YORK, N.Y.) 2013; 19:1815-1824. [PMID: 24152547 PMCID: PMC3860261 DOI: 10.1261/rna.040808.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
During synthesis of yeast ribosome, a large complex, called the 90S pre-ribosome or the small subunit processome, is assembled on the nascent precursor rRNA and mediates early processing of 18S rRNA. The Utp23 protein and snR30 H/ACA snoRNA are two conserved components of 90S pre-ribosomes. Utp23 contains a degenerate PIN nuclease domain followed by a long C-terminal tail and associates specifically with snR30. Here, we report the crystal structure of the Utp23 PIN domain at 2.5-Å resolution. The structure reveals a conserved core fold of PIN domain with degenerate active site residues, a unique CCHC Zn-finger motif, and two terminal extension elements. Functional sites of Utp23 have been examined with conservation analysis, mutagenesis, and in vivo and in vitro assays. Mutations in each of three cysteine ligands of zinc, although not the histidine ligand, were lethal or strongly inhibitory to yeast growth, indicating that the Zn-finger motif is required for Utp23 structure or function. The N-terminal helix extension harbors many highly conserved basic residues that mostly are critical for growth and in vitro RNA-binding activity of Utp23. Deletion of the C-terminal tail, which contains a short functionally important sequence motif, disrupted the interaction of Utp23 with snR30 and perturbed the pre-ribosomal association of Utp23. Our data establish a structural framework for dissecting Utp23 function in the assembly and dynamics of 90S pre-ribosomes.
Collapse
Affiliation(s)
- Jing Lu
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengyi Sun
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Keqiong Ye
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
8
|
Machida S, Yuan YA. Crystal structure of Arabidopsis thaliana Dawdle forkhead-associated domain reveals a conserved phospho-threonine recognition cleft for dicer-like 1 binding. MOLECULAR PLANT 2013; 6:1290-1300. [PMID: 23313986 DOI: 10.1093/mp/sst007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Dawdle (DDL) is a microRNA processing protein essential for the development of Arabidopsis. DDL contains a putative nuclear localization signal at its amino-terminus and forkhead-associated (FHA) domain at the carboxyl-terminus. Here, we report the crystal structure of the FHA domain of Arabidopsis Dawdle, determined by multiple-wavelength anomalous dispersion method at 1.7-Å resolution. DDL FHA structure displays a seven-stranded β-sandwich architecture that contains a unique structural motif comprising two long anti-parallel strands. Strikingly, crystal packing of the DDL FHA domain reveals that a glutamate residue from the symmetry-related DDL FHA domain, a structural mimic of the phospho-threonine, is specifically recognized by the structurally conserved phospho-threonine binding cleft. Consistently with the structural observations, co-immuno-precipitation experiments performed in Nicotiana benthamiana show that the DDL FHA domain co-immuno-precipitates with DCL1 fragments containing the predicted pThr+3(Ile/Val/Leu/Asp) motif. Taken together, we count the recognition of the target residue by the canonical binding cleft of the DDL FHA domain as the key molecular event to instate FHA domain-mediated protein-protein interaction in plant miRNA processing.
Collapse
Affiliation(s)
- Satoru Machida
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | |
Collapse
|
9
|
Wu HH, Wu PY, Huang KF, Kao YY, Tsai MD. Structural delineation of MDC1-FHA domain binding with CHK2-pThr68. Biochemistry 2012; 51:575-7. [PMID: 22211259 DOI: 10.1021/bi201709w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian MDC1 interacts with CHK2 in the regulation of DNA damage-induced S-phase checkpoint and apoptosis, which is directed by the association of MDC1-FHA and CHK2-pThr68. However, different ligand specificities of MDC1-FHA have been reported, and no structure is available. Here we report the crystal structures of MDC1-FHA and its complex with a CHK2 peptide containing pThr68. Unlike other FHA domains, MDC1-FHA exists as an intrinsic dimer in solution and in crystals. Structural and binding analyses support pThr+3 ligand specificity and provide structural insight into MDC1-CHK2 interaction.
Collapse
Affiliation(s)
- Hsin-Hui Wu
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Oberoi J, Richards MW, Crumpler S, Brown N, Blagg J, Bayliss R. Structural basis of poly(ADP-ribose) recognition by the multizinc binding domain of checkpoint with forkhead-associated and RING Domains (CHFR). J Biol Chem 2010; 285:39348-58. [PMID: 20880844 PMCID: PMC2998101 DOI: 10.1074/jbc.m110.159855] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/26/2010] [Indexed: 01/07/2023] Open
Abstract
Cellular stress in early mitosis activates the antephase checkpoint, resulting in the decondensation of chromosomes and delayed mitotic progression. Checkpoint with forkhead-associated and RING domains (CHFR) is central to this checkpoint, and its activity is ablated in many tumors and cancer cell lines through promoter hypermethylation or mutation. The interaction between the PAR-binding zinc finger (PBZ) of CHFR and poly(ADP-ribose) (PAR) is crucial for a functional antephase checkpoint. We determined the crystal structure of the cysteine-rich region of human CHFR (amino acids 425-664) to 1.9 Å resolution, which revealed a multizinc binding domain of elaborate topology within which the PBZ is embedded. The PBZ of CHFR closely resembles the analogous motifs from aprataxin-like factor and CG1218-PA, which lie within unstructured regions of their respective proteins. Based on co-crystal structures of CHFR bound to several different PAR-like ligands (adenosine 5'-diphosphoribose, adenosine monophosphate, and P(1)P(2)-diadenosine 5'-pyrophosphate), we made a model of the CHFR-PAR interaction, which we validated using site-specific mutagenesis and surface plasmon resonance. The PBZ motif of CHFR recognizes two adenine-containing subunits of PAR and the phosphate backbone that connects them. More generally, PBZ motifs may recognize different numbers of PAR subunits as required to carry out their functions.
Collapse
Affiliation(s)
- Jasmeen Oberoi
- From the Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom and
| | - Mark W. Richards
- From the Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom and
| | - Simon Crumpler
- the Cancer Research UK Cancer Therapeutics Unit, Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | - Nathan Brown
- the Cancer Research UK Cancer Therapeutics Unit, Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | - Julian Blagg
- the Cancer Research UK Cancer Therapeutics Unit, Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | - Richard Bayliss
- From the Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom and
| |
Collapse
|
11
|
CHFR functions as a ubiquitin ligase for HLTF to regulate its stability and functions. Biochem Biophys Res Commun 2010; 395:515-20. [DOI: 10.1016/j.bbrc.2010.04.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 04/08/2010] [Indexed: 12/18/2022]
|
12
|
Abstract
Maintenance of genomic stability is needed for cells to survive many rounds of division throughout their lifetime. Key to the proper inheritance of intact genome is the tight temporal and spatial coordination of cell cycle events. Moreover, checkpoints are present that function to monitor the proper execution of cell cycle processes. For instance, the DNA damage and spindle assembly checkpoints ensure genomic integrity by delaying cell cycle progression in the presence of DNA or spindle damage, respectively. A checkpoint that has recently been gaining attention is the antephase checkpoint that acts to prevent cells from entering mitosis in response to a range of stress agents. We review here what is known about the pathway that monitors the status of the cells at the brink of entry into mitosis when cells are exposed to insults that threaten the proper inheritance of chromosomes. We highlight issues which are unresolved in terms of our understanding of the antephase checkpoint and provide some perspectives on what lies ahead in the understanding of how the checkpoint functions.
Collapse
|
13
|
Kwon YE, Kim YS, Oh YM, Seol JH. Nuclear localization of Chfr is crucial for its checkpoint function. Mol Cells 2009; 27:359-63. [PMID: 19326084 DOI: 10.1007/s10059-009-0046-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022] Open
Abstract
Chfr, a checkpoint with FHA and RING finger domains, plays an important role in cell cycle progression and tumor suppression. Chfr possesses the E3 ubiquitin ligase activity and stimulates the formation of polyubiquitin chains by Ub-conjugating enzymes, and induces the proteasome-dependent degradation of a number of cellular proteins, including Plk1 and Aurora A. While Chfr is a nuclear protein that functions within the cell nucleus, how Chfr is localized in the nucleus has not been clearly demonstrated. Here, we show that nuclear localization of Chfr is mediated by nuclear localization signal (NLS) sequences. To reveal the signal sequences responsible for nuclear localization, a short lysine-rich stretch (KKK) at amino acid residues 257-259 was replaced with alanine, which completely abolished nuclear localization. Moreover, we show that nuclear localization of Chfr is essential for its checkpoint function but not for its stability. Thus, our results suggest that NLS-mediated nuclear localization of Chfr leads to its accumulation within the nucleus, which may be important in the regulation of Chfr activation and Chfr-mediated cellular processes, including cell cycle progression and tumor suppression.
Collapse
Affiliation(s)
- Young Eun Kwon
- School of Biological Sciences, Research Center for Functional Cellulomics, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
14
|
Oh YM, Kwon YE, Kim JM, Bae SJ, Lee BK, Yoo SJ, Chung CH, Deshaies RJ, Seol JH. Chfr is linked to tumour metastasis through the downregulation of HDAC1. Nat Cell Biol 2009; 11:295-302. [PMID: 19182791 DOI: 10.1038/ncb1837] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 11/04/2008] [Indexed: 12/19/2022]
Abstract
Chfr is a ubiquitin ligase that functions in the mitotic checkpoint by delaying entry into metaphase in response to mitotic stress. It has been suggested that Chfr is a tumour suppressor as Chfr is frequently silenced in human cancers. To better understand how Chfr activity relates to cell-cycle progression and tumorigenesis, we sought to identify Chfr-interacting proteins using affinity purification combined with mass spectrometry. Histone deacetylase 1 (HDAC1), which represses transcription by deacetylating histones, was newly isolated as a Chfr-interacting protein. Chfr binds and downregulates HDAC1 by inducing its polyubiquitylation, both in vitro and in vivo. Ectopic expression of Chfr in cancer cells that normally do not express it results in downregulation of HDAC1, leading to upregulation of the Cdk inhibitor p21(CIP1/WAF1) and the metastasis suppressors KAI1 and E-cadherin. Coincident with these changes, cells arrest in the G1 phase of the cell cycle and become less invasive. Collectively, our data suggest that Chfr functions as a tumour suppressor by regulating HDAC1.
Collapse
Affiliation(s)
- Young Mi Oh
- School of Biological Sciences, Research Center for Functional Cellulomics, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mahajan A, Yuan C, Lee H, Chen ESW, Wu PY, Tsai MD. Structure and function of the phosphothreonine-specific FHA domain. Sci Signal 2008; 1:re12. [PMID: 19109241 DOI: 10.1126/scisignal.151re12] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The forkhead-associated (FHA) domain is the only known phosphoprotein-binding domain that specifically recognizes phosphothreonine (pThr) residues, distinguishing them from phosphoserine (pSer) residues. In contrast to its very strict specificity toward pThr, the FHA domain recognizes very diverse patterns in the residues surrounding the pThr residue. For example, the FHA domain of Ki67, a protein associated with cellular proliferation, binds to an extended target surface involving residues remote from the pThr, whereas the FHA domain of Dun1, a DNA damage-response kinase, specifically recognizes a doubly phosphorylated Thr-Gln (TQ) cluster by virtue of its possessing two pThr-binding sites. The FHA domain exists in various proteins with diverse functions and is particularly prevalent among proteins involved in the DNA damage response. Despite a very short history, a number of unique structural and functional properties of the FHA domain have been uncovered. This review highlights the diversity of biological functions of the FHA domain-containing proteins and the structural bases for the novel binding specificities and multiple binding modes of FHA domains.
Collapse
Affiliation(s)
- Anjali Mahajan
- Biophysics Program, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
16
|
Trowitzsch S, Weber G, Lührmann R, Wahl MC. Crystal structure of the Pml1p subunit of the yeast precursor mRNA retention and splicing complex. J Mol Biol 2008; 385:531-41. [PMID: 19010333 DOI: 10.1016/j.jmb.2008.10.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
The precursor mRNA retention and splicing (RES) complex mediates nuclear retention and enhances splicing of precursor mRNAs. The RES complex from yeast comprises three proteins, Snu17p, Bud13p and Pml1p. Snu17p acts as a central platform that concomitantly binds the Bud13p and Pml1p subunits via short peptide epitopes. As a step to decipher the molecular architecture of the RES complex, we have determined crystal structures of full-length Pml1p and N-terminally truncated Pml1p. The first 50 residues of full-length Pml1p, encompassing the Snu17p-binding region, are disordered, showing that Pml1p binds to Snu17p via an intrinsically unstructured region. The remainder of Pml1p folds as a forkhead-associated (FHA) domain, which is expanded by a number of noncanonical elements compared with known FHA domains from other proteins. An atypical N-terminal appendix runs across one beta-sheet and thereby stabilizes the domain as shown by deletion experiments. FHA domains are thought to constitute phosphopeptide-binding elements. Consistently, a sulfate ion was found at the putative phosphopeptide-binding loops of full-length Pml1p. The N-terminally truncated version of the protein lacked a similar phosphopeptide mimic but retained an almost identical structure. A long loop neighboring the putative phosphopeptide-binding site was disordered in both structures. Comparison with other FHA domain proteins suggests that this loop adopts a defined conformation upon ligand binding and thereby confers ligand specificity. Our results show that in the RES complex, an FHA domain of Pml1p is flexibly tethered via an unstructured N-terminal region to Snu17p.
Collapse
Affiliation(s)
- Simon Trowitzsch
- Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
17
|
Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade. Mol Cell 2008; 30:767-78. [PMID: 18570878 DOI: 10.1016/j.molcel.2008.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/21/2008] [Accepted: 05/13/2008] [Indexed: 01/22/2023]
Abstract
Forkhead-associated (FHA) domains recognize phosphothreonines, and SQ/TQ cluster domains (SCDs) contain concentrated phosphorylation sites for ATM/ATR-like DNA-damage-response kinases. The Rad53-SCD1 has dual functions in regulating the activation of the Rad53-Dun1 checkpoint kinase cascade but with unknown molecular mechanisms. Here we present structural, biochemical, and genetic evidence that Dun1-FHA possesses an unprecedented diphosphothreonine-binding specificity. The Dun1-FHA has >100-fold increased affinity for diphosphorylated relative to monophosphorylated Rad53-SCD1 due to the presence of two separate phosphothreonine-binding pockets. In vivo, any single threonine of Rad53-SCD1 is sufficient for Rad53 activation and RAD53-dependent survival of DNA damage, but two adjacent phosphothreonines in the Rad53-SCD1 and two phosphothreonine-binding sites in the Dun1-FHA are necessary for Dun1 activation and DUN1-dependent transcriptional responses to DNA damage. The results uncover a phospho-counting mechanism that regulates the specificity of SCD, and provide mechanistic insight into a role of multisite phosphorylation in DNA-damage signaling.
Collapse
|
18
|
Abstract
[Structure: see text]. FHA domains are protein modules that switch signals in diverse biological pathways by monitoring the phosphorylation of threonine residues of target proteins. As part of the effort to gain insight into cellular avoidance of cancer, FHA domains involved in the cellular response to DNA damage have been especially well-characterized. The complete protein where the FHA domain resides and the interaction partners determine the nature of the signaling. Thus, a key biochemical question is how do FHA domains pick out their partners from among thousands of alternatives in the cell? This Account discusses the structure, affinity, and specificity of FHA domains and the formation of their functional structure. Although FHA domains share sequence identity at only five loop residues, they all fold into a beta-sandwich of two beta-sheets. The conserved arginine and serine of the recognition loops recognize the phosphorylation of the threonine targeted. Side chains emanating from loops that join beta-strand 4 with 5, 6 with 7, or 10 with 11 make specific contacts with amino acids of the ligand that tailor sequence preferences. Many FHA domains choose a partner in extended conformation, somewhat according to the residue three after the phosphothreonine in sequence (pT + 3 position). One group of FHA domains chooses a short carboxylate-containing side chain at pT + 3. Another group chooses a long, branched aliphatic side chain. A third group prefers other hydrophobic or uncharged polar side chains at pT + 3. However, another FHA domain instead chooses on the basis of pT - 2, pT - 3, and pT + 1 positions. An FHA domain from a marker of human cancer instead chooses a much longer protein fragment that adds a beta-strand to its beta-sheet and that presents hydrophobic residues from a novel helix to the usual recognition surface. This novel recognition site and more remote sites for the binding of other types of protein partners were predicted for the entire family of FHA domains by a bioinformatics approach. The phosphopeptide-dependent dynamics of an FHA domain, SH2 domain, and PTB domain suggest a common theme: rigid, preformed binding surfaces support van der Waals contacts that provide favorable binding enthalpy. Despite the lack of pronounced conformational changes in FHA domains linked to binding events, more subtle adjustments may be possible. In the one FHA domain tested, phosphothreonine peptide binding is accompanied by increased flexibility just outside the binding site and increased rigidity across the beta-sandwich. The folding of the same FHA domain progresses through near-native intermediates that stabilize the recognition loops in the center of the phosphoprotein-binding surface; this may promote rigidity in the interface and affinity for targets phosphorylated on threonine.
Collapse
Affiliation(s)
- XIANGYANG LIANG
- Department of Biochemistry, 105 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211
| | - STEVEN R. VAN DOREN
- Department of Biochemistry, 105 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
19
|
Bernstein NK, Karimi-Busheri F, Rasouli-Nia A, Mani R, Dianov G, Glover JNM, Weinfeld M. Polynucleotide kinase as a potential target for enhancing cytotoxicity by ionizing radiation and topoisomerase I inhibitors. Anticancer Agents Med Chem 2008; 8:358-67. [PMID: 18473721 PMCID: PMC2962422 DOI: 10.2174/187152008784220311] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cytotoxicity of many antineoplastic agents is due to their capacity to damage DNA and there is evidence indicating that DNA repair contributes to the cellular resistance to such agents. DNA strand breaks constitute a significant proportion of the lesions generated by a broad range of genotoxic agents, either directly, or during the course of DNA repair. Strand breaks that are caused by many agents including ionizing radiation, topoisomerase I inhibitors, and DNA repair glycosylases such as NEIL1 and NEIL2, often contain 5'-hydroxyl and/or 3'-phosphate termini. These ends must be converted to 5'-phosphate and 3'-hydroxyl termini in order to allow DNA polymerases and ligases to catalyze repair synthesis and strand rejoining. A key enzyme involved in this end-processing is polynucleotide kinase (PNK), which possesses two enzyme activities, a DNA 5'-kinase activity and a 3'-phosphatase activity. PNK participates in the single-strand break repair pathway and the non-homologous end joining pathway for double-strand break repair. RNAi-mediated down-regulation of PNK renders cells more sensitive to ionizing radiation and camptothecin, a topoisomerase I inhibitor. Structural analysis of PNK revealed the protein is composed of three domains, the kinase domain at the C-terminus, the phosphatase domain in the centre and a forkhead associated (FHA) domain at the N-terminus. The FHA domain plays a critical role in the binding of PNK to other DNA repair proteins. Thus each PNK domain may be a suitable target for small molecule inhibition to effectively reduce resistance to ionizing radiation and topoisomerase I inhibitors.
Collapse
Affiliation(s)
- N. K. Bernstein
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - F. Karimi-Busheri
- Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - A. Rasouli-Nia
- Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - R. Mani
- Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - G. Dianov
- MRC Radiation and Genomic Stability Unit, Harwell, UK
| | - J. N. M. Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - M. Weinfeld
- Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Kumeta H, Ogura K, Adachi S, Fujioka Y, Tanuma N, Kikuchi K, Inagaki F. The NMR structure of the NIPP1 FHA domain. JOURNAL OF BIOMOLECULAR NMR 2008; 40:219-224. [PMID: 18253837 DOI: 10.1007/s10858-008-9222-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 01/10/2008] [Indexed: 05/25/2023]
Affiliation(s)
- Hiroyuki Kumeta
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Tuttle RL, Bothos J, Summers MK, Luca FC, Halazonetis TD. Defective in Mitotic Arrest 1/Ring Finger 8 Is a Checkpoint Protein That Antagonizes the Human Mitotic Exit Network. Mol Cancer Res 2007; 5:1304-11. [DOI: 10.1158/1541-7786.mcr-07-0388] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Gao YJ, Xin Y. Advance in the relationship between checkpoint with fork head associated and ring finger gene and carcinomas of digestive tract. Shijie Huaren Xiaohua Zazhi 2007; 15:1745-1749. [DOI: 10.11569/wcjd.v15.i15.1745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CHFR (checkpoint with fork head associated and ring finger), a novel checkpoint gene, was frequently inactivated in human cancers. In response to mitotic stress, it causes a delay in chromosome condensation during prophase. Studies have showed that the direct target of the CHFR pathway was Plk1. In vitro-translated Plk1 is ubiquitinated, in a CHFR-dependent manner, both in Xenopus interphase extracts as well as in a purified system reconstituted with recombinant proteins. In addition, by excluding Cyclin B1 from the nucleus, regulating Aurora-A level and acting with the P38 stress kinases, CHFR blocks entry to mitosis prophase in mammalian cells. Besides, USP7 can remove ubiquitin moiety from the autoubiquitinated CHFR both in vivo and in vitro, which results in the accumulation of CHFR in the cells. Thus, USP7-mediated deubiquitination of CHFR leads to its accumulation, which might be a key regulatory step for CHFR activation. CHFR expression is frequently silenced by aberrant methylation in the carcinomas of digestive tract. In this article, we reviewed the progress of research on the structure of CHFR gene and effect of CHFR protein as well as its relation to the carcinomas of digestive tract.
Collapse
|
23
|
Oh YM, Yoo SJ, Seol JH. Deubiquitination of Chfr, a checkpoint protein, by USP7/HAUSP regulates its stability and activity. Biochem Biophys Res Commun 2007; 357:615-9. [PMID: 17442268 DOI: 10.1016/j.bbrc.2007.03.193] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 03/26/2007] [Indexed: 11/15/2022]
Abstract
Chfr, a mitotic stress checkpoint, plays an important role in cell cycle progression, tumor suppression and the processes that require the E3 ubiquitin ligase activity mediated by the RING finger domain. Chfr stimulates the formation of polyubiquitin chains by ub-conjugating enzymes, and induces the proteasome-dependent degradation of a number of cellular proteins including Plk1 and Aurora A. In this study, we identified USP7 (also known as HAUSP), which is a member of a family of proteins that cleave polyubiquitin chains and/or ubiquitin precursors, as an interacting protein with Chfr by immunoaffinity purification and mass spectrometry, and their interaction greatly increases the stability of Chfr. In fact, USP7 can remove ubiquitin moiety from the autoubiquitinated Chfr both in vivo and in vitro, which results in the accumulation of Chfr in the cell. Thus, our finding suggests that USP7-mediated deubiquitination of Chfr leads to its accumulation, which might be a key regulatory step for Chfr activation and that USP7 may play an important role in the regulation of Chfr-mediated cellular processes including cell cycle progression and tumor suppression.
Collapse
Affiliation(s)
- Young Mi Oh
- School of Biological Sciences, Research Center for Functional Cellulomics, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
24
|
Liang X, Lee GI, Van Doren SR. Partially unfolded forms and non-two-state folding of a beta-sandwich: FHA domain from Arabidopsis receptor kinase-associated protein phosphatase. J Mol Biol 2006; 364:225-40. [PMID: 17007879 PMCID: PMC2020856 DOI: 10.1016/j.jmb.2006.08.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 08/30/2006] [Indexed: 11/21/2022]
Abstract
FHA domains adopt a beta-sandwich fold with 11 strands. The first evidence of partially unfolded forms of a beta-sandwich is derived from native-state hydrogen exchange (NHX) of the forkhead-associated (FHA) domain from kinase-associated protein phosphatase from Arabidopsis. The folding kinetics of this FHA domain indicate that EX2 behavior prevails at pH 6.3. In the chevron plot, rollover in the folding arm and bends in the unfolding arm suggest folding intermediates. NHX of this FHA domain suggests a core of six most stable beta-strands and two loops, characterized by rare global unfolding events. Flanking this stable core are beta-strands and recognition loops with less stability, termed subglobal motifs. These suggest partially unfolded forms (near-native intermediates) with two levels of stability. The spatial separation of the subglobal motifs on the flanks suggests possible parallelism in their folding as additional beta-strands align with the stable core of six strands. Intermediates may contribute to differences in stabilities and m-values suggested by NHX or kinetics relative to chemical denaturation. Residual structure in the unfolded regime is suggested by superprotection of beta-strand 6 and by GdmCl-dependence of adjustments in amide NMR spectra and residual optical signal. The global folding stability depends strongly on pH, with at least 3 kcal/mol more stability at pH 7.3 than at pH 6.3. This FHA domain is hypothesized to fold progressively with initial hydrophobic collapse of its stable six-stranded core followed by addition of less stable flanking beta-strands and ordering of recognition loops.
Collapse
Affiliation(s)
| | | | - Steven R. Van Doren
- *To whom correspondence should be addressed. E-mail: ., Phone: 1 (573) 882-5113, FAX: 1 (573) 884-4812
| |
Collapse
|
25
|
Morris ER, Chevalier D, Walker JC. DAWDLE, a forkhead-associated domain gene, regulates multiple aspects of plant development. PLANT PHYSIOLOGY 2006; 141:932-41. [PMID: 16679419 PMCID: PMC1489914 DOI: 10.1104/pp.106.076893] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phosphoprotein-binding domains are found in many different proteins and specify protein-protein interactions critical for signal transduction pathways. Forkhead-associated (FHA) domains bind phosphothreonine and control many aspects of cell proliferation in yeast (Saccharomyces cerevisiae) and animal cells. The Arabidopsis (Arabidopsis thaliana) protein kinase-associated protein phosphatase includes a FHA domain that mediates interactions with receptor-like kinases, which in turn regulate a variety of signaling pathways involved in plant growth and pathogen responses. Screens for insertional mutations in other Arabidopsis FHA domain-containing genes identified a mutant with pleiotropic defects. dawdle (ddl) plants are developmentally delayed, produce defective roots, shoots, and flowers, and have reduced seed set. DDL is expressed in the root and shoot meristems and the reduced size of the root apical meristem in ddl plants suggests a role early in organ development.
Collapse
Affiliation(s)
- Erin R Morris
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
26
|
Abstract
The 14-3-3 sigma (sigma) protein, a unique member of 14-3-3 family, is a negative regulator of the cell cycle and is induced by p53 to initiate cell cycle checkpoint control after DNA damage. Among the 14-3-3 family members, 14-3-3 sigma is uniquely induced by p53 and has a positive feedback effect on p53 activity in response to DNA damage. Although 14-3-3 sigma is linked to p53-regulated cell cycle checkpoint control, the detailed mechanisms of cell cycle regulation by 14-3-3 sigma remain unclear. Decreased expression of 14-3-3 sigma was reported in several types of carcinomas, suggesting that the negative regulatory role of 14-3-3 sigma in the cell cycle is compromised during tumorigenesis. Given the fact that p53's tumor suppressive function is lost in almost half of all human cancers and that 14-3-3 sigma's activity is linked to the p53 network, a perspective regarding the p53/14-3-3 sigma relationship is needed for cancer research. Here we discuss the mechanisms by which 14-3-3 sigma-stabilizes p53 with the hope that these insights may be applied to develop targeted therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Mong-Hong Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA.
| | | |
Collapse
|
27
|
Byeon IJL, Li H, Song H, Gronenborn AM, Tsai MD. Sequential phosphorylation and multisite interactions characterize specific target recognition by the FHA domain of Ki67. Nat Struct Mol Biol 2006; 12:987-93. [PMID: 16244663 DOI: 10.1038/nsmb1008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 09/22/2005] [Indexed: 11/09/2022]
Abstract
The forkhead-associated (FHA) domain of human Ki67 interacts with the human nucleolar protein hNIFK, recognizing a 44-residue fragment, hNIFK226-269, phosphorylated at Thr234. Here we show that high-affinity binding requires sequential phosphorylation by two kinases, CDK1 and GSK3, yielding pThr238, pThr234 and pSer230. We have determined the solution structure of Ki67FHA in complex with the triply phosphorylated peptide hNIFK226-269(3P), revealing not only local recognition of pThr234 but also the extension of the beta-sheet of the FHA domain by the addition of a beta-strand of hNIFK. The structure of an FHA domain in complex with a biologically relevant binding partner provides insights into ligand specificity and potentially links the cancer marker protein Ki67 to a signaling pathway associated with cell fate specification.
Collapse
Affiliation(s)
- In-Ja L Byeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
28
|
Ding Z, Lee GI, Liang X, Gallazzi F, Arunima A, Van Doren SR. PhosphoThr peptide binding globally rigidifies much of the FHA domain from Arabidopsis receptor kinase-associated protein phosphatase. Biochemistry 2005; 44:10119-34. [PMID: 16042389 PMCID: PMC2813517 DOI: 10.1021/bi050414a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A net increase in the backbone rigidity of the kinase-interacting FHA domain (KI-FHA) from the Arabidopsis receptor kinase-associated protein phosphatase (KAPP) accompanies the binding of a phosphoThr peptide from its CLV1 receptor-like kinase partner, according to (15)N NMR relaxation at 11.7 and 14.1 T. All of the loops of free KI-FHA display evidence of nanosecond-scale motions. Many of these same residues have residual dipolar couplings that deviate from structural predictions. Binding of the CLV1 pT868 peptide seems to reduce nanosecond-scale fluctuations of all loops, including half of the residues of recognition loops. Residues important for affinity are found to be rigid, i.e., conserved residues and residues of the subsite for the key pT+3 peptide position. This behavior parallels SH2 and PTB domain recognition of pTyr peptides. PhosphoThr peptide binding increases KI-FHA backbone rigidity (S(2)) of three recognition loops, a loop nearby, seven strands from the beta-sandwich, and a distal loop. Compensating the trend of increased rigidity, binding enhances fast mobility at a few sites in four loops on the periphery of the recognition surface and in two loops on the far side of the beta-sandwich. Line broadening evidence of microsecond- to millisecond-scale fluctuations occurs across the six-stranded beta-sheet and nearby edges of the beta-sandwich; this forms a network connected by packing of interior side chains and H-bonding. A patch of the slowly fluctuating residues coincides with the site of segment-swapped dimerization in crystals of the FHA domain of human Chfr. Phosphopeptide binding introduces microsecond- to millisecond-scale fluctuations to more residues of the long 8/9 recognition loop of KI-FHA. The rigidity of this FHA domain appears to couple as a whole to pThr peptide binding.
Collapse
Affiliation(s)
| | | | - Xiangyang Liang
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri, 65211
| | - Fabio Gallazzi
- Molecular Biology Program, 125 Chemistry, 601 S. College Ave., University of Missouri, Columbia, Missouri, 65211 USA
| | - A. Arunima
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri, 65211
| | - Steven R. Van Doren
- To whom correspondence should be addressed, E-mail: , Phone: 1 (573) 882-5113, FAX: 1 (573) 884-4812
| |
Collapse
|
29
|
Summers MK, Bothos J, Halazonetis TD. The CHFR mitotic checkpoint protein delays cell cycle progression by excluding Cyclin B1 from the nucleus. Oncogene 2005; 24:2589-98. [PMID: 15674323 DOI: 10.1038/sj.onc.1208428] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CHFR, a novel checkpoint gene inactivated in human cancer, delays chromosome condensation in cells treated with microtubule poisons. To understand the molecular mechanism for this delay, we characterized cells with inactivated CHFR and stably transfected derivatives expressing the wild-type gene. After exposure to microtubule poisons, the CHFR-expressing cells arrested transiently in early prophase with a characteristic ruffled morphology of the nuclear envelope and no signs of chromosome condensation. Several markers suggested that Cyclin A/Cdc2 had been activated, whereas Aurora-A and -B and Cyclin B1/Cdc2 were inactive. Further, Cyclin B1 was excluded from the nucleus. Ectopic expression of Cyclin B1 with a mutant nuclear export sequence induced chromosome condensation, and thus overcame the CHFR checkpoint. We conclude that the mechanism by which CHFR delays chromosome condensation involves inhibition of accumulation of Cyclin B1 in the nucleus.
Collapse
Affiliation(s)
- Matthew K Summers
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104-4268, USA
| | | | | |
Collapse
|
30
|
Yu X, Minter-Dykhouse K, Malureanu L, Zhao WM, Zhang D, Merkle CJ, Ward IM, Saya H, Fang G, van Deursen J, Chen J. Chfr is required for tumor suppression and Aurora A regulation. Nat Genet 2005; 37:401-6. [PMID: 15793587 DOI: 10.1038/ng1538] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 02/16/2005] [Indexed: 02/06/2023]
Abstract
Tumorigenesis is a consequence of loss of tumor suppressors and activation of oncogenes. Expression of the mitotic checkpoint protein Chfr is lost in 20-50% of primary tumors and tumor cell lines. To explore whether downregulation of Chfr contributes directly to tumorigenesis, we generated Chfr knockout mice. Chfr-deficient mice are cancer-prone, develop spontaneous tumors and have increased skin tumor incidence after treatment with dimethylbenz(a)anthracene. Chfr deficiency leads to chromosomal instability in embryonic fibroblasts and regulates the mitotic kinase Aurora A, which is frequently upregulated in a variety of tumors. Chfr physically interacts with Aurora A and ubiquitinates Aurora A both in vitro and in vivo. Collectively, our data suggest that Chfr is a tumor suppressor and ensures chromosomal stability by controlling the expression levels of key mitotic proteins such as Aurora A.
Collapse
Affiliation(s)
- Xiaochun Yu
- Department of Oncology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Checkpoint kinase 2 (Chk2) is a multifunctional enzyme whose functions are central to the induction of cell cycle arrest and apoptosis by DNA damage. Insight into Chk2 has derived from multiple approaches. Biochemical studies have addressed Chk2 structure, domain organization and regulation by phosphorylation. Extensive work has been done to identify factors that recognize and respond to DNA damage in order to activate Chk2. In turn a number of substrates and targets of Chk2 have been identified that play roles in the checkpoint response. The roles and regulation of Chk2 have been elucidated by studies in model genetic systems extending from worms and flies to mice and humans. The relationship of Chk2 to human cancer studies is developing rapidly with increasing evidence that Chk2 plays a role in tumor suppression.
Collapse
Affiliation(s)
- Jinwoo Ahn
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
32
|
Merlino A, Ceruso MA, Vitagliano L, Mazzarella L. Open interface and large quaternary structure movements in 3D domain swapped proteins: insights from molecular dynamics simulations of the C-terminal swapped dimer of ribonuclease A. Biophys J 2004; 88:2003-12. [PMID: 15596505 PMCID: PMC1305252 DOI: 10.1529/biophysj.104.048611] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine pancreatic ribonuclease (RNase A) forms two three-dimensional (3D) domain swapped dimers. Crystallographic investigations have revealed that these dimers display completely different quaternary structures: one dimer (N-dimer), which presents the swapping of the N-terminal helix, is characterized by a compact structure, whereas the other (C-dimer), which is stabilized by the exchange of the C-terminal end, shows a rather loose assembly of the two subunits. The dynamic properties of monomeric RNase A and of the N-dimer have been extensively characterized. Here, we report a molecular dynamics investigation carried out on the C-dimer. This computational experiment indicates that the quaternary structure of the C-dimer undergoes large fluctuations. These motions do not perturb the proper folding of the two subunits, which retain the dynamic properties of RNase A and the N-dimer. Indeed, the individual subunits of the C-dimer display the breathing motion of the beta-sheet structure, which is important for the enzymatic activity of pancreatic-like ribonucleases. In contrast to what has been observed for the N-dimer, the breathing motion of the two subunits of the C-dimer is not coupled. This finding suggests that the intersubunit communications in a 3D domain swapped dimer strongly rely on the extent of the interchain interface. Furthermore, the observation that the C-dimer is endowed with a high intrinsic flexibility holds interesting implications for the specific properties of 3D domain swapped dimers. Indeed, a survey of the quaternary structures of the other 3D domain swapped dimers shows that large variations are often observed when the structural determinations are conducted in different experimental conditions. The 3D domain swapping phenomenon coupled with the high flexibility of the quaternary structure may be relevant for protein-protein recognition, and in particular for the pathological aggregations.
Collapse
Affiliation(s)
- Antonello Merlino
- Centro Interdipartimentale Ricerca e Management, Complesso Ristrutturato S. Andrea delle Dame, 80138, Naples, Italy
| | | | | | | |
Collapse
|
33
|
Bieganowski P, Shilinski K, Tsichlis PN, Brenner C. Cdc123 and checkpoint forkhead associated with RING proteins control the cell cycle by controlling eIF2gamma abundance. J Biol Chem 2004; 279:44656-66. [PMID: 15319434 DOI: 10.1074/jbc.m406151200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor 2 (eIF2) is a central regulator of translational initiation in times of growth and times of stress. Here we discovered three new conserved regulators of eIF2 in Saccharomyces cerevisiae. cdc123, homolog of mammalian D123, is a new cell division cycle mutant with a G2 delay at permissive temperature and a terminal, mating-proficient G1 arrest point. Cdc123 protein is regulated by nutrient availability. CHF1 and CHF2, homologs of mammalian checkpoint forkhead associated with RING genes, are required for G2 delay and G1 arrest of cdc123-4 and promote G1 delay when over-expressed. Cell cycle delaying activity and the natural instability of Chf1 and Chf2 depend on the integrity of both domains and association with Cdc123. Genetic analysis maps the Chf1 forkhead associated domain-binding site to the conserved Thr-274 of Cdc123, suggesting that mammalian D123 is a key target of Chfr. Gcd11, the gamma subunit of eIF2, is an additional Cdc123-interacting protein that is an essential target of the Cdc123 cell cycle promoting and Chf cell cycle arresting activity whose abundance is regulated by Cdc123, Chf1, and Chf2. Loss of cdc123 activity promotes Chf1 and Chf2 accumulation and Gcd11 depletion, accounting for the essentiality of Cdc123. The data establish the Cdc123-Chf-Gcd11 axis as an essential pathway for nutritional control of START that runs parallel to the Tor-Gcn2-Sui2 system of translational control.
Collapse
Affiliation(s)
- Pawel Bieganowski
- Departments of Genetics and Biochemistry and the Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | | | |
Collapse
|
34
|
Yaffe MB, Smerdon SJ. The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function. ACTA ACUST UNITED AC 2004; 33:225-44. [PMID: 15139812 DOI: 10.1146/annurev.biophys.33.110502.133346] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphoserine/threonine-binding domains integrate intracellular signal transduction events by forming multiprotein complexes with substrates of protein serine/threonine kinases. These phosphorylation-dependent molecular recognition events are responsible for coordinating the precise temporal and spatial response of cells to a wide range of stimuli, particularly those involved in cell cycle control and the response to DNA damage. The known families of phosphoserine/threonine-binding modules include 14-3-3 proteins, WW domains, FHA domains, WD40 repeats, and the Polo-box domains of Polo-like kinases. Peptide-library experiments reveal the optimal sequence motifs recognized by these domains, and facilitate high-resolution structural studies elucidating the mechanisms of phospho-dependent binding and the molecular basis for domain function within intricate signaling networks. Information emerging from these studies is critical for the design of novel experimental and therapeutic tools aimed at altering signal transduction cascades in normal and diseased cells.
Collapse
Affiliation(s)
- Michael B Yaffe
- Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
35
|
Li H, Byeon IJL, Ju Y, Tsai MD. Structure of Human Ki67 FHA Domain and its Binding to a Phosphoprotein Fragment from hNIFK Reveal Unique Recognition Sites and New Views to the Structural Basis of FHA Domain Functions. J Mol Biol 2004; 335:371-81. [PMID: 14659764 DOI: 10.1016/j.jmb.2003.10.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies by use of short phosphopeptides showed that forkhead-associated (FHA) domains recognize pTXX(D/I/L) motifs. Solution structures and crystal structures of several different FHA domains and their complexes with short phosphopeptides have been reported by several groups. We now report the solution structure of the FHA domain of human Ki67, a large nuclear protein associated with the cell-cycle. Using fragments of its binding partner hNIFK, we show that Ki67-hNIFK binding involves ca 44 residues without a pTXX(D/I/L) motif. The pThr site of hNIFK recognized by Ki67 FHA is pThr234-Pro235, a motif also recognized by the proline isomerase Pin1. Heteronuclear single quantum coherence (HSQC) NMR was then used to map out the binding surface, and structural analyses were used to identify key binding residues of Ki67 FHA. The results represent the first structural characterization of the complex of an FHA domain with a biologically relevant target protein fragment. Detailed analyses of the results led us to propose that three major factors control the interaction of FHA with its target protein: the pT residue, +1 to +3 residues, and an extended binding surface, and that variation in the three factors is the likely cause of the great diversity in the function and specificity of FHA domains from different sources.
Collapse
Affiliation(s)
- Hongyuan Li
- Department of Biochemistry and Chemistry, Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
36
|
Bothos J, Summers MK, Venere M, Scolnick DM, Halazonetis TD. The Chfr mitotic checkpoint protein functions with Ubc13-Mms2 to form Lys63-linked polyubiquitin chains. Oncogene 2003; 22:7101-7. [PMID: 14562038 DOI: 10.1038/sj.onc.1206831] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We recently described a novel checkpoint pathway that functions early in mitosis to delay chromosome condensation in response to microtubule poisons. The only gene implicated so far in this checkpoint pathway is chfr, whose protein product contains a RING domain and has ubiquitin ligase activity in vitro. The significance of this activity in vivo is unclear. A recent report suggested that the Chfr protein targets itself for proteasome-dependent degradation in mitotic cells through autoubiquitination. However, we observe that in mitosis Chfr exhibits a phosphorylation-dependent electrophoretic mobility shift with no change in overall protein levels. Further analysis of its ubiquitin ligase activity revealed that Chfr can catalyse the formation of noncanonical Lys63-linked polyubiquitin chains with Ubc13-Mms2 acting as the ubiquitin-conjugating enzyme. Ubc13-Mms2 and Lys63-polyubiquitin chains are not associated with targeting proteins to the proteasome, but rather with signaling cellular stress. We propose that Chfr may have a role in signaling the presence of mitotic stress induced by microtubule poisons.
Collapse
Affiliation(s)
- John Bothos
- The Wistar Institute, Philadelphia, PA 19104-4268, USA
| | | | | | | | | |
Collapse
|
37
|
Lee GI, Ding Z, Walker JC, Van Doren SR. NMR structure of the forkhead-associated domain from the Arabidopsis receptor kinase-associated protein phosphatase. Proc Natl Acad Sci U S A 2003; 100:11261-6. [PMID: 14500786 PMCID: PMC208745 DOI: 10.1073/pnas.2031918100] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Forkhead-associated (FHA) domains are phosphoprotein-binding modules found in diverse signaling proteins that bind partners phosphorylated on threonine or serine. Kinase-associated protein phosphatase from Arabidopsis employs its FHA domain for negative regulation of receptor-like kinase signaling pathways, which are important in plant development. The solution structure of the free state of kinase-interacting FHA domain (KI-FHA) of kinase-associated protein phosphatase has been determined with high precision and accuracy using residual dipolar couplings. KI-FHA is a sandwich of a five-stranded mixed beta-sheet with a six-stranded antiparallel beta-sheet. Despite homology only in the recognition loops, this fold is shared with FHA domains from checkpoint proteins from yeast and humans, as well as with nonhomologous MH2 domains of Smad tumor suppressors. A shared pattern of hydrophobicity throughout FHA domains and Smad MH2 domains may stabilize the core of the beta-sandwich. Evolutionary trace analysis of FHA domains suggests class-specific residues in the recognition loops that could tune their phosphoprotein-binding specificity. This surface agrees with that of KI-FHA in contact with a phosphothreonine peptide ligand. Evolutionary trace analysis also predicts an unexpected swath of class-specific residues on another face of FHA domains. Protein interactions with these faces may affect assembly of transmembrane signaling complexes in plants, and in other FHA domain-containing assemblies.
Collapse
Affiliation(s)
- Gui-In Lee
- Department of Biochemistry, 117 Schweitzer Hall, and Division of Biological Sciences, 105 Tucker Hall, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
38
|
Alani E, Lee JY, Schofield MJ, Kijas AW, Hsieh P, Yang W. Crystal structure and biochemical analysis of the MutS.ADP.beryllium fluoride complex suggests a conserved mechanism for ATP interactions in mismatch repair. J Biol Chem 2003; 278:16088-94. [PMID: 12582174 DOI: 10.1074/jbc.m213193200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During mismatch repair ATP binding and hydrolysis activities by the MutS family proteins are important for both mismatch recognition and for transducing mismatch recognition signals to downstream repair factors. Despite intensive efforts, a MutS.ATP.DNA complex has eluded crystallographic analysis. Searching for ATP analogs that strongly bound to Thermus aquaticus (Taq) MutS, we found that ADP.beryllium fluoride (ABF), acted as a strong inhibitor of several MutS family ATPases. Furthermore, ABF promoted the formation of a ternary complex containing the Saccharomyces cerevisiae MSH2.MSH6 and MLH1.PMS1 proteins bound to mismatch DNA but did not promote dissociation of MSH2.MSH6 from mismatch DNA. Crystallographic analysis of the Taq MutS.DNA.ABF complex indicated that although this complex was very similar to that of MutS.DNA.ADP, both ADP.Mg(2+) moieties in the MutS. DNA.ADP structure were replaced by ABF. Furthermore, a disordered region near the ATP-binding pocket in the MutS B subunit became traceable, whereas the equivalent region in the A subunit that interacts with the mismatched nucleotide remained disordered. Finally, the DNA binding domains of MutS together with the mismatched DNA were shifted upon binding of ABF. We hypothesize that the presence of ABF is communicated between the two MutS subunits through the contact between the ordered loop and Domain III in addition to the intra-subunit helical lever arm that links the ATPase and DNA binding domains.
Collapse
Affiliation(s)
- Eric Alani
- Department of Molecular Biology and Genetics, 459 Biotechnology Building, Cornell University, Ithaca, NY 14853-2703, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Bashkirov VI, Bashkirova EV, Haghnazari E, Heyer WD. Direct kinase-to-kinase signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA damage checkpoint kinase. Mol Cell Biol 2003; 23:1441-52. [PMID: 12556502 PMCID: PMC141154 DOI: 10.1128/mcb.23.4.1441-1452.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2002] [Accepted: 10/31/2002] [Indexed: 11/20/2022] Open
Abstract
The serine-threonine kinase Dun1 contains a forkhead-associated (FHA) domain and functions in the DNA damage checkpoint pathway of Saccharomyces cerevisiae. It belongs to the Chk2 family of checkpoint kinases, which includes S. cerevisiae Rad53 and Mek1, Schizosaccharomyces pombe Cds1, and human Chk2. Dun1 is required for DNA damage-induced transcription of certain target genes, transient G(2)/M arrest after DNA damage, and DNA damage-induced phosphorylation of the DNA repair protein Rad55. Here we report that the FHA phosphoprotein recognition domain of Dun1 is required for direct phosphorylation of Dun1 by Rad53 kinase in vitro and in vivo. trans phosphorylation by Rad53 does not require the Dun1 kinase activity and is likely to involve only a transient interaction between the two kinases. The checkpoint functions of Dun1 kinase in DNA damage-induced transcription, G(2)/M cell cycle arrest, and Rad55 phosphorylation are severely compromised in an FHA domain mutant of Dun1. As a consequence, the Dun1 FHA domain mutant displays enhanced sensitivity to genotoxic stress induced by UV, methyl methanesulfonate, and the replication inhibitor hydroxyurea. We show that the Dun1 FHA domain is critical for direct kinase-to-kinase signaling from Rad53 to Dun1 in the DNA damage checkpoint pathway.
Collapse
Affiliation(s)
- Vladimir I Bashkirov
- Section of Microbiology and Center for Genetics and Development, Division of Biological Sciences, University of California, Davis, Davis, California 95616-8665, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The structure of the FHA domain of the Chfr mitotic checkpoint protein described in this issue of Structure represents one of only a few known structures of this newly discovered phosphoprotein binding domain with diverse function and specificity.
Collapse
Affiliation(s)
- Ming Daw Tsai
- Department of Chemistry, The Ohio State University, Columbus 43210, USA
| |
Collapse
|