1
|
Smadja DM, Abreu MM. Hyperthermia and targeting heat shock proteins: innovative approaches for neurodegenerative disorders and Long COVID. Front Neurosci 2025; 19:1475376. [PMID: 39967803 PMCID: PMC11832498 DOI: 10.3389/fnins.2025.1475376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025] Open
Abstract
Neurodegenerative diseases (NDs) and Long COVID represent critical and growing global health challenges, characterized by complex pathophysiological mechanisms including neuronal deterioration, protein misfolding, and persistent neuroinflammation. The emergence of innovative therapeutic approaches, such as whole-body hyperthermia (WBH), offers promising potential to modulate underlying pathophysiological mechanisms in NDs and related conditions like Long COVID. WBH, particularly in fever-range, enhances mitochondrial function, induces heat shock proteins (HSPs), and modulates neuroinflammation-benefits that pharmacological treatments often struggle to replicate. HSPs such as HSP70 and HSP90 play pivotal roles in protein folding, aggregation prevention, and cellular protection, directly targeting pathological processes seen in NDs like Alzheimer's, Parkinson's, and Huntington's disease. Preliminary findings also suggest WBH's potential to alleviate neurological symptoms in Long COVID, where persistent neuroinflammation and serotonin dysregulation are prominent. Despite the absence of robust clinical trials, the therapeutic implications of WBH extend to immune modulation and the restoration of disrupted physiological pathways. However, the dual nature of hyperthermia's effects-balancing pro-inflammatory and anti-inflammatory responses-emphasizes the need for dose-controlled applications and stringent patient monitoring to minimize risks in vulnerable populations. While WBH shows potential interest, significant challenges remain. These include individual variability in response, limited accessibility to advanced hyperthermia technologies, and the need for standardized clinical protocols. Future research must focus on targeted clinical trials, biomarker identification, and personalized treatment strategies to optimize WBH's efficacy in NDs and Long COVID. The integration of WBH into therapeutic paradigms could mark a transformative step in addressing these complex conditions.
Collapse
Affiliation(s)
- David M. Smadja
- Paris Cité University, INSERM, Paris Cardiovascular Research Centre, Team Endotheliopathy and Hemostasis Disorders, Paris, France
- Hematology Department, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Paris, France
| | - M. Marc Abreu
- BTT Medical Institute, Aventura, FL, United States
- BTT Engineering Department, Aventura, FL, United States
| |
Collapse
|
2
|
Yuan N, Ye L, Sun Y, Wu H, Xiao Z, Fu W, Chen Z, Pei Y, Min Y, Wang D. Molecular Integrative Analysis of the Inhibitory Effects of Dipeptides on Amyloid β Peptide 1-42 Polymerization. Int J Mol Sci 2023; 24:7673. [PMID: 37108834 PMCID: PMC10141046 DOI: 10.3390/ijms24087673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The major pathological feature of Alzheimer's disease (AD) is the aggregation of amyloid β peptide (Aβ) in the brain. Inhibition of Aβ42 aggregation may prevent the advancement of AD. This study employed molecular dynamics, molecular docking, electron microscopy, circular dichroism, staining of aggregated Aβ with ThT, cell viability, and flow cytometry for the detection of reactive oxygen species (ROS) and apoptosis. Aβ42 polymerizes into fibrils due to hydrophobic interactions to minimize free energy, adopting a β-strand structure and forming three hydrophobic areas. Eight dipeptides were screened by molecular docking from a structural database of 20 L-α-amino acids, and the docking was validated by molecular dynamics (MD) analysis of binding stability and interaction potential energy. Among the dipeptides, arginine dipeptide (RR) inhibited Aβ42 aggregation the most. The ThT assay and EM revealed that RR reduced Aβ42 aggregation, whereas the circular dichroism spectroscopy analysis showed a 62.8% decrease in β-sheet conformation and a 39.3% increase in random coiling of Aβ42 in the presence of RR. RR also significantly reduced the toxicity of Aβ42 secreted by SH-SY5Y cells, including cell death, ROS production, and apoptosis. The formation of three hydrophobic regions and polymerization of Aβ42 reduced the Gibbs free energy, and RR was the most effective dipeptide at interfering with polymerization.
Collapse
Affiliation(s)
- Nan Yuan
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lianmeng Ye
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yan Sun
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Hao Wu
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zhengpan Xiao
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Wanmeng Fu
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zuqian Chen
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yechun Pei
- One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biosciences, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Yi Min
- Department of Biosciences, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Biological Resources of the Ministry of China, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation. Molecules 2022; 27:molecules27082483. [PMID: 35458686 PMCID: PMC9030874 DOI: 10.3390/molecules27082483] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease is understood to be caused by amyloid fibrils and oligomers formed by aggregated amyloid-β (Aβ) peptides. This review article presents molecular dynamics (MD) simulation studies of Aβ peptides and Aβ fragments on their aggregation, aggregation inhibition, amyloid fibril conformations in equilibrium, and disruption of the amyloid fibril by ultrasonic wave and infrared laser irradiation. In the aggregation of Aβ, a β-hairpin structure promotes the formation of intermolecular β-sheet structures. Aβ peptides tend to exist at hydrophilic/hydrophobic interfaces and form more β-hairpin structures than in bulk water. These facts are the reasons why the aggregation is accelerated at the interface. We also explain how polyphenols, which are attracting attention as aggregation inhibitors of Aβ peptides, interact with Aβ. An MD simulation study of the Aβ amyloid fibrils in equilibrium is also presented: the Aβ amyloid fibril has a different structure at one end from that at the other end. The amyloid fibrils can be destroyed by ultrasonic wave and infrared laser irradiation. The molecular mechanisms of these amyloid fibril disruptions are also explained, particularly focusing on the function of water molecules. Finally, we discuss the prospects for developing treatments for Alzheimer’s disease using MD simulations.
Collapse
|
4
|
The Right-Handed Parallel β-Helix Topology of Erwinia chrysanthemi Pectin Methylesterase Is Intimately Associated with Both Sequential Folding and Resistance to High Pressure. Biomolecules 2021; 11:biom11081083. [PMID: 34439750 PMCID: PMC8392785 DOI: 10.3390/biom11081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022] Open
Abstract
The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the repetition of a basic structural motif and are stabilized exclusively by sequentially localized contacts, has provided opportunities for dissecting their folding landscapes. In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-flow equipment to investigate the folding mechanism of the enzyme at 25 °C. Under equilibrium conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average conformational stability (ΔG° = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure (Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic collapse accompanied by the formation of an extended secondary structure but did not reveal stable tertiary contacts. This is followed by three distinct cooperative phases and the significant population of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase, strongly indicating that these intermediates are productive species on a sequential folding pathway, for which we propose a plausible model. These combined data demonstrate that even a large repeat protein can fold in a highly cooperative manner.
Collapse
|
5
|
Narang D, Swasthi HM, Mahapatra S, Mukhopadhyay S. Site-Specific Fluorescence Depolarization Kinetics Distinguishes the Amyloid Folds Responsible for Distinct Yeast Prion Strains. J Phys Chem B 2017; 121:8447-8453. [DOI: 10.1021/acs.jpcb.7b05550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dominic Narang
- Centre
for Protein Science, Design and Engineering, ‡Department of Biological Sciences, and ⊥Department of
Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, Knowledge City, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Hema M. Swasthi
- Centre
for Protein Science, Design and Engineering, ‡Department of Biological Sciences, and ⊥Department of
Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, Knowledge City, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Sayanta Mahapatra
- Centre
for Protein Science, Design and Engineering, ‡Department of Biological Sciences, and ⊥Department of
Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, Knowledge City, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Samrat Mukhopadhyay
- Centre
for Protein Science, Design and Engineering, ‡Department of Biological Sciences, and ⊥Department of
Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, Knowledge City, S.A.S. Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
6
|
Kouza M, Co NT, Nguyen PH, Kolinski A, Li MS. Preformed template fluctuations promote fibril formation: insights from lattice and all-atom models. J Chem Phys 2016; 142:145104. [PMID: 25877597 DOI: 10.1063/1.4917073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleus size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in slowing down fibril elongation in vivo.
Collapse
Affiliation(s)
- Maksim Kouza
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warszaw, Poland
| | - Nguyen Truong Co
- Department of Physics, Institute of Technology, National University of HCM City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
| | - Phuong H Nguyen
- Laboratoire de Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Andrzej Kolinski
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warszaw, Poland
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
7
|
Ghahghaei A, Shahraki S. Inhibitory Effect of β-Casein on the Amyloid Fibril Formation of Aβ1–40 Associated with Alzheimer’s Disease. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9482-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Itoh SG, Okumura H. Dimerization process of amyloid-β(29-42) studied by the Hamiltonian replica-permutation molecular dynamics simulations. J Phys Chem B 2014; 118:11428-36. [PMID: 25192386 DOI: 10.1021/jp505984e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The amyloid-β peptides form amyloid fibrils which are associated with Alzheimer's disease. Amyloid-β(29-42) is its C-terminal fragment and a critical determinant of the amyloid formation rate. This fragment forms the amyloid fibril by itself. However, the fragment conformation in the fibril has yet to be determined. The oligomerization process including the dimerization process is also still unknown. The dimerization process corresponds to an early process of the amyloidogenesis. In order to investigate the dimerization process and conformations, we applied the Hamiltonian replica-permutation method, which is a better alternative to the Hamiltonian replica-exchange method, to two amyloid-β(29-42) molecules in explicit water solvent. At the first step of the dimerization process, two amyloid-β(29-42) molecules came close to each other and had intermolecular side chain contacts. When two molecules had the intermolecular side chain contacts, the amyloid-β(29-42) tended to have intramolecular secondary structures, especially β-hairpin structures. The two molecules had intermolecular β-bridge structures by coming much closer at the second step of the dimerization process. Formation of these intermolecular β-bridge structures was induced by the β-hairpin structures. The intermolecular β-sheet structures elongated at the final step. Structures of the amyloid-β(29-42) in the monomer and dimer states are also shown with the free-energy landscapes, which were obtained by performing efficient sampling in the conformational space in our simulations.
Collapse
Affiliation(s)
- Satoru G Itoh
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science , Okazaki, Aichi 444-8585, Japan
| | | |
Collapse
|
9
|
Matsunaga R, Yanaka S, Nagatoishi S, Tsumoto K. Hyperthin nanochains composed of self-polymerizing protein shackles. Nat Commun 2014; 4:2211. [PMID: 23884289 DOI: 10.1038/ncomms3211] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/27/2013] [Indexed: 12/29/2022] Open
Abstract
Protein fibrils are expected to have applications as functional nanomaterials because of their sophisticated structures; however, nanoscale ordering of the functional units of protein fibrils remains challenging. Here we design a series of self-polymerizing protein monomers, referred to as protein shackles, derived from modified recombinant subunits of pili from Streptococcus pyogenes. The monomers polymerize into nanochains through spontaneous irreversible covalent bond formation. We design the protein shackles so that their reactions can be controlled by altering redox conditions, which affect disulphide bond formation between engineered cysteine residues. The interaction between the monomers improves their polymerization reactivity and determines morphologies of the polymers. In addition, green fluorescent protein-tagged protein shackles can polymerize, indicating proteins can be stably attached to the nanochains with its functionality preserved. Furthermore we demonstrate that a molecular-recognizable nanochain binds to its partner with an enhanced binding ability in solution. These characteristics are expected to be applied for novel protein nanomaterials.
Collapse
Affiliation(s)
- Ryo Matsunaga
- The Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
10
|
Ghahghaei A, Bathaie SZ, Kheirkhah H, Bahraminejad E. The protective effect of crocin on the amyloid fibril formation of Aβ42 peptide in vitro. Cell Mol Biol Lett 2013; 18:328-39. [PMID: 23737042 PMCID: PMC6275581 DOI: 10.2478/s11658-013-0092-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/27/2013] [Indexed: 12/03/2022] Open
Abstract
Aβ is the main constituent of the amyloid plaque found in the brains of patients with Alzheimer's disease. There are two common isoforms of Aβ: the more common form, Aβ40, and the less common but more amyloidogenic form, Aβ42. Crocin is a carotenoid from the stigma of the saffron flower and it has many medicinal properties, including antioxidant effects. In this study, we examined the potential of crocin as a drug candidate against Aβ42 amyloid formation. The thioflavin T-binding assay and electron microscopy were used to examine the effects of crocin on the extension and disruption of Aβ42 amyloids. To further investigate the relationship between crocin and Aβ42 structure, we analyzed peptide conformation using the ANS-binding assay and circular dichroism (CD) spectroscopy. An increase in the thioflavin T fluorescence intensity upon incubation revealed amyloid formation in Aβ42. It was found that crocin has the ability to prevent amyloid formation by decreasing the fluorescence intensity. Electron microscopy data also indicated that crocin decreased the amyloid fibril content of Aβ. The ANS-binding assay showed that crocin decreased the hydrophobic area in incubated Aβ42. CD spectroscopy results also showed that the peptide undergoes a structural change to α-helical and β-turn. Our study shows that the anti-amyloidogenic effect of crocin may be exerted not only by the inhibition of Aβ amyloid formation but also by the disruption of amyloid aggregates. Therefore, crocin could be essential in the search for therapies inhibiting aggregation or disrupting aggregation.
Collapse
Affiliation(s)
- Arezou Ghahghaei
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| | | | | | | |
Collapse
|
11
|
Tubular crystals and helical arrays: structural determination of HIV-1 capsid assemblies using iterative helical real-space reconstruction. Methods Mol Biol 2013; 955:381-99. [PMID: 23132072 DOI: 10.1007/978-1-62703-176-9_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Helical structures are important in many different life forms and are well-suited for structural studies by cryo-EM. A unique feature of helical objects is that a single projection image contains all the views needed to perform a three-dimensional (3D) crystallographic reconstruction. Here, we use HIV-1 capsid assemblies to illustrate the detailed approaches to obtain 3D density maps from helical objects. Mature HIV-1 particles contain a conical- or tubular-shaped capsid that encloses the viral RNA genome and performs essential functions in the virus life cycle. The capsid is composed of capsid protein (CA) oligomers which are helically arranged on the surface. The N-terminal domain (NTD) of CA is connected to its C-terminal domain (CTD) through a flexible hinge. Structural analysis of two- and three-dimensional crystals provided molecular models of the capsid protein (CA) and its oligomer forms. We determined the 3D density map of helically assembled HIV-1 CA hexamers at 16 Å resolution using an iterative helical real-space reconstruction method. Docking of atomic models of CA-NTD and CA-CTD dimer into the electron density map indicated that the CTD dimer interface is retained in the assembled CA. Furthermore, molecular docking revealed an additional, novel CTD trimer interface.
Collapse
|
12
|
French KC, Makhatadze GI. Core sequence of PAPf39 amyloid fibrils and mechanism of pH-dependent fibril formation: the role of monomer conformation. Biochemistry 2012; 51:10127-36. [PMID: 23215256 DOI: 10.1021/bi301406d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PAPf39, a 39-residue peptide fragment from human prostatic acidic phosphatase, has been shown to form amyloid fibrils in semen (SEVI), which increase HIV infectivity by up to 5 orders of magnitude. The sequence of the PAPf39 fibrillar core was identified using hydrogen-deuterium exchange (HDX) mass spectrometry and protease protection assays. The central and C-terminal regions are highly protected from HDX and proteolytic cleavage and, thus, are part of the fibrillar core. Conversely, the N-terminal region is unprotected from HDX and proteolytic cleavage, suggesting that it is exposed and not part of the fibrillar core. This finding was tested using two N-terminal truncated variants, PAPf39Δ1-8 and PAPf39Δ1-13. Both variants formed amyloid fibrils at neutral pH. However, these variants showed a markedly different pH dependence of fibril formation versus that of PAPf39. PAPf39 fibrils can form at pH 7.7, but not at pH 5.5 or 2.5, while both N-terminally truncated variants can form fibrils at these pH values. Thus, the N-terminal region is not necessary for fibril formation but modulates the pH dependence of PAPf39 fibril formation. PAPf39Δ1-8 and PAPf39Δ1-13 are capable of seeding PAPf39 fibril formation at neutral pH, suggesting that these variants are structurally compatible with PAPf39, yet no mixed fibril formation occurs between the truncated variants and PAPf39 at low pH. This suggests that pH affects the PAPf39 monomer conformational ensemble, which is supported by far-UV circular dichroism spectroscopy. A conceptual model describing the pH dependence of PAPf39 aggregation is proposed and provides potential biological implications.
Collapse
Affiliation(s)
- Kinsley C French
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | | |
Collapse
|
13
|
Ghahghaei A, Bathaie SZ, Bahraminejad E. Mechanisms of the Effects of Crocin on Aggregation and Deposition of Aβ1–40 Fibrils in Alzheimer’s Disease. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9308-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Bryan AW, O'Donnell CW, Menke M, Cowen LJ, Lindquist S, Berger B. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions. Proteins 2011; 80:410-20. [PMID: 22095906 PMCID: PMC3298606 DOI: 10.1002/prot.23203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/25/2011] [Accepted: 09/06/2011] [Indexed: 12/21/2022]
Abstract
The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively 'stitches' strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer's amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies.
Collapse
Affiliation(s)
- Allen W Bryan
- Harvard/MIT Division of Health Science and Technology, Bioinformatics and Integrative Genomics, E25-519 Cambridge, Massachusetts 02139; Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142; MIT Computer Science and Artificial Intelligence Laboratory, The Stata Center, Cambridge, Massachusetts 02139
| | | | | | | | | | | |
Collapse
|
15
|
Booyjzsen C, Scarff CA, Moreton B, Portman I, Scrivens JH, Costantini G, Sadler PJ. Fibrillation of transferrin. Biochim Biophys Acta Gen Subj 2011; 1820:427-36. [PMID: 22119572 DOI: 10.1016/j.bbagen.2011.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/07/2011] [Accepted: 11/09/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND The nature of fibrillar deposits from aqueous solutions of human serum and recombinant human transferrin on mica and carbon-coated formvar surfaces has been investigated. METHODS AND RESULTS Atomic force microscopy showed that the deposition of recombinant transferrin onto the hydrophilic surface of mica resulted in the formation of a monolayer-thick film composed of conformationally-strained flattened protein molecules. Elongated fibres developed on top of this layer and appeared to be composed of single proteins or small clusters thereof. Monomeric and dimeric transferrins were separated by gel permeation chromatography and their states of aggregation confirmed by mass spectrometry and dynamic light scattering. Transmission electron-microscopy showed that dimeric transferrin, but not monomeric transferrin, deposited on carbon-coated formvar grids forms rounded (circular) structures ca. 250nm in diameter. Small transferrin fibrils ca. 250nm long appeared to be composed of smaller rounded sub-units. Synchrotron radiation-circular dichroism and, Congo red and thioflavin-T dye-binding experiments suggested that transferrin aggregation in solution does not involve major structural changes to the protein or formation of classical β-sheet amyloid structures. Collisional cross sections determined via ion mobility-mass spectrometry showed little difference between the overall protein shapes of apo- and holo-transferrin in the gas phase. GENERAL SIGNIFICANCE The possibility that transferrin deformation and aggregation are involved in neurological disorders such as Parkinson's and Alzheimer's disease is discussed. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Claire Booyjzsen
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Bonda M, Perrin V, Vileno B, Runne H, Kretlow A, Forró L, Luthi-Carter R, Miller LM, Jeney S. Synchrotron infrared microspectroscopy detecting the evolution of Huntington's disease neuropathology and suggesting unique correlates of dysfunction in white versus gray brain matter. Anal Chem 2011; 83:7712-20. [PMID: 21888376 DOI: 10.1021/ac201102p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Huntington's disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons using synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of β-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt's β-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar changes.
Collapse
Affiliation(s)
- Markus Bonda
- Laboratory of Complex Matter Physics, Ecole Polytechnique Fédéralede Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hayward S, James Milner-White E. Simulation of the β- to α-sheet transition results in a twisted sheet for antiparallel and an α-nanotube for parallel strands: Implications for amyloid formation. Proteins 2011; 79:3193-207. [DOI: 10.1002/prot.23154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/19/2011] [Accepted: 07/27/2011] [Indexed: 01/16/2023]
|
18
|
Iconomidou VA, Cordopatis P, Hoenger A, Hamodrakas SJ. The silkmoth eggshell as a natural amyloid shield for the safe development of insect oocyte and embryo: Insights from studies of silkmoth chorion protein peptide-analogues of the B famil. Biopolymers 2011; 96:723-33. [DOI: 10.1002/bip.21606] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/15/2010] [Accepted: 02/01/2011] [Indexed: 11/07/2022]
|
19
|
Ghahghaei A, Divsalar A, Faridi N. The effects of molecular crowding on the amyloid fibril formation of alpha-lactalbumin and the chaperone action of alpha-casein. Protein J 2010; 29:257-64. [PMID: 20496103 DOI: 10.1007/s10930-010-9247-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid fibrils arise from the slow aggregation of intermediately folded protein states. In this study the kinetics of the protein fibril formation of alpha-lactalbumin and its prevention by alphaS-casein in the presence and absence of the crowding agent, dextran (68 kDa), have been compared using a thioflavin T binding assay. It was found that alphaS-casein, a molecular chaperone found in bovine milk, is a potent in vitro inhibitor of alpha-lactalbumin fibrillization. The effect of alphaS-casein in preventing fibril formation was significant, although less than it is in the absence of the crowding agent, dextran. The interaction between the chaperone and the alpha-lactalbumin and structural change in the target protein are also shown using intrinsic fluorescence intensity, an ANS binding assay, CD spectroscopy and size-exclusion HPLC. In summary, alpha-casein interacts with alpha-lactalbumin and prevents amyloid formation but not as well as it does when the crowding agent, dextran, not present.
Collapse
Affiliation(s)
- Arezou Ghahghaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran.
| | | | | |
Collapse
|
20
|
Abstract
UDP-N-acetylglucosamine 3-O-acyltransferase is a protein with a left-handed parallel beta-helix, which is a natural nanotube. They are associated with unusual high stability. To identify the reason behind the structural stability of beta-helical nanotubular structure, we have performed a total of 4 mus molecular dynamics simulations of the protein in implicit solvent at four different temperatures and monitored the unfolding pathway. The correlation in movement between different regions of the nanotubular structure has been identified from the dynamical cross-correlation map and contribution of some specific residues towards unfolding transition has been identified by principal component analysis. Difference in stability of the three loop regions has also been characterized. Construction of the unfolding conformational energy landscape identifies the probable intermediates that can appear in the unfolding pathway of the protein.
Collapse
Affiliation(s)
- Atanu Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, India
| | | |
Collapse
|
21
|
Natali F, Marasini C, Ferrando R, Gliozzi A. Study of Protein Dynamics vs. Amyloid Formation. ACTA ACUST UNITED AC 2010. [DOI: 10.1524/zpch.2010.6100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Protein fibril formation has been often associated to manifestation of serious and devastating amyloyd diseases, including Alzheimer and BSA. The main mechanism for the formation of amyloid fibrils is the accumulation of protein aggregates in body´s organs.In this paper, we try to compare the dynamical behaviour of two amyloidogenic proteins, the Insulin and the Myoglobin. Insulin has been chosen for its pharmacological extensive use in diabete´s therapy, while Myoglobin is used as control, since its dynamics is now largely known. The investigation has been performed through incoherent elastic neutron scattering over a wide temperature range. Our results suggest an enhanced stiffness of Insulin with respect to Myoglobin.
Collapse
|
22
|
Liao MC, Van Nostrand WE. Degradation of soluble and fibrillar amyloid beta-protein by matrix metalloproteinase (MT1-MMP) in vitro. Biochemistry 2010; 49:1127-36. [PMID: 20050683 DOI: 10.1021/bi901994d] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The progressive accumulation of beta-amyloid (Abeta) in senile plaques and in the cerebral vasculature is the hallmark of Alzheimer's disease and related disorders. Degradation of Abeta by specific proteolytic enzymes is an important process that regulates its levels in brain. Matrix metalloproteinase 2 (MMP2) was shown to be expressed in reactive astrocytes surrounding amyloid plaques and may contribute to Abeta degradation. Membrane type 1 (MT1) MMP is the physiological activator for the zymogen pro-MMP2. Here, we show that, in addition to MMP2, its activator MT1-MMP is also expressed in reactive astrocytes in regions with amyloid deposits in transgenic mice. Using a Cos-1 cell expression system, we demonstrated that MT1-MMP can degrade exogenous Abeta40 and Abeta42. A purified soluble form of MT1-MMP degraded both soluble and fibrillar Abeta peptides in a time-dependent manner, yielding specific degradation products. Mass spectrometry analysis identified multiple MT1-MMP cleavage sites on soluble Abeta40 and Abeta42. MT1-MMP-mediated Abeta degradation was inhibited with the general MMP inhibitor GM6001 or the specific MT1-MMP inhibitor tissue inhibitor of metalloproteinases 2. Furthermore, in situ experiments showed that purified MT1-MMP degraded parenchymal fibrillar amyloid plaques that form in the brains of Abeta precursor protein transgenic mice. Together, these findings indicate that MT1-MMP possesses Abeta degrading activity in vitro.
Collapse
Affiliation(s)
- Mei-Chen Liao
- Department of Neurosurgery, Stony Brook University, Health Sciences Center, Stony Brook, New York 11794-8122, USA
| | | |
Collapse
|
23
|
Jahn TR, Makin OS, Morris KL, Marshall KE, Tian P, Sikorski P, Serpell LC. The Common Architecture of Cross-β Amyloid. J Mol Biol 2010; 395:717-27. [DOI: 10.1016/j.jmb.2009.09.039] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 12/21/2022]
|
24
|
Smith AM, Scheibel T. Functional Amyloids Used by Organisms: A Lesson in Controlling Assembly. MACROMOL CHEM PHYS 2009. [DOI: 10.1002/macp.200900420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Abstract
Many major neurodegenerative diseases, including Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, Huntington Disease and other polyglutamine expansion disorders, are associated with degeneration and death of specific neuronal populations due to accumulation of certain abnormal polypeptides. These misfolded species aggregate and form inclusion bodies and their neurotoxicity is associated with the aggregation. To handle a build-up of abnormal proteins cells employ a complicated machinery of molecular chaperones and various proteolytic systems. Chaperones facilitate refolding or degradation of misfolded polypeptides, prevent protein aggregation and play a role in formation of aggresome, a centrosome-associated body to which small cytoplasmic aggregates are transported. The ubiquitin-proteasome proteolytic system is critical for reducing the levels of soluble abnormal proteins, while autophagy plays the major role in clearing of cells from protein aggregates. Accumulation of the aggregation prone proteins activates signal transduction pathways that control cell death, including JNK pathway that controls viability of a cell in various models of Parkinson's and Huntington's diseases. The major chaperone Hsp72 can interfere with this signalling pathway, thus promoting survival. A very important consequence of a build-up and aggregation of misfolded proteins is impairment of the ubiquitin-proteasome degradation system and suppression of the heat shock response. Such an inhibition of the major cell defense systems may play a critical role in neurodegeneration. Here, it is suggested that these changes may reflect a senescence-like programme initiated by the aggregated abnormal polypeptides. Pathways that control the fate of misfolded proteins, for example molecular chaperones or proteolytic systems, may become interesting novel targets for therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- A B Meriin
- Department of Biochemistry, Boston University Medical School, MA, USA
| | | |
Collapse
|
26
|
Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]. Nat Struct Mol Biol 2009; 16:598-605. [PMID: 19491937 DOI: 10.1038/nsmb.1617] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 05/11/2009] [Indexed: 11/08/2022]
Abstract
Prions are proteins that can access multiple conformations, at least one of which is beta-sheet rich, infectious and self-perpetuating in nature. These infectious proteins show several remarkable biological activities, including the ability to form multiple infectious prion conformations, also known as strains or variants, encoding unique biological phenotypes, and to establish and overcome prion species (transmission) barriers. In this Perspective, we highlight recent studies of the yeast prion [PSI(+)], using various biochemical and structural methods, that have begun to illuminate the molecular mechanisms by which self-perpetuating prions encipher such biological activities. We also discuss several aspects of prion conformational change and structure that remain either unknown or controversial, and we propose approaches to accelerate the understanding of these enigmatic, infectious conformers.
Collapse
|
27
|
Single homopolypeptide chains collapse into mechanically rigid conformations. Proc Natl Acad Sci U S A 2009; 106:12605-10. [PMID: 19549822 DOI: 10.1073/pnas.0900678106] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease is linked to the insertion of glutamine (Q) in the protein huntingtin, resulting in polyglutamine (polyQ) expansions that self-associate to form aggregates. While polyQ aggregation has been the subject of intense study, a correspondingly thorough understanding of individual polyQ chains is lacking. Here we demonstrate a single molecule force-clamp technique that directly probes the mechanical properties of single polyQ chains. We have made polyQ constructs of varying lengths that span the length range of normal and diseased polyQ expansions. Each polyQ construct is flanked by the I27 titin module, providing a clear mechanical fingerprint of the molecule being pulled. Remarkably, under the application of force, no extension is observed for any of the polyQ constructs. This is in direct contrast with the random coil protein PEVK of titin, which readily extends under force. Our measurements suggest that polyQ chains form mechanically stable collapsed structures. We test this hypothesis by disrupting polyQ chains with insertions of proline residues and find that their mechanical extensibility is sensitive to the position of the proline interruption. These experiments demonstrate that polyQ chains collapse to form a heterogeneous ensemble of conformations that are mechanically resilient. We further use a heat-annealing molecular dynamics protocol to extensively search the conformation space and find that polyQ can exist in highly mechanically stable compact globular conformations. The mechanical rigidity of these collapsed structures may exceed the functional ability of eukaryotic proteasomes, resulting in the accumulation of undigested polyQ sequences in vivo.
Collapse
|
28
|
Spatara M, Roberts C, Robinson A. Kinetic folding studies of the P22 tailspike beta-helix domain reveal multiple unfolded states. Biophys Chem 2009; 141:214-21. [DOI: 10.1016/j.bpc.2009.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 02/03/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
|
29
|
Bryan AW, Menke M, Cowen LJ, Lindquist SL, Berger B. BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis. PLoS Comput Biol 2009; 5:e1000333. [PMID: 19325876 PMCID: PMC2653728 DOI: 10.1371/journal.pcbi.1000333] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 02/12/2009] [Indexed: 11/30/2022] Open
Abstract
Amyloids and prion proteins are clinically and biologically important
β-structures, whose supersecondary structures are difficult to determine
by standard experimental or computational means. In addition, significant
conformational heterogeneity is known or suspected to exist in many amyloid
fibrils. Recent work has indicated the utility of pairwise probabilistic
statistics in β-structure prediction. We develop here a new strategy for
β-structure prediction, emphasizing the determination of
β-strands and pairs of β-strands as fundamental units of
β-structure. Our program, BETASCAN, calculates likelihood scores for
potential β-strands and strand-pairs based on correlations observed in
parallel β-sheets. The program then determines the strands and pairs
with the greatest local likelihood for all of the sequence's potential
β-structures. BETASCAN suggests multiple alternate folding patterns and
assigns relative a priori probabilities based solely on amino
acid sequence, probability tables, and pre-chosen parameters. The algorithm
compares favorably with the results of previous algorithms (BETAPRO, PASTA,
SALSA, TANGO, and Zyggregator) in β-structure prediction and amyloid
propensity prediction. Accurate prediction is demonstrated for experimentally
determined amyloid β-structures, for a set of known
β-aggregates, and for the parallel β-strands of
β-helices, amyloid-like globular proteins. BETASCAN is able both to
detect β-strands with higher sensitivity and to detect the edges of
β-strands in a richly β-like sequence. For two proteins
(Aβ and Het-s), there exist multiple sets of experimental data implying
contradictory structures; BETASCAN is able to detect each competing structure as
a potential structure variant. The ability to correlate multiple alternate
β-structures to experiment opens the possibility of computational
investigation of prion strains and structural heterogeneity of amyloid. BETASCAN
is publicly accessible on the Web at http://betascan.csail.mit.edu. Amyloid is a highly ordered form of protein aggregation that a wide variety of
proteins can form. While the earliest discovered amyloids were associated with
systemic and neurodegenerative diseases, recent findings indicate amyloids may
have myriad roles and functions ranging from learning and memory, to yeast
epigenetics, to biofilm and melanin production. In this study, we expand the
range and flexibility of our ability to understand how amyloid properties arise
from their polypeptide sequence. By taking advantage of the intrinsic properties
of a characteristic amyloid structure—parallel
β-strands—and data from available protein structures, we
construct and test an algorithm to predict the probability that particular
portions of a protein will form amyloid. Our method has the advantage of more
accurate detection of the edges of such zones, as well as the ability to
consider and evaluate the likelihood of multiple folding patterns.
Collapse
Affiliation(s)
- Allen W. Bryan
- Harvard/MIT Division of Health Science and Technology, Bioinformatics and
Integrative Genomics, Cambridge, Massachusetts, United States of
America
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts,
United States of America
- MIT Computer Science and Artificial Intelligence Laboratory, The Stata
Center, Cambridge, Massachusetts, United States of America
| | - Matthew Menke
- MIT Computer Science and Artificial Intelligence Laboratory, The Stata
Center, Cambridge, Massachusetts, United States of America
| | - Lenore J. Cowen
- Department of Computer Science, Tufts University, Medford, Massachusetts,
United States of America
| | - Susan L. Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts,
United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of
America
- * E-mail: (SLL); (BB)
| | - Bonnie Berger
- MIT Computer Science and Artificial Intelligence Laboratory, The Stata
Center, Cambridge, Massachusetts, United States of America
- Department of Applied Mathematics, Massachusetts Institute of Technology,
Cambridge, Massachusetts, United States of America
- * E-mail: (SLL); (BB)
| |
Collapse
|
30
|
Reich L, Becker M, Seckler R, Weikl TR. Invivo folding efficiencies for mutants of the P22 tailspike beta-helix protein correlate with predicted stability changes. Biophys Chem 2009; 141:186-92. [PMID: 19254821 DOI: 10.1016/j.bpc.2009.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 01/29/2009] [Accepted: 01/29/2009] [Indexed: 01/04/2023]
Abstract
Parallel beta-helices are among the simplest repetitive structural elements in proteins. The folding behavior of beta-helix proteins has been studied intensively, also to gain insight on the formation of amyloid fibrils, which share the parallel beta-helix as a central structural motif. An important system for investigating beta-helix folding is the tailspike protein from the Salmonella bacteriophage P22. The central domain of this protein is a right-handed parallel beta-helix with 13 windings. Extensive mutational analyses of the P22 tailspike protein have revealed two main phenotypes: temperature-sensitive-folding (tsf) mutations that reduce the folding efficiency at elevated temperatures, and global suppressor (su) mutations that increase the tailspike folding efficiency. A central question is whether these phenotypes can be understood from changes in the protein stability induced by the mutations. Experimental determination of the protein stability is complicated by the nearly irreversible trimerization of the folded tailspike protein. Here, we present calculations of stability changes with the program FoldX, focusing on a recently published extensive data set of 145 singe-residue alanine mutants. We find that the calculated stability changes are correlated with the experimentally measured invivo folding efficiencies. In addition, we determine the free-energy landscape of the P22 tailspike protein in a nucleation-propagation model to explore the folding mechanism of this protein, and obtain a processive folding route on which the protein nucleates in the N-terminal region of the helix.
Collapse
Affiliation(s)
- Lothar Reich
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Science Park Golm, 14424 Potsdam, Germany
| | | | | | | |
Collapse
|
31
|
Abstract
According to the amyloid pore hypothesis, pores formed by small oligomers of misfolded amyloidogenic proteins cause membrane leakage with the unregulated rapid influx of ions leading to cell death. Ultrastructurally, pores reconstituted in vitro have mainly been characterised so far, and the presence of in situ pores in the amyloid tissues has not yet been demonstrated. In this study, the presence of in situbeta amyloid (Abeta) pores was shown with high resolution transmission electron microscopy, in the neuronal cell membrane as well as in the membrane of mitochondria-like organelles in the brain with Alzheimer's disease. They are 16 nm wide and 11 nm long flat columnar structures made up of a single cylindrical layer (wall) of laterally associated Abeta protofilaments which surrounds a 10 nm wide opening or lumen. Protofilaments are the basic unit of the fibrils of all amyloid-forming proteins and peptides. Individual extracellular Abeta protofilaments were 2-3 nm wide straight tubular structures with helical wall formed by the tight coiling of 1 nm wide Abeta filaments. These in situ Abeta pores are similar but not identical to in vitro reconstituted Abeta pores.
Collapse
Affiliation(s)
- Sadayuki Inoue
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
32
|
Li MS, Klimov DK, Straub JE, Thirumalai D. Probing the mechanisms of fibril formation using lattice models. J Chem Phys 2008; 129:175101. [PMID: 19045373 PMCID: PMC2671665 DOI: 10.1063/1.2989981] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 09/03/2008] [Indexed: 11/14/2022] Open
Abstract
Using exhaustive Monte Carlo simulations we study the kinetics and mechanism of fibril formation using lattice models as a function of temperature (T) and the number of chains (M). While these models are, at best, caricatures of peptides, we show that a number of generic features thought to govern fibril assembly are captured by the toy model. The monomer, which contains eight beads made from three letters (hydrophobic, polar, and charged), adopts a compact conformation in the native state. In both the single-layered protofilament (seen for M10) structures, the monomers are arranged in an antiparallel fashion with the "strandlike" conformation that is perpendicular to the fibril axis. Partial unfolding of the folded monomer that populates an aggregation prone conformation (N(*)) is required for ordered assembly. The contacts in the N(*) conformation, which is one of the four structures in the first "excited" state of the monomer, are also present in the native conformation. The time scale for fibril formation is a minimum in the T-range when the conformation N(*) is substantially populated. The kinetics of fibril assembly occurs in three distinct stages. In each stage there is a cascade of events that transforms the monomers and oligomers to ordered structures. In the first "burst" stage, highly mobile oligomers of varying sizes form. The conversion to the N(*) conformation occurs within the oligomers during the second stage in which a vast number of interchain contacts are established. As time progresses, a dominant cluster emerges that contains a majority of the chains. In the final stage, the aggregation of N(*) particles serve as a template onto which smaller oligomers or monomers can dock and undergo conversion to fibril structures. The overall time for growth in the latter stages is well described by the Lifshitz-Slyazov growth kinetics for crystallization from supersaturated solutions. The detailed analysis shows that elements of the three popular models, namely, nucleation and growth, templated assembly, and nucleated conformational conversion are present at various stages of fibril assembly.
Collapse
Affiliation(s)
- Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | | | | | | |
Collapse
|
33
|
The binding of thioflavin T and its neutral analog BTA-1 to protofibrils of the Alzheimer's disease Abeta(16-22) peptide probed by molecular dynamics simulations. J Mol Biol 2008; 384:718-29. [PMID: 18851978 DOI: 10.1016/j.jmb.2008.09.062] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/18/2008] [Accepted: 09/23/2008] [Indexed: 11/22/2022]
Abstract
Thioflavin T (ThT) is a fluorescent dye commonly used to stain amyloid plaques, but the binding sites of this dye onto fibrils are poorly characterized. We present molecular dynamics simulations of the binding of ThT and its neutral analog BTA-1 [2-(4'-methylaminophenyl)benzothiazole] to model protofibrils of the Alzheimer's disease Abeta(16-22) (amyloid beta) peptide. Our simulations reveal two binding modes located at the grooves of the beta-sheet surfaces and at the ends of the beta-sheet. These simulations provide new insight into recent experimental work and allow us to characterize the high-capacity, micromolar-affinity site seen in experiment as binding to the beta-sheet surface grooves and the low-capacity, nanomolar-affinity site seen as binding to the beta-sheet extremities of the fibril. The structure-activity relationship upon mutating charged ThT to neutral BTA-1 in terms of increased lipophilicity and binding affinity was studied, with calculated solvation free energies and binding energies found to be in qualitative agreement with the experimental measurements.
Collapse
|
34
|
Park JW, Lee IH, Hahn JS, Kim J, Chung KC, Paik SR. Disintegration of amyloid fibrils of α-synuclein by dequalinium. Biochim Biophys Acta Gen Subj 2008; 1780:1156-61. [DOI: 10.1016/j.bbagen.2008.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/07/2008] [Accepted: 07/11/2008] [Indexed: 12/21/2022]
|
35
|
Giurleo JT, He X, Talaga DS. β-Lactoglobulin Assembles into Amyloid through Sequential Aggregated Intermediates. J Mol Biol 2008; 381:1332-48. [DOI: 10.1016/j.jmb.2008.06.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 05/22/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
|
36
|
Assembly of α-synuclein fibrils in nanoscale studied by peptide truncation and AFM. Biochem Biophys Res Commun 2008; 368:388-94. [DOI: 10.1016/j.bbrc.2008.01.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 01/17/2008] [Indexed: 11/30/2022]
|
37
|
Kunes KC, Clark SC, Cox DL, Singh RRP. Left handed beta helix models for mammalian prion fibrils. Prion 2008; 2:81-90. [PMID: 19098440 PMCID: PMC2634523 DOI: 10.4161/pri.2.2.7059] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 09/23/2008] [Indexed: 12/11/2022] Open
Abstract
We propose models for in vitro grown mammalian prion protein fibrils based upon left handed beta helices formed both from the N-terminal and C-terminal regions of the proteinase resistant infectious prion core. The C-terminal threading onto a beta-helical structure is almost uniquely determined by fixing the cysteine disulfide bond on a helix corner. In comparison to known left handed helical peptides, the resulting model structures have similar stability attributes including relatively low root mean square deviations in all atom molecular dynamics, substantial side-chain-to-side-chain hydrogen bonding, good volume packing fraction, and low hydrophilic/hydrophobic frustration. For the N-terminus, we propose a new threading of slightly more than two turns, which improves upon the above characteristics relative to existing three turn beta-helical models. The N-terminal and C-terminal beta helices can be assembled into eight candidate models for the fibril repeat units, held together by large hinge (order 30 residues) domain swapping, with three amenable to fibril promoting domain swapping via a small (five residue) hinge on the N-terminal side. Small concentrations of the metastable C-terminal beta helix in vivo might play a significant role in templating the infectious conformation and in enhancing conversion kinetics for inherited forms of the disease and explain resistance (for canines) involving hypothesized coupling to the methionine 129 sulfur known to play a role in human disease.
Collapse
Affiliation(s)
- Kay C Kunes
- Department of Physics, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
38
|
Hamada D, Tsumoto K, Sawara M, Tanaka N, Nakahira K, Shiraki K, Yanagihara I. Effect of an amyloidogenic sequence attached to yellow fluorescent protein. Proteins 2008; 72:811-21. [DOI: 10.1002/prot.21971] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Harrison RS, Sharpe PC, Singh Y, Fairlie DP. Amyloid peptides and proteins in review. Rev Physiol Biochem Pharmacol 2007; 159:1-77. [PMID: 17846922 DOI: 10.1007/112_2007_0701] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amyloids are filamentous protein deposits ranging in size from nanometres to microns and composed of aggregated peptide beta-sheets formed from parallel or anti-parallel alignments of peptide beta-strands. Amyloid-forming proteins have attracted a great deal of recent attention because of their association with over 30 diseases, notably neurodegenerative conditions like Alzheimer's, Huntington's, Parkinson's, Creutzfeldt-Jacob and prion disorders, but also systemic diseases such as amyotrophic lateral sclerosis (Lou Gehrig's disease) and type II diabetes. These diseases are all thought to involve important conformational changes in proteins, sometimes termed misfolding, that usually produce beta-sheet structures with a strong tendency to aggregate into water-insoluble fibrous polymers. Reasons for such conformational changes in vivo are still unclear. Intermediate aggregated state(s), rather than precipitated insoluble polymeric aggregates, have recently been implicated in cellular toxicity and may be the source of aberrant pathology in amyloid diseases. Numerous in vitro studies of short and medium length peptides that form amyloids have provided some clues to amyloid formation, with an alpha-helix to beta-sheet folding transition sometimes implicated as an intermediary step leading to amyloid formation. More recently, quite a few non-pathological amyloidogenic proteins have also been identified and physiological properties have been ascribed, challenging previous implications that amyloids were always disease causing. This article summarises a great deal of current knowledge on the occurrence, structure, folding pathways, chemistry and biology associated with amyloidogenic peptides and proteins and highlights some key factors that have been found to influence amyloidogenesis.
Collapse
Affiliation(s)
- R S Harrison
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, QLD 4072, Brisbane, Australia
| | | | | | | |
Collapse
|
40
|
Stefani M. Generic cell dysfunction in neurodegenerative disorders: role of surfaces in early protein misfolding, aggregation, and aggregate cytotoxicity. Neuroscientist 2007; 13:519-31. [PMID: 17901260 DOI: 10.1177/1073858407303428] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent knowledge supports the idea that early protein aggregates share basic structural features and are responsible for cytotoxicity underlying neurodegeneration; in most cases, early aggregate cytotoxicity apparently proceeds through similar molecular mechanisms and results in similar biochemical modifications. Data suggest that aggregate cytotoxicity may be considered a generic property of the oligomers preceding fibril appearance. Oligomers can interact with cell membranes, impairing their structural organization and destroying their selective ion permeability, eventually culminating with cell death. This process can be influenced by the physicochemical features and aggregation state of amyloids as well as by the physical and biochemical features of cell surfaces. The roles of synthetic and biological surfaces in affecting protein folding and misfolding, in speeding up aggregate nucleation, and as targets of aggregate toxicity is gaining consideration. Recent research has highlighted the involvement of surfaces as protein-misfolding chaperones and aggregation catalysts and their effects in these phenomena.
Collapse
Affiliation(s)
- Massimo Stefani
- Department of Biochemical Sciences and Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy.
| |
Collapse
|
41
|
Jahn TR, Radford SE. Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys 2007; 469:100-17. [PMID: 17588526 PMCID: PMC2706318 DOI: 10.1016/j.abb.2007.05.015] [Citation(s) in RCA: 301] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/16/2007] [Accepted: 05/21/2007] [Indexed: 12/19/2022]
Abstract
Protein aggregation has now become recognised as an important and generic aspect of protein energy landscapes. Since the discovery that numerous human diseases are caused by protein aggregation, the biophysical characterisation of misfolded states and their aggregation mechanisms has received increased attention. Utilising experimental techniques and computational approaches established for the analysis of protein folding reactions has ensured rapid advances in the study of pathways leading to amyloid fibrils and amyloid-related aggregates. Here we describe recent experimental and theoretical advances in the elucidation of the conformational properties of dynamic, heterogeneous and/or insoluble protein ensembles populated on complex, multidimensional protein energy landscapes. We discuss current understanding of aggregation mechanisms in this context and describe how the synergy between biochemical, biophysical and cell-biological experiments are beginning to provide detailed insights into the partitioning of non-native species between protein folding and aggregation pathways.
Collapse
|
42
|
Xu M, Shashilov VA, Ermolenkov VV, Fredriksen L, Zagorevski D, Lednev IK. The first step of hen egg white lysozyme fibrillation, irreversible partial unfolding, is a two-state transition. Protein Sci 2007; 16:815-32. [PMID: 17400924 PMCID: PMC2206649 DOI: 10.1110/ps.062639307] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 01/25/2007] [Accepted: 02/04/2007] [Indexed: 12/27/2022]
Abstract
Amyloid fibril depositions are associated with many neurodegenerative diseases as well as amyloidosis. The detailed molecular mechanism of fibrillation is still far from complete understanding. In our previous study of in vitro fibrillation of hen egg white lysozyme, an irreversible partially unfolded intermediate was characterized. A similarity of unfolding kinetics found for the secondary and tertiary structure of lysozyme using deep UV resonance Raman (DUVRR) and tryptophan fluorescence spectroscopy leads to a hypothesis that the unfolding might be a two-state transition. In this study, chemometric analysis, including abstract factor analysis (AFA), target factor analysis (TFA), evolving factor analysis (EFA), multivariate curve resolution-alternating least squares (ALS), and genetic algorithm, was employed to verify that only two principal components contribute to the DUVRR and fluorescence spectra of soluble fraction of lysozyme during the fibrillation process. However, a definite conclusion on the number of conformers cannot be made based solely on the above spectroscopic data although chemometric analysis suggested the existence of two principal components. Therefore, electrospray ionization mass spectrometry (ESI-MS) was also utilized to address the hypothesis. The protein ion charge state distribution (CSD) envelopes of the incubated lysozyme were well fitted with two principal components. Based on the above analysis, the partial unfolding of lysozyme during in vitro fibrillation was characterized quantitatively and proven to be a two-state transition. The combination of ESI-MS and Raman and fluorescence spectroscopies with advanced statistical analysis was demonstrated to be a powerful methodology for studying protein structural transformations.
Collapse
Affiliation(s)
- Ming Xu
- Department of Chemistry, University at Albany, SUNY, Albany, New York 12222, USA
| | | | | | | | | | | |
Collapse
|
43
|
Vestergaard B, Groenning M, Roessle M, Kastrup JS, van de Weert M, Flink JM, Frokjaer S, Gajhede M, Svergun DI. A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PLoS Biol 2007; 5:e134. [PMID: 17472440 PMCID: PMC1858711 DOI: 10.1371/journal.pbio.0050134] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 03/09/2007] [Indexed: 12/31/2022] Open
Abstract
Although amyloid fibrillation is generally believed to be a nucleation-dependent process, the nuclei are largely structurally uncharacterized. This is in part due to the inherent experimental challenge associated with structural descriptions of individual components in a dynamic multi-component equilibrium. There are indications that oligomeric aggregated precursors of fibrillation, and not mature fibrils, are the main cause of cytotoxicity in amyloid disease. This further emphasizes the importance of characterizing early fibrillation events. Here we present a kinetic x-ray solution scattering study of insulin fibrillation, revealing three major components: insulin monomers, mature fibrils, and an oligomeric species. Low-resolution three-dimensional structures are determined for the fibril repeating unit and for the oligomer, the latter being a helical unit composed of five to six insulin monomers. This helical oligomer is likely to be a structural nucleus, which accumulates above the supercritical concentration used in our experiments. The growth rate of the fibrils is proportional to the amount of the helical oligomer present in solution, suggesting that these oligomers elongate the fibrils. Hence, the structural nucleus and elongating unit in insulin amyloid fibrillation may be the same structural component above supercritical concentrations. A novel elongation pathway of insulin amyloid fibrils is proposed, based on the shape and size of the fibrillation precursor. The distinct helical oligomer described in this study defines a conceptually new basis of structure-based drug design against amyloid diseases.
Collapse
Affiliation(s)
- Bente Vestergaard
- Department of Medicinal Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Minna Groenning
- Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Copenhagen, Denmark
- Biophysics, Novo Nordisk A/S, Bagsvaerd, Denmark
| | - Manfred Roessle
- Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, Germany
| | - Jette S Kastrup
- Department of Medicinal Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Marco van de Weert
- Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Sven Frokjaer
- Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Michael Gajhede
- Department of Medicinal Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Dmitri I Svergun
- Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, Germany
- Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
44
|
Marchut AJ, Hall CK. Effects of chain length on the aggregation of model polyglutamine peptides: molecular dynamics simulations. Proteins 2007; 66:96-109. [PMID: 17068817 DOI: 10.1002/prot.21132] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Aggregation in the brain of polyglutamine-containing proteins is either a cause or an associated symptom of nine hereditary neurodegenerative disorders including Huntington's disease. The molecular level mechanisms by which these proteins aggregate are still unclear. In an effort to shed light on this important phenomenon, we are investigating the aggregation of model polyglutamine peptides using molecular-level computer simulation with a simplified model of polyglutamine that we have developed. This model accounts for the most important types of intra- and inter-molecular interactions-hydrogen bonding and hydrophobic interactions-while allowing the folding process to be simulated in a reasonable time frame. The model is used to examine the folding of isolated polyglutamine peptides 16, 32, and 48 residues long and the folding and aggregation of systems of 24 model polyglutamine peptides 16, 24, 32, 36, 40, and 48 residues long. Although the isolated polyglutamine peptides did form some alpha and beta backbone-backbone hydrogen bonds they did not have as many of these bonds as they would have if they had folded into a complete alpha helix or beta sheet. In one of the simulations on the isolated polyglutamine peptide 48 residues long, we observed a structure that resembles a beta helix. In the multi-chain simulations we observed amorphous aggregates at low temperatures, ordered aggregates with significant beta sheet character at intermediate temperatures, and random coils at high temperatures. We have found that the temperature at which the model peptides undergo the transition from amorphous aggregates to ordered aggregates and the temperature at which the model peptides undergo the transition from ordered aggregates to random coils increase with increasing chain length. Our finding that the stability of the ordered aggregates increases as the peptide chain length increases may help to explain the experimentally observed relation between polyglutamine tract length and aggregation in vitro and disease progression in vivo. We have also observed in our simulations that the optimal temperature for the formation of beta sheets increases with chain length up to 36 glutamine residues but not beyond. Equivalently, at fixed temperature we find a transition from a region dominated by random coils at chain lengths less than 36 to a region dominated by relatively ordered beta sheet structures at chain lengths greater than 36. Our finding of this critical chain length of 36 glutamine residues is interesting because a critical chain length of 37 glutamine residues has been observed experimentally.
Collapse
Affiliation(s)
- Alexander J Marchut
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | | |
Collapse
|
45
|
Iannuzzi C, Vilasi S, Portaccio M, Irace G, Sirangelo I. Heme binding inhibits the fibrillization of amyloidogenic apomyoglobin and determines lack of aggregate cytotoxicity. Protein Sci 2007; 16:507-16. [PMID: 17242379 PMCID: PMC2203322 DOI: 10.1110/ps.062471107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Myoglobin is an alpha-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The double W/F replacement renders apomyoglobin highly susceptible to aggregation and amyloid-like fibril formation under physiological conditions. In this work we analyze the early stage of W7FW14F apomyoglobin aggregation following the time dependence of the process by far-UV CD, Fourier-transform infrared (FTIR) spectroscopy, and heme-binding properties. The results show that the aggregation of W7FW14F apomyoglobin starts from a native-like globin state able to bind the prosthetic group with spectroscopic properties similar to those observed for wild-type apoprotein. Nevertheless, it rapidly aggregates, forming amyloid fibrils. However, when the prosthetic group is added before the beginning of aggregation, amyloid fibrillization is inhibited, although the aggregation process is not prevented. Moreover, the apomyoglobin aggregates formed in these conditions are not cytotoxic differently from what is observed for all amyloidogenic proteins. These results open new insights into the relationship between the structure adopted by the protein into the aggregates and their ability to trigger the impairment of cell viability.
Collapse
Affiliation(s)
- Clara Iannuzzi
- Dipartimento di Biochimica e Biofisica, Seconda Università degli Studi di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy
| | | | | | | | | |
Collapse
|
46
|
Nguyen PH, Li MS, Stock G, Straub JE, Thirumalai D. Monomer adds to preformed structured oligomers of Abeta-peptides by a two-stage dock-lock mechanism. Proc Natl Acad Sci U S A 2007; 104:111-6. [PMID: 17190811 PMCID: PMC1766316 DOI: 10.1073/pnas.0607440104] [Citation(s) in RCA: 311] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Indexed: 11/18/2022] Open
Abstract
Nonfibrillar soluble oligomers, which are intermediates in the transition from monomers to amyloid fibrils, may be the toxic species in Alzheimer's disease. To monitor the early events that direct assembly of amyloidogenic peptides we probe the dynamics of formation of (Abeta(16-22))(n) by adding a monomer to a preformed (Abeta(16-22))(n-1) (n = 4-6) oligomer in which the peptides are arranged in an antiparallel beta-sheet conformation. All atom molecular dynamics simulations in water and multiple long trajectories, for a cumulative time of 6.9 mus, show that the oligomer grows by a two-stage dock-lock mechanism. The largest conformational change in the added disordered monomer occurs during the rapid ( approximately 50 ns) first dock stage in which the beta-strand content of the monomer increases substantially from a low initial value. In the second slow-lock phase, the monomer rearranges to form in register antiparallel structures. Surprisingly, the mobile structured oligomers undergo large conformational changes in order to accommodate the added monomer. The time needed to incorporate the monomer into the fluid-like oligomer grows even when n = 6, which suggests that the critical nucleus size must exceed six. Stable antiparallel structure formation exceeds hundreds of nanoseconds even though frequent interpeptide collisions occur at elevated monomer concentrations used in the simulations. The dock-lock mechanism should be a generic mechanism for growth of oligomers of amyloidogenic peptides.
Collapse
Affiliation(s)
- Phuong H. Nguyen
- *Institute of Physical and Theoretical Chemistry, J. W. Goethe University, Marie-Curie-Strasse 11, D-60439 Frankfurt, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Gerhard Stock
- *Institute of Physical and Theoretical Chemistry, J. W. Goethe University, Marie-Curie-Strasse 11, D-60439 Frankfurt, Germany
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, MA 02215; and
| | - D. Thirumalai
- Biophysics Program, Institute for Physical Science and Technology, and
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| |
Collapse
|
47
|
Iconomidou VA, Chryssikos GD, Gionis V, Galanis AS, Cordopatis P, Hoenger A, Hamodrakas SJ. Amyloid fibril formation propensity is inherent into the hexapeptide tandemly repeating sequence of the central domain of silkmoth chorion proteins of the A-family. J Struct Biol 2006; 156:480-8. [PMID: 17056273 DOI: 10.1016/j.jsb.2006.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 07/28/2006] [Accepted: 08/25/2006] [Indexed: 01/08/2023]
Abstract
Peptide-analogues of the A and B families of silkmoth chorion proteins form amyloid fibrils under a variety of conditions [Iconomidou, V.A., Vriend, G. Hamodrakas, S.J. 2000. Amyloids protect the silkmoth oocyte and embryo. FEBS Lett. 479, 141-145; Iconomidou,V.A., Chryssikos, G.D.,Gionis, V., Vriend, G., Hoenger, A., Hamodrakas, S.J., 2001. Amyloid-like fibrils from an 18-residue peptide-analogue of a part of the central domain of the B-family of silkmoth chorion protein. FEBS Lett. 499, 268-273; Hamodrakas, S.J. Hoenger, A., Iconomidou, V. A., 2004 . Amyloid fibrillogenesis of silkmoth chorion protein peptide-analogues via a liquid crystalline intermediate phase. J. Struct. Biol. 145, 226-235.], which led us to propose that silkmoth chorion is a natural protective amyloid. In this study, we designed and synthesized two mutant peptide-analogues of the central conservative domain of the A family: (a) one, cA_m1, with a length half of that of the central domain of the A family, which folds and self-assembles, in various conditions, into amyloid fibrils very similar in properties and structure to the fibrils formed by the cA peptide, which corresponds to the entire length of the A family central domain [Iconomidou, V.A., Vriend, G. Hamodrakas, S.J. 2000. Amyloids protect the silkmoth oocyte and embryo. FEBS Lett. 479, 141-145.], in full support of our previous proposal, (b) the second, cA_m2, differing from cA_m1 at three positions, where three glutamates have replaced two valines and one alanine residues, does not form amyloid fibrils in any conditions. It appears that (a) the amyloidogenic properties of silkmoth chorion peptides are encoded into the tandemly repeating hexapeptides comprising the central domain of silkmoth chorion proteins, and, that (b) suitable mutations, properly and carefully designed, greatly affect the strong amyloidogenic properties inherent in certain aminoacid sequences and may inhibit amyloid formation.
Collapse
Affiliation(s)
- Vassiliki A Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | | | | | | | | | | | | |
Collapse
|
48
|
Guo JT, Xu Y. Amyloid fibril structure modeling using protein threading and molecular dynamics simulations. Methods Enzymol 2006; 412:300-14. [PMID: 17046665 DOI: 10.1016/s0076-6879(06)12018-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The elucidation of the structure of amyloid fibrils is an important step toward understanding the mechanism of amyloid formation and developing new reagents that could inhibit fibril formation. Here we describe an approach to modeling amyloid fibril structures using computational techniques, including protein threading and molecular dynamics simulations. Specifically, we introduce these methods using Abeta amyloid fibril modeling as an example. First, the amyloid protein sequence is threaded against a set of structural templates. Structural models are generated on the basis of threading alignments and are then subjected to molecular dynamic simulations to assess the stabilities of the model.
Collapse
Affiliation(s)
- Jun-Tao Guo
- Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, 30602, USA
| | | |
Collapse
|
49
|
Behrends C, Langer CA, Boteva R, Böttcher UM, Stemp MJ, Schaffar G, Rao BV, Giese A, Kretzschmar H, Siegers K, Hartl FU. Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol Cell 2006; 23:887-97. [PMID: 16973440 DOI: 10.1016/j.molcel.2006.08.017] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/07/2006] [Accepted: 08/17/2006] [Indexed: 11/25/2022]
Abstract
Aberrant folding and fibrillar aggregation by polyglutamine (polyQ) expansion proteins are associated with cytotoxicity in Huntington's disease and other neurodegenerative disorders. Hsp70 chaperones have an inhibitory effect on fibril formation and can alleviate polyQ cytotoxicity. Here we show that the cytosolic chaperonin, TRiC, functions synergistically with Hsp70 in this process and is limiting in suppressing polyQ toxicity in a yeast model. In vitro reconstitution experiments revealed that TRiC, in cooperation with the Hsp70 system, promotes the assembly of polyQ-expanded fragments of huntingtin (Htt) into soluble oligomers of approximately 500 kDa. Similar oligomers were observed in yeast cells upon TRiC overexpression and were found to be benign, in contrast to conformationally distinct Htt oligomers of approximately 200 kDa, which accumulated at normal TRiC levels and correlated with inhibition of cell growth. We suggest that TRiC cooperates with the Hsp70 system as a key component in the cellular defense against amyloid-like protein misfolding.
Collapse
Affiliation(s)
- Christian Behrends
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ferguson N, Becker J, Tidow H, Tremmel S, Sharpe TD, Krause G, Flinders J, Petrovich M, Berriman J, Oschkinat H, Fersht AR. General structural motifs of amyloid protofilaments. Proc Natl Acad Sci U S A 2006; 103:16248-53. [PMID: 17060612 PMCID: PMC1637568 DOI: 10.1073/pnas.0607815103] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human CA150, a transcriptional activator, binds to and is co-deposited with huntingtin during Huntington's disease. The second WW domain of CA150 is a three-stranded beta-sheet that folds in vitro in microseconds and forms amyloid fibers under physiological conditions. We found from exhaustive alanine scanning studies that fibrillation of this WW domain begins from its denatured conformations, and we identified a subset of residues critical for fibril formation. We used high-resolution magic-angle-spinning NMR studies on site-specific isotopically labeled fibrils to identify abundant long-range interactions between side chains. The distribution of critical residues identified by the alanine scanning and NMR spectroscopy, along with the electron microscopy data, revealed the protofilament repeat unit: a 26-residue non-native beta-hairpin. The structure we report has similarities to the hairpin formed by the A(beta)((1-40)) protofilament, yet also contains closely packed side-chains in a "steric zipper" arrangement found in the cross-beta spine formed from small peptides from the Sup35 prion protein. Fibrillation of unrelated amyloidogenic sequences shows the common feature of zippered repeat units that act as templates for fiber elongation.
Collapse
Affiliation(s)
- Neil Ferguson
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- To whom correspondence may be addressed. E-mail:
, , or
| | - Johanna Becker
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; and
| | - Henning Tidow
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sandra Tremmel
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; and
| | - Timothy D. Sharpe
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; and
| | - Jeremy Flinders
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; and
| | - Miriana Petrovich
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John Berriman
- New York Structural Biology Center, 89 Covent Avenue at 133rd Street, New York, NY 10027
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; and
- To whom correspondence may be addressed. E-mail:
, , or
| | - Alan R. Fersht
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- To whom correspondence may be addressed. E-mail:
, , or
| |
Collapse
|