1
|
Qin P, Ye J, Gong X, Yan X, Lin M, Lin T, Liu T, Li H, Wang X, Zhu Y, Li X, Liu Y, Li Y, Ling Y, Zhang X, Fang F. Quantitative proteomics analysis to assess protein expression levels in the ovaries of pubescent goats. BMC Genomics 2022; 23:507. [PMID: 35831802 PMCID: PMC9281040 DOI: 10.1186/s12864-022-08699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Changes in the abundance of ovarian proteins play a key role in the regulation of reproduction. However, to date, no studies have investigated such changes in pubescent goats. Herein we applied isobaric tags for relative and absolute quantitation (iTRAQ) and liquid chromatography–tandem mass spectrometry to analyze the expression levels of ovarian proteins in pre-pubertal (n = 3) and pubertal (n = 3) goats. Results Overall, 7,550 proteins were recognized; 301 (176 up- and 125 downregulated) were identified as differentially abundant proteins (DAPs). Five DAPs were randomly selected for expression level validation by Western blotting; the results of Western blotting and iTRAQ analysis were consistent. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that DAPs were enriched in olfactory transduction, glutathione metabolism, and calcium signaling pathways. Besides, gene ontology functional enrichment analysis revealed that several DAPs enriched in biological processes were associated with cellular process, biological regulation, metabolic process, and response to stimulus. Protein–protein interaction network showed that proteins interacting with CDK1, HSPA1A, and UCK2 were the most abundant. Conclusions We identified 301 DAPs, which were enriched in olfactory transduction, glutathione metabolism, and calcium signaling pathways, suggesting the involvement of these processes in the onset of puberty. Further studies are warranted to more comprehensively explore the function of the identified DAPs and aforementioned signaling pathways to gain novel, deeper insights into the mechanisms underlying the onset of puberty. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08699-y.
Collapse
Affiliation(s)
- Ping Qin
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jing Ye
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xinbao Gong
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xu Yan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Maosen Lin
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Tao Lin
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Tong Liu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Hailing Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiujuan Wang
- Animal Husbandry Development Center, Huoqiu Animal Health Supervision Institute, Huoqiu County, Auditorium Road, Luan, 237400, Anhui, China
| | - Yanyun Zhu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xiaoqian Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Ya Liu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yunsheng Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yinghui Ling
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiaorong Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Fugui Fang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China. .,Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
2
|
Abstract
Machine-learning techniques can classify functionally related proteins where homology-transfer as well as sequence and structure motifs fail. Here, we present a method that aimed at complementing homology-transfer in the identification of cell cycle control kinases from sequence alone. First, we identified functionally significant residues in cell cycle proteins through their high sequence conservation and biophysical properties. We then incorporated these residues and their features into support vector machines (SVM) to identify new kinases and more specifically to differentiate cell cycle kinases from other kinases and other proteins. As expected, the most informative residues tend to be highly conserved and tend to localize in the ATP binding regions of the kinases. Another observation confirmed that ATP binding regions are typically not found on the surface but in partially buried sites, and that this fact is correctly captured by accessibility predictions. Using these highly conserved, semi-buried residues and their biophysical properties, we could distinguish cell cycle S/T kinases from other kinase families at levels around 70-80% accuracy and 62-81% coverage. An application to the entire human proteome predicted at least 97 human proteins with limited previous annotations to be candidates for cell cycle kinases.
Collapse
Affiliation(s)
- Kazimierz O. Wrzeszczynski
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, USA
- Columbia University Center for Computational Biology and Bioinformatics (C2B2), 1130 St. Nicholas Ave. Rm. 802, New York, NY 10032, USA
- NorthEast Structural Genomics Consortium (NESG), Columbia University, 1130 St. Nicholas Ave. Rm. 802, New York, NY 10032, USA
- Integrated Program in Cellular, Molecular, Structural and Genetic Studies, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Burkhard Rost
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, USA
- Columbia University Center for Computational Biology and Bioinformatics (C2B2), 1130 St. Nicholas Ave. Rm. 802, New York, NY 10032, USA
- NorthEast Structural Genomics Consortium (NESG), Columbia University, 1130 St. Nicholas Ave. Rm. 802, New York, NY 10032, USA
| |
Collapse
|
3
|
Arachchige Don AS, Dallapiazza RF, Bennin DA, Brake T, Cowan CE, Horne MC. Cyclin G2 is a centrosome-associated nucleocytoplasmic shuttling protein that influences microtubule stability and induces a p53-dependent cell cycle arrest. Exp Cell Res 2006; 312:4181-204. [PMID: 17123511 PMCID: PMC1862360 DOI: 10.1016/j.yexcr.2006.09.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/21/2006] [Accepted: 09/26/2006] [Indexed: 01/14/2023]
Abstract
Cyclin G2 is an atypical cyclin that associates with active protein phosphatase 2A. Cyclin G2 gene expression correlates with cell cycle inhibition; it is significantly upregulated in response to DNA damage and diverse growth inhibitory stimuli, but repressed by mitogenic signals. Ectopic expression of cyclin G2 promotes cell cycle arrest, cyclin dependent kinase 2 inhibition and the formation of aberrant nuclei [Bennin, D. A., Don, A. S., Brake, T., McKenzie, J. L., Rosenbaum, H., Ortiz, L., DePaoli-Roach, A. A., and Horne, M. C. (2002). Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B' subunits in active complexes and induces nuclear aberrations and a G(1)/S-phase cell cycle arrest. J Biol Chem 277, 27449-67]. Here we report that endogenous cyclin G2 copurifies with centrosomes and microtubules (MT) and that ectopic G2 expression alters microtubule stability. We find exogenous and endogenous cyclin G2 present at microtubule organizing centers (MTOCs) where it colocalizes with centrosomal markers in a variety of cell lines. We previously reported that cyclin G2 forms complexes with active protein phosphatase 2A (PP2A) and colocalizes with PP2A in a detergent-resistant compartment. We now show that cyclin G2 and PP2A colocalize at MTOCs in transfected cells and that the endogenous proteins copurify with isolated centrosomes. Displacement of the endogenous centrosomal scaffolding protein AKAP450 that anchors PP2A at the centrosome resulted in the depletion of centrosomal cyclin G2. We find that ectopic expression of cyclin G2 induces microtubule bundling and resistance to depolymerization, inhibition of polymer regrowth from MTOCs and a p53-dependent cell cycle arrest. Furthermore, we determined that a 100 amino acid carboxy-terminal region of cyclin G2 is sufficient to both direct GFP localization to centrosomes and induce cell cycle inhibition. Colocalization of endogenous cyclin G2 with only one of two GFP-centrin-tagged centrioles, the mature centriole present at microtubule foci, indicates that cyclin G2 resides primarily on the mother centriole. Copurification of cyclin G2 and PP2A subunits with microtubules and centrosomes, together with the effects of ectopic cyclin G2 on cell cycle progression, nuclear morphology and microtubule growth and stability, suggests that cyclin G2 may modulate the cell cycle and cellular division processes through modulation of PP2A and centrosomal associated activities.
Collapse
Affiliation(s)
| | | | - David A. Bennin
- The Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532
| | - Tiffany Brake
- The Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532
| | - Colleen E. Cowan
- The Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109
| | - Mary C. Horne
- The Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109
- The Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532
- *Correspondence to: Mary C. Horne, 2-530 BSB, 51 Newton Rd, Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, Phone: (319) 335-8267, FAX: (319) 335-8930, E-mail:
| |
Collapse
|