1
|
Liu H, Cheng L. Viral Capsid and Polymerase in Reoviridae. Subcell Biochem 2022; 99:525-552. [PMID: 36151388 DOI: 10.1007/978-3-031-00793-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The members of the family Reoviridae (reoviruses) consist of 9-12 discrete double-stranded RNA (dsRNA) segments enclosed by single, double, or triple capsid layers. The outer capsid proteins of reoviruses exhibit the highest diversity in both sequence and structural organization. By contrast, the conserved RNA-dependent RNA polymerase (RdRp) structure in the conserved innermost shell in all reoviruses suggests that they share common transcriptional regulatory mechanisms. After reoviruses are delivered into the cytoplasm of a host cell, their inner capsid particles (ICPs) remain intact and serve as a stable nanoscale machine for RNA transcription and capping performed using enzymes in ICPs. Advances in cryo-electron microscopy have enabled the reconstruction at near-atomic resolution of not only the icosahedral capsid, including capping enzymes, but also the nonicosahedrally distributed complexes of RdRps within the capsid at different transcriptional stages. These near-atomic resolution structures allow us to visualize highly coordinated structural changes in the related enzymes, genomic RNA, and capsid protein during reovirus transcription. In addition, reoviruses encode their own enzymes for nascent RNA capping before RNA releasing from their ICPs.
Collapse
Affiliation(s)
- Hongrong Liu
- Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China.
| | - Lingpeng Cheng
- Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Xu C, Wang J, Yang J, Lei C, Hu J, Sun X. NSP2 forms viroplasms during Dendrolimus punctatus cypovirus infection. Virology 2019; 533:68-76. [PMID: 31125854 DOI: 10.1016/j.virol.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
Abstract
Reoviruses are thought to replicate and assemble in special cytoplasmic structures called 'viroplasms'. However, little is known about the viroplasms of the insect reoviruses, the cypoviruses. To investigate the viroplasm of Dendrolimus punctatus cypovirus (DpCPV), all proteins encoded by the 10 genomic segments of DpCPV were expressed in Sf9 cells using the Bac-to-Bac system. The viral nonstructural protein NSP2 formed viroplasm-like dots which showed close apposition with the endoplasmic reticulum and were surrounded by intracellular membranes during transfection. Colocalization and coimmunoprecipitation assays showed that NSP2 interacts with 4 of 6 structural proteins and another 2 nonstructural proteins, while NSP1 only colocalized with VP4, and NSP3 did not colocalize with any structural protein. Immunoelectron microscopy revealed that NSP2 were nearby the endoplasmic reticulum and mitochondria, and viral particles were present in the electron-dense inclusions formed by NSP2. We proposed that NSP2 is responsible for forming the viroplasms structures of DpCPV.
Collapse
Affiliation(s)
- Congrui Xu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Yang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengfeng Lei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Jia Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Xiulian Sun
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
| |
Collapse
|
3
|
A Reverse Genetics System for Cypovirus Based on a Bacmid Expressing T7 RNA Polymerase. Viruses 2019; 11:v11040314. [PMID: 30939777 PMCID: PMC6521135 DOI: 10.3390/v11040314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Dendrolimus punctatus cypovirus (DpCPV), belonging to the genus Cypovirus within the family Reoviridae, is considered the most destructive pest of pine forests worldwide. DpCPV has a genome consisting of 10 linear double-stranded RNA segments. To establish a reverse genetics system, we cloned cDNAs encoding the 10 genomic segments of DpCPV into three reverse genetics vectors in which each segment was transcribed under the control of a T7 RNA polymerase promoter and terminator tagged with a hepatitis delta virus ribozyme sequence. We also constructed a vp80-knockout Autographa californica multiple nucleopolyhedrovirus bacmid to express a T7 RNA polymerase codon-optimized for Sf9 cells. Following transfection of Sf9 cells with the three vectors and the bacmid, occlusion bodies (OBs) with the typical morphology of cypovirus polyhedra were observed by optical microscopy. The rescue system was verified by incorporation of a HindIII restriction enzyme site null mutant of the 9th genomic segment. Furthermore, when we co-transfected Sf9 cells with the reverse genetics vectors, the bacmid, and an additional vector bearing an egfp gene flanked with the 5′ and 3′ untranslated regions of the 10th genomic segment, aggregated green fluorescence co-localizing with the OBs was observed. The rescued OBs were able to infect Spodopetra exigua larvae, although their infectivity was significantly lower than that of wild-type DpCPV. This reverse genetics system for DpCPV could be used to explore viral replication and pathogenesis and to facilitate the development of novel bio-insecticides and expression systems for exogenous proteins.
Collapse
|
4
|
Su L, Xu C, Cheng C, Lei C, Sun X. MTase Domain of Dendrolimus punctatus cypovirus VP3 Mediates Virion Attachment and Interacts with Host ALP Protein. Viruses 2017; 9:v9040066. [PMID: 28368302 PMCID: PMC5408672 DOI: 10.3390/v9040066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022] Open
Abstract
Dendrolimus punctatus cypovirus (DpCPV) is an important pathogen of D. punctatus, but little is known about the mechanisms of DpCPV infection. Here, we investigated the effects of VP3, VP4 and VP5 structural proteins on the viral invasion. Both the C-terminal of VP3 (methyltransferase (MTase) domain) and VP4 (A-spike) bound to Spodoptera exigua midgut brush border membrane vesicles (BBMVs) in a dose-dependent manner, and the binding was inhibited by purified DpCPV virions. Importantly, anti-MTase and anti-VP4 antibodies inhibited viral binding to S. exigua BBMVs. Using far-Western blots, a 65 kDa protein in Bombyx mori BBMVs, identified as alkaline phosphatase protein (BmALP) by mass spectrometry, specifically interacted with DpCPV MTase. The interaction between MTase and BmALP was verified by co-immunoprecipitation in vitro. Pretreatment of B. mori BBMVs with an anti-ALP antibody or incubation of DpCPV virions with prokaryotically expressed BmALP reduced viral attachment. Additionally, BmALP inhibited DpCPV infection in S. exigua larvae. Our data provide evidence that the MTase domain and A-spike function as viral attachment proteins during the DpCPV infection process, and ALP is the ligand that interacts with DpCPV via the MTase domain. These results augment our understanding of the mechanisms used by cypoviruses to enter their hosts.
Collapse
Affiliation(s)
- Lan Su
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Congrui Xu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuangang Cheng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Chengfeng Lei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Xiulian Sun
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
5
|
Abstract
Double-stranded RNA viruses in the family Reoviridae are capable of transcribing and capping nascent mRNA within an icosahedral viral capsid that remains intact throughout repeated transcription cycles. However, how the highly coordinated mRNA transcription and capping process is facilitated by viral capsid proteins is still unknown. Cypovirus provides a good model system for studying the mRNA transcription and capping mechanism of viruses in the family Reoviridae. Here, we report a full backbone model of a transcribing cypovirus built from a near-atomic-resolution density map by cryoelectron microscopy. Compared with the structure of a nontranscribing cypovirus, the major capsid proteins of transcribing cypovirus undergo a series of conformational changes, giving rise to structural changes in the capsid shell: (i) an enlarged capsid chamber, which provides genomic RNA with more flexibility to move within the densely packed capsid, and (ii) a widened peripentonal channel in the capsid shell, which we confirmed to be a pathway for nascent mRNA. A rod-like structure attributable to a partially resolved nascent mRNA was observed in this channel. In addition, conformational change in the turret protein results in a relatively open turret at each fivefold axis. A GMP moiety, which is transferred to 5'-diphosphorylated mRNA during the mRNA capping reaction, was identified in the pocket-like guanylyltransferase domain of the turret protein.
Collapse
|
6
|
Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping. Proc Natl Acad Sci U S A 2011; 108:1373-8. [PMID: 21220303 DOI: 10.1073/pnas.1014995108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cytoplasmic polyhedrosis virus (CPV) from the family Reoviridae belongs to a subgroup of "turreted" reoviruses, in which the mRNA capping activity occurs in a pentameric turret. We report a full atomic model of CPV built from a 3D density map obtained using cryoelectron microscopy. The image data for the 3D reconstruction were acquired exclusively from a CCD camera. Our structure shows that the enzymatic domains of the pentameric turret of CPV are topologically conserved and that there are five unique channels connecting the guanylyltransferase and methyltransferase regions. This structural organization reveals how the channels guide nascent mRNA sequentially to guanylyltransferase, 7-N-methyltransferase, and 2'-O-methyltransferase in the turret, undergoing the highly coordinated mRNA capping activity. Furthermore, by fitting the deduced amino acid sequence of the protein VP5 to 120 large protrusion proteins on the CPV capsid shell, we confirmed that this protrusion protein is encoded by CPV RNA segment 7.
Collapse
|
7
|
Tan L, Zhang J, Li Y, Li Y, Jiang H, Cao X, Hu Y. The complete nucleotide sequence of the type 5 Helicoverpa armigera cytoplasmic polyhedrosis virus genome. Virus Genes 2008; 36:587-93. [PMID: 18368473 DOI: 10.1007/s11262-008-0222-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 03/11/2008] [Indexed: 12/01/2022]
Abstract
The S1-6, S8, and S9 segments of the type 5 Helicoverpa armigera cytoplasmic polyhedrosis virus (HaCPV-5, Chinese strain) were cloned and sequenced, completing the HaCPV-5 genome. We found that each HaCPV-5 segment exhibits the conserved terminal sequences AGUU and UUGC located at the 5' and 3' ends, respectively. We also analyzed the translation initiation codon of the HaCPV-5 genome and compared it with the available cypovirus sequences in GenBank. We postulated that the conserved purine at the -3 position in relation to the AUG codon is probably the most important nucleotide for efficient translation initiation in cypovirus. Although the nucleotide sequences of the HaCPV-5 segments S1-10 exhibit no significant similarity to other viruses, blast searches did reveal some similarities between predicted HaCPV-5 amino acid sequences and those of other viruses.
Collapse
Affiliation(s)
- Li Tan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Li Y, Tan L, Li Y, Chen W, Zhang J, Hu Y. Identification and genome characterization of Heliothis armigera cypovirus types 5 and 14 and Heliothis assulta cypovirus type 14. J Gen Virol 2006; 87:387-394. [PMID: 16432026 DOI: 10.1099/vir.0.81435-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genomic characterization of Heliothis armigera cypovirus (HaCPV) isolated from China showed that insects were co-infected with several cypoviruses (CPVs). One of the CPVs (HaCPV-5) could be separated from the others by changing the rearing conditions of the Heliothis armigera larvae. This finding was further confirmed by nucleotide sequencing analysis. Genomic sequences of segments S10-S7 from HaCPV-14, S10 and S7 from HaCPV-5, and S10 from Heliothis assulta CPV-14 were compared. Results from database searches showed that the nucleotide sequences and deduced amino acid sequences of the newly identified CPVs had high levels of identity with those of reported CPVs of the same type, but not with CPVs of different types. Putative amino acid sequences of HaCPV-5 S7 were similar to that of the protein from Rice ragged stunt virus (genus Oryzavirus, family Reoviridae), suggesting that CPVs and oryzaviruses are related more closely than other genera of the family Reoviridae. Conserved motifs were also identified at the ends of each RNA segment of the same virus type: type 14, 5'-AGAAUUU...CAGCU-3'; and type 5, 5'-AGUU...UUGC-3'. Our results are consistent with classification of CPV types based on the electrophoretic patterns of CPV double-stranded RNA.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Li Tan
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yanqiu Li
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wuguo Chen
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiamin Zhang
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuanyang Hu
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|