1
|
Dongare PM, Madage VA, Deshpande NV, Joshi RS, Giri AP, Pawar PK. A novel bifunctional inhibitor of protease and α-amylase from Clitorea ternatea restricts the growth and development in Spodoptera frugiperda. Int J Biol Macromol 2025; 305:141180. [PMID: 39971050 DOI: 10.1016/j.ijbiomac.2025.141180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/09/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
An inhibitor molecule capable of inhibiting a wide range of digestive enzymes without affecting endogenous enzymes is always desirable. We report characterization of CteTAI (M.W. 14 kDa), a bifunctional inhibitor (BFI) protein from the seeds of Clitoria ternatea capable of inhibiting trypsin and α-amylase. It retains trypsin inhibition activity up to 60 °C and α-amylase inhibition up to 40 °C. Trypsin inhibition is stable across pH 1-12, while α-amylase inhibition is stable between pH 3-7. CteTAI is a noncompetitive inhibitor of trypsin and an uncompetitive inhibitor of α-amylase. It selectively inhibits proteases and α-amylases from various sources, without affecting α-amylase from human saliva and Bacillus spp. Proteomic analysis identified CteTAI as a bifunctional inhibitor exhibiting 41 % similarity to a bifunctional inhibitor from Sesbania bispinosa. Feeding Spodoptera frugiperda larvae with CteTAI-infused diet impaired energy metabolism, resulting in undernourished larvae and malformed adults incapable of flight and mating. Key nutritional indices (RGR, RCR, %ECI, %FDI) were severely reduced, indicating that CteTAI disrupts growth and development by inhibiting multiple protease and α-amylase isoforms. Biochemical characterization of newly identified CteTAI suggests its potential application in crop protection.
Collapse
Affiliation(s)
| | - Varsha A Madage
- Department of Biotechnology, Shivaji University, Kolhapur 416004, MS, India
| | - Neha V Deshpande
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, MS, India
| | - Rakesh S Joshi
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, MS, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, MS, India
| | - Pankaj K Pawar
- Department of Biochemistry, Shivaji University, Kolhapur 416004, MS, India.
| |
Collapse
|
2
|
Rhimi M, Da Lage JL, Haser R, Feller G, Aghajari N. Structural and Functional Characterization of Drosophila melanogaster α-Amylase. Molecules 2023; 28:5327. [PMID: 37513201 PMCID: PMC10384113 DOI: 10.3390/molecules28145327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Insects rely on carbohydrates such as starch and glycogen as an energy supply for growth of larvae and for longevity. In this sense α-amylases have essential roles under extreme conditions, e.g., during nutritional or temperature stress, thereby contributing to survival of the insect. This makes them interesting targets for combating insect pests. Drosophila melanogaster α-amylase, DMA, which belongs to the glycoside hydrolase family 13, sub family 15, has been studied from an evolutionary, biochemical, and structural point of view. Our studies revealed that the DMA enzyme is active over a broad temperature and pH range, which is in agreement with the fluctuating environmental changes with which the insect is confronted. Crystal structures disclosed a new nearly fully solvated metal ion, only coordinated to the protein via Gln263. This residue is only conserved in the subgroup of D. melanogaster and may thus contribute to the enzyme adaptive response to large temperature variations. Studies of the effect of plant inhibitors and the pseudo-tetrasaccharide inhibitor acarbose on DMA activity, allowed us to underline the important role of the so-called flexible loop on activity/inhibition, but also to suggest that the inhibition modes of the wheat inhibitors WI-1 and WI-3 on DMA, are likely different.
Collapse
Affiliation(s)
- Moez Rhimi
- Molecular Microbiology and Structural Biochemistry, UMR5086, CNRS, University of Lyon 1, 7 Passage du Vercors, F-69367 Lyon, CEDEX 07, France
| | - Jean-Luc Da Lage
- Evolution, Génomes, Comportement, Ecologie, UMR 9191 University Paris-Saclay-CNRS-IRD, F-91190 Gif-sur-Yvette, France
| | - Richard Haser
- Molecular Microbiology and Structural Biochemistry, UMR5086, CNRS, University of Lyon 1, 7 Passage du Vercors, F-69367 Lyon, CEDEX 07, France
| | - Georges Feller
- Laboratory of Biochemistry, Center for Protein Engineering-InBioS, Institute of Chemistry B6a, University of Liège, B-4000 Liège, Belgium
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, UMR5086, CNRS, University of Lyon 1, 7 Passage du Vercors, F-69367 Lyon, CEDEX 07, France
| |
Collapse
|
3
|
Genome-Wide Identification of Common Bean PvLTP Family Genes and Expression Profiling Analysis in Response to Drought Stress. Genes (Basel) 2022; 13:genes13122394. [PMID: 36553661 PMCID: PMC9777604 DOI: 10.3390/genes13122394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Common bean is one of the most important legume crops for human consumption. Its yield is adversely affected by environmental stress. Plant non-specific lipid transfer proteins (nsLTPs) are essential for plant growth, development, and resistance to abiotic stress, such as salt, drought, and alkali. However, changes in nsLTP family genes responding to drought stress are less known. The PvLTP gene family in the common bean was identified by a comprehensive genome-wide analysis. Molecular weights, theoretical isoelectric points, phylogenetic tree, conserved motifs, gene structures, gene duplications, chromosome localization, and expression profiles were analyzed by SignalP 5.0, ExPASy, ClustalX 2.1, MEGA 7.0, NCBI-CDD, MEME, Weblogo, and TBtools 1.09876, respectively. Heatmap and qRT-PCR analyses were performed to validate the expression profiles of PvLTP genes in different organs. In addition, the expression patterns of nine PvLTP genes in common beans treated with drought stress were investigated by qRT-PCR. We obtained 58 putative PvLTP genes in the common bean genome via genome-wide analyses. Based on the diversity of the eight-cysteine motif (ECM), these genes were categorized into five types (I, II, IV, V, and VIII). The signal peptides of the PvLTP precursors were predicted to be from 16 to 42 amino acid residues. PvLTPs had a predicated theoretical isoelectric point of 3.94-10.34 and a molecular weight of 7.15-12.17 kDa. The phylogenetic analysis showed that PvLTPs were closer to AtLTPs than OsLTPs. Conserved motif and gene structure analyses indicated that PvLTPs were randomly distributed on all chromosomes except chromosome 9. In addition, 23 tandem duplicates of PvLTP genes were arranged in 10 gene clusters on chromosomes 1 and 2. The heatmap and qRT-PCR showed that PvLTP expression significantly varied in different tissues. Moreover, 9 PvLTP genes were up-regulated under drought treatment. Our results reveal that PvLTPs play potentially vital roles in plants and provide a comprehensive reference for studies on PvLTP genes and a theoretical basis for further analysis of regulatory mechanisms influencing drought tolerance in the common bean.
Collapse
|
4
|
Li J, Zhao JY, Shi Y, Fu HY, Huang MT, Meng JY, Gao SJ. Systematic and functional analysis of non-specific lipid transfer protein family genes in sugarcane under Xanthomonas albilineans infection and salicylic acid treatment. FRONTIERS IN PLANT SCIENCE 2022; 13:1014266. [PMID: 36275567 PMCID: PMC9581186 DOI: 10.3389/fpls.2022.1014266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small basic proteins that play a significant regulatory role in a wide range of physiological processes. To date, no genome-wide survey and expression analysis of this gene family in sugarcane has been performed. In this study we identified the nsLTP gene family in Saccharum spontaneum and carried out expression profiling of nsLTPs in two sugarcane cultivars (Saccharum spp.) that have different resistance to leaf scald caused by Xanthomonas albilineans (Xa) infection. The effect of stress related to exogenous salicylic acid (SA) treatment was also examined. At a genome-wide level, S. spontaneum AP85-441 had 71 SsnsLTP genes including 66 alleles. Tandem (9 gene pairs) and segmental (36 gene pairs) duplication events contributed to SsnsLTP gene family expansion. Five SsnsLTP proteins were predicted to interact with five other proteins. Expression of ShnsLTPI.8/10/Gb.1 genes was significantly upregulated in LCP85-384 (resistant cultivar), but downregulated in ROC20 (susceptible cultivar), suggesting that these genes play a positive regulatory role in response of sugarcane to Xa infection. Conversely, ShnsLTPGa.4/Ge.3 appears to act as a negative regulator in response Xa infection. The majority (16/17) of tested genes were positively induced in LCP85-384 72 h after SA treatment. In both cultivars, but particularly in LCP85-384, ShnsLTPIV.3/VIII.1 genes were upregulated at all time-points, suggesting that the two genes might act as positive regulators under SA stress. Meanwhile, both cultivars showed downregulated ShnsLTPGb.1 gene expression, indicating its potential negative role in SA treatment responses. Notably, the ShnsLTPGb.1 gene had contrasting effects, with positive regulation of gene expression in response to Xa infection and negative regulation induced by SA stress. Together, our results provide valuable information for elucidating the function of ShnsLTP family members under two stressors and identified novel gene sources for development of sugarcane that are tolerant of environmental stimuli.
Collapse
|
5
|
Zhang Y, Wang K, Huang Q, Shu S. Molecular cloning and characterization of an alpha-amylase inhibitor (TkAAI) gene from Trichosanthes kirilowii Maxim. Biotechnol Lett 2022; 44:1127-1138. [PMID: 35925526 DOI: 10.1007/s10529-022-03277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
Trichosanthes kirilowii Maxim taxonomically belongs to the Cucurbitaceae family and Trichosanthes genus. Its whole fruit, fruit peel, seed and root are widely used in traditional Chinese medicines. A ribosome-inactivating protein with RNA N-glycosidase activity called Trichosanthrip was isolated and purified from the seeds of T. kirilowii in our recent previous research. To further explore the biological functions of Trichosanthrip, the cDNA of T. kirilowii alpha-amylase inhibitor (TkAAI) was cloned through rapid-amplification of cDNA ends and its sequence was analyzed. Also, the heterologous protein was expressed in Escherichia coli and its alpha-amylase activity was further measured under optimized conditions. The full-length cDNA of TkAAI was 613 bp. The speculated open reading frame sequence encoded 141 amino acids with a molecular weight of 16.14 kDa. Phylogenetic analysis demonstrated that the Alpha-Amylase Inhibitors Seed Storage domain sequence of TkAAI revealed significant evolutionary homology with the 2S albumin derived from the other plants in the Cucurbitaceae group. In addition, TkAAI was assembled into pET28a with eGFP to generate a prokaryotic expression vector and was induced to express in E. coli. The TkAAI-eGFP infusion protein was proven to exhibit alpha-amylase inhibitory activity against porcine pancreatic amylase in a suitable reaction system. Analysis of gene expression patterns proved that the relative expression level of TkAAI in seeds is highest. The results presented here forecasted that the TkAAI might play a crucial role during the development of T. kirilowii seeds and provided fundamental insights into the possibility of T. kirilowii derived medicine to treat diabetes related diseases.
Collapse
Affiliation(s)
- Yipeng Zhang
- College of Plant Science and Technology, HUAZHONG Agricultural University, Shizishan Street 1#, Hongshan District, Wuhan, Hubei, People's Republic of China.
| | - Keyue Wang
- College of Plant Science and Technology, HUAZHONG Agricultural University, Shizishan Street 1#, Hongshan District, Wuhan, Hubei, People's Republic of China
| | - Qiyuan Huang
- College of Plant Science and Technology, HUAZHONG Agricultural University, Shizishan Street 1#, Hongshan District, Wuhan, Hubei, People's Republic of China
| | - Shaohua Shu
- College of Plant Science and Technology, HUAZHONG Agricultural University, Shizishan Street 1#, Hongshan District, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
6
|
Yan H, Wen F, Xiang H, Wen Y, Shang D, Liu A, Niu Y, Xia Q, Wang G. Biochemical characterization and overexpression of an α-amylase (BmAmy) in silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2022; 31:251-259. [PMID: 34923696 DOI: 10.1111/imb.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Silkworm (Bombyx mori) is the only fully domesticated insect. As an economically important insect, nutrition utilization is important for its productivity. Hence, the present study investigated the expression pattern of BmAmy, an α-amylase, in B. mori. BmAmy protein purification and biochemical characterization were performed, and effects of BmAmy overexpression were assessed. Real-time quantitative reverse transcription polymerase chain reaction indicated that BmAmy transcription was positively correlated with the silkworm's food intate. Moreover, enzymatic activity assay results showed that BmAmy had significant α-amylase activity of about 1 mg/min/mg protein. Furthermore, treatment with mulberry amylase inhibitors MnAI1 and MnAI2 resulted to 89.92% and 93.67% inhibition in BmAmy activity, respectively, and the interaction between BmAmy and MnAI was also confirmed by protein docking analysis. A silkworm line that specifically overexpressed BmAmy in the midgut was generated through piggyBac-based transgenic technology, and compared to those of non-transgenic silkworms, the whole cocoon and cocoon shell weights of these transgenic silkworms increased by 10.13% and 18.32%, respectively, in the female group, and by 5.83% and 6.00%, respectively, in the male group. These results suggested that BmAmy may be a suitable target for breeding better silkworm varieties in the future.
Collapse
Affiliation(s)
- Hao Yan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Research and Development Center, China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Feng Wen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Haiying Xiang
- Research and Development Center, China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Yuchan Wen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Deli Shang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Anyang Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yicheng Niu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Møller MS, Svensson B. Structure, Function and Protein Engineering of Cereal-Type Inhibitors Acting on Amylolytic Enzymes. Front Mol Biosci 2022; 9:868568. [PMID: 35402513 PMCID: PMC8990303 DOI: 10.3389/fmolb.2022.868568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous plants, including cereals, contain seed proteins able to inhibit amylolytic enzymes. Some of these inhibitors, the CM-proteins (soluble in chloroform:methanol mixtures)—also referred to as cereal-type inhibitors (CTIs)—are the topic of this review. CM-proteins were first reported 75 years ago. They are small sulfur-rich proteins of the prolamine superfamily embracing bifunctional α-amylase/trypsin inhibitors (ATIs), α-amylase inhibitors (AIs), limit dextrinase inhibitors (LDIs), and serine protease inhibitors. Phylogenetically CM-proteins are predicted across poaceae genomes and many isoforms are identified in seed proteomes. Their allergenicity and hence adverse effect on humans were recognized early on, as were their roles in plant defense. Generally, CTIs target exogenous digestive enzymes from insects and mammals. Notably, by contrast LDI regulates activity of the endogenous starch debranching enzyme, limit dextrinase, during cereal seed germination. CM-proteins are four-helix bundle proteins and form enzyme complexes adopting extraordinarily versatile binding modes involving the N-terminal and different loop regions. A number of these inhibitors have been characterized in detail and here focus will be on target enzyme specificity, molecular recognition, forces and mechanisms of binding as well as on three-dimensional structures of CM-protein–enzyme complexes. Lastly, prospects for CM-protein exploitation, rational engineering and biotechnological applications will be discussed.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Effect of Cereal α-Amylase/Trypsin Inhibitors on Developmental Characteristics and Abundance of Digestive Enzymes of Mealworm Larvae ( Tenebrio molitor L.). INSECTS 2021; 12:insects12050454. [PMID: 34069260 PMCID: PMC8156395 DOI: 10.3390/insects12050454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022]
Abstract
Simple Summary The main nutritionally relevant proteins of Tenebrio molitor L. larvae are cereal proteins. Cereals contain α-amylase/trypsin inhibitors (ATIs) that interact with digestive enzymes and which may impair the growth of the larvae. Despite the existing work on the subject, there is still a lack of information regarding the effects of ATIs on the relative abundance of various enzymes in larvae. Our aim was therefore to undertake an assessment of the potential effects of ATIs on the growth parameters and digestive enzyme contents of T. molitor. The larvae were fed with cereal meals containing different levels of ATIs. The developmental characteristics were evaluated and finally an analytical method based on liquid chromatography with tandem mass spectrometry (LC-MS/MS) was developed to quantify the relative abundance of enzymes in the larvae. The results indicated an increase in pupation and significantly higher protein concentrations in larvae fed with wheat meals compared to those fed with sorghum meals. Patterns of specific α-amylase activity (in mM maltose/min/mg protein) were similar to those of amylase activity (in mM maltose/min) and the larvae fed on high-ATI-content meals exhibited an increased death rate, although the results were not always significantly consistent. The results of the LC-MS/MS analysis showed a decrease of about half of the relative content of α-amylase among the three proteases monitored, as well as an increase in dipeptidylpeptidase I and chymotrypsin, whereas trypsin remained constant. Therefore, these results indicate that meal composition has an effect on the expression of T. molitor digestive enzymes. Abstract The objective of this work was to investigate the potential effect of cereal α-amylase/trypsin inhibitors (ATIs) on growth parameters and selective digestive enzymes of Tenebrio molitor L. larvae. The approach consisted of feeding the larvae with wheat, sorghum and rice meals containing different levels and composition of α-amylase/trypsin inhibitors. The developmental and biochemical characteristics of the larvae were assessed over feeding periods of 5 h, 5 days and 10 days, and the relative abundance of α-amylase and selected proteases in larvae were determined using liquid chromatography tandem mass spectrometry. Overall, weight gains ranged from 21% to 42% after five days of feeding. The larval death rate significantly increased in all groups after 10 days of feeding (p < 0.05), whereas the pupation rate was about 25% among larvae fed with rice (Oryza sativa L.) and Siyazan/Esperya wheat meals, and only 8% and 14% among those fed with Damougari and S35 sorghum meals. As determined using the Lowry method, the protein contents of the sodium phosphate extracts ranged from 7.80 ± 0.09 to 9.42 ± 0.19 mg/mL and those of the ammonium bicarbonate/urea reached 19.78 ± 0.16 to 37.47 ± 1.38 mg/mL. The total protein contents of the larvae according to the Kjeldahl method ranged from 44.0 and 49.9 g/100 g. The relative abundance of α-amylase, CLIP domain-containing serine protease, modular serine protease zymogen and C1 family cathepsin significantly decreased in the larvae, whereas dipeptidylpeptidase I and chymotrypsin increased within the first hours after feeding (p < 0.05). Trypsin content was found to be constant independently of time or feed material. Finally, based on the results we obtained, it was difficult to substantively draw conclusions on the likely effects of meal ATI composition on larval developmental characteristics, but their effects on the digestive enzyme expression remain relevant.
Collapse
|
9
|
Møller MS, Olesen SV, André I. An ultra-high affinity protein-protein interface displaying sequence-robustness. Protein Sci 2021; 30:1144-1156. [PMID: 33837990 DOI: 10.1002/pro.4080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 04/08/2021] [Indexed: 11/11/2022]
Abstract
Protein-protein interactions are crucial in biology and play roles in for example, the immune system, signaling pathways, and enzyme regulation. Ultra-high affinity interactions (Kd <0.1 nM) occur in these systems, however, structures and energetics behind stability of ultra-high affinity protein-protein complexes are not well understood. Regulation of the starch debranching barley limit dextrinase (LD) and its endogenous cereal type inhibitor (LDI) exemplifies an ultra-high affinity complex (Kd of 42 pM). In this study the LD-LDI complex is investigated to unveil how robust the ultra-high affinity is to LDI sequence variation at the protein-protein interface and whether alternative sequences can retain the ultra-high binding affinity. The interface of LD-LDI was engineered using computational protein redesign aiming at identifying LDI variants predicted to retain ultra-high binding affinity. These variants present a very diverse set of mutations going beyond conservative and alanine substitutions typically used to probe interfaces. Surface plasmon resonance analysis of the LDI variants revealed that high affinity of LD-LDI requires interactions of several residues at the rim of the protein interface, unlike the classical hotspot arrangement where key residues are found at the center of the interface. Notably, substitution of interface residues in LDI, including amino acids with functional groups different from the wild-type, could occur without loss of affinity. This demonstrates that ultra-high binding affinity can be conferred without hotspot residues, thus making complexes more robust to mutational drift in evolution. The present mutational analysis also demonstrates how energetic coupling can emerge between residues at large distances at the interface.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Biochemistry and Structural Biology, Lund University, Lund, Sweden.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sita Vaag Olesen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ingemar André
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Vijayakumar G, BS M. A potential biopesticide from
Amorphophallus paeoniifolious
to increase the shelf life of stored food grains. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gayathri Vijayakumar
- Department of Biotechnology Rajalakshmi Engineering College Chennai Tamil Nadu India
| | - MohanKumar BS
- Department of Biotechnology Rajalakshmi Engineering College Chennai Tamil Nadu India
| |
Collapse
|
11
|
Rane AS, Joshi RS, Giri AP. Molecular determinant for specificity: Differential interaction of α-amylases with their proteinaceous inhibitors. Biochim Biophys Acta Gen Subj 2020; 1864:129703. [PMID: 32805319 DOI: 10.1016/j.bbagen.2020.129703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND α-Amylase inhibitors (α-AIs) belong to the discrete classes, and exhibited differential specificities against α-amylases from various sources. Several α-amylases and their complexes with inhibitors at the molecular level have been studied in detail. Interestingly, some α-AIs depict specific and selective interactions amid different insect α-amylases. SCOPE OF REVIEW There are studies to understand evolutionary variability and functional differentiation of insect α-amylases and their cognate inhibitors. We have examined sequence, structural, and interaction diversity between various α-amylases and α-AIs. Based on these analyses, we are providing a potential basis for the functional differentiation among certain insect α-amylases concerning mammalian counterparts and their interactions with different proteinaceous α-AIs. MAJOR CONCLUSIONS Insect α-amylases have conserved domain architecture with differences in length, number of disulfide bonds, and secondary structure. Furthermore, few of them exhibit variable characteristics like chloride dependent activity, the presence of N-terminal glutamine residue to protect against proteolytic degradation, and loop variations near the enzyme active site. Conformation of α-AI protein could be an essential factor for their specificity and binding affinities towards target α-amylase(s). Furthermore, variation into the enzyme binding pocket residues might contribute to differential interactions with inhibitors. GENERAL SIGNIFICANCE Molecular insights in the interactions between insect α-amylases and plant α-AI will provide the details of mechanisms assisting the inhibitor specificity. Furthermore, this information will help to design potent and effective α-AIs against specific α-amylase.
Collapse
Affiliation(s)
- Ashwini S Rane
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Rakesh S Joshi
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
12
|
Plant Defensins from a Structural Perspective. Int J Mol Sci 2020; 21:ijms21155307. [PMID: 32722628 PMCID: PMC7432377 DOI: 10.3390/ijms21155307] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/12/2023] Open
Abstract
Plant defensins form a family of proteins with a broad spectrum of protective activities against fungi, bacteria, and insects. Furthermore, some plant defensins have revealed anticancer activity. In general, plant defensins are non-toxic to plant and mammalian cells, and interest in using them for biotechnological and medicinal purposes is growing. Recent studies provided significant insights into the mechanisms of action of plant defensins. In this review, we focus on structural and dynamics aspects and discuss structure-dynamics-function relations of plant defensins.
Collapse
|
13
|
Bose U, Juhász A, Broadbent JA, Byrne K, Howitt CA, Colgrave ML. Identification and Quantitation of Amylase Trypsin Inhibitors Across Cultivars Representing the Diversity of Bread Wheat. J Proteome Res 2020; 19:2136-2148. [PMID: 32267703 DOI: 10.1021/acs.jproteome.0c00059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
α-Amylase/trypsin inhibitors (ATIs) may have a role in nonceliac wheat sensitivity (NCWS) and celiac disease (CD), but the ATI content and diversity across a range of wheat cultivars are not well characterized. Discovery proteomics was used to detect ATIs across two wheat cultivars: Chara and Magenta. Comprehensive mapping of detected ATIs with the ATIs from the recently published wheat genome RefSeq v1.0 shows the presence of three major subclasses: monomeric (9%), dimeric (61%), and chloroform-methanol (CM) type (30%). Subsequently, the level of 18 ATI isoforms (63 peptides) grouped into four subtypes was monitored across 15 commercial wheat cultivars and the eight parental lines from a multiparent advanced-generation intercross (MAGIC) population using liquid chromatography-multiple reaction monitoring-mass spectrometry (LC-MRM-MS). The ATI content of wheat cultivars Janz, Sunvale, Diamond Bird, and Longreach Scout was significantly lower than that of other wheat cultivars. The MAGIC parental cultivars Baxter and Xiaoyan 54 contain higher levels (∼115% relative to the average wheat ATI content), whereas cultivar Pastor contained the lowest levels (∼87%). Comprehensive sequence analysis, annotation, chromosomal locations, and epitope mapping enabled us to build an LC-MRM-MS method to monitor and quantify the immunostimulatory ATI proteins potentially related to NCWS, autoimmune diseases, and metabolic disorders. This provides an opportunity to select wheat cultivars with significantly lower levels of ATIs.
Collapse
Affiliation(s)
- Utpal Bose
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Angéla Juhász
- School of Science, Edith Cowan University, Joondalup, WA6027, Australia
| | - James A Broadbent
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Keren Byrne
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Crispin A Howitt
- CSIRO Agriculture and Food, G.P.O. Box 1700, Canberra, ACT 2601, Australia
| | - Michelle L Colgrave
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia.,School of Science, Edith Cowan University, Joondalup, WA6027, Australia
| |
Collapse
|
14
|
Li G, Hou M, Liu Y, Pei Y, Ye M, Zhou Y, Huang C, Zhao Y, Ma H. Genome-wide identification, characterization and expression analysis of the non-specific lipid transfer proteins in potato. BMC Genomics 2019; 20:375. [PMID: 31088347 PMCID: PMC6518685 DOI: 10.1186/s12864-019-5698-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant non-specific lipid transfer proteins (nsLTPs) are small, basic proteins that are abundant in higher plants. They have been reported to play an important role in various plant physiological processes, such as lipid transfer, signal transduction, and pathogen defense. To date, a comprehensive analysis of the potato nsLTP gene family is still lacking after the completion of potato (Solanum tuberosum L.) genome sequencing. A genome-wide characterization, classification and expression analysis of the StnsLTP gene family was performed in this study. RESULTS In this study, a total of 83 nsLTP genes were identified and categorized into eight types based on Boutrot's method. Multiple characteristics of these genes, including phylogeny, gene structures, conserved motifs, protein domains, chromosome locations, and cis-elements in the promoter sequences, were analyzed. The chromosome distribution and the collinearity analyses suggested that the expansion of the StnsLTP gene family was greatly enhanced by the tandem duplications. Ka/Ks analysis showed that 47 pairs of duplicated genes tended to undergo purifying selection during evolution. Moreover, the expression of StnsLTP genes in various tissues was analyzed by using RNA-seq data and verified by quantitative real-time PCR, revealing that the StnsLTP genes were mainly expressed in younger tissues. These results indicated that StnsLTPs may played significant and functionally varied roles in the development of different tissues. CONCLUSION In this study, we comprehensively analyzed nsLTPs in potato, providing valuable information to better understand the functions of StnsLTPs in different tissues and pathways, especially in response to abiotic stress.
Collapse
Affiliation(s)
- Guojun Li
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Menglu Hou
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yaxue Liu
- Innovation Experimental College, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yue Pei
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Minghui Ye
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yao Zhou
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chenxi Huang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yaqi Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Haoli Ma
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
15
|
Yan J, Zhao J, Yang R, Zhao W. Bioactive peptides with antidiabetic properties: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14090] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jiai Yan
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- Collaborative innovation center of food safety and quality control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Jianguang Zhao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- Collaborative innovation center of food safety and quality control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- Collaborative innovation center of food safety and quality control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- Collaborative innovation center of food safety and quality control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| |
Collapse
|
16
|
Da Lage JL. The Amylases of Insects. INTERNATIONAL JOURNAL OF INSECT SCIENCE 2018; 10:1179543318804783. [PMID: 30305796 PMCID: PMC6176531 DOI: 10.1177/1179543318804783] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 05/26/2023]
Abstract
Alpha-amylases are major digestive enzymes that act in the first step of maltopolysaccharide digestion. In insects, these enzymes have long been studied for applied as well as purely scientific purposes. In many species, amylases are produced by multiple gene copies. Rare species are devoid of Amy gene. They are predominantly secreted in the midgut but salivary expression is also frequent, with extraoral activity. Enzymological parameters are quite variable among insects, with visible trends according to phylogeny: Coleopteran amylases have acidic optimum activity, whereas dipteran amylases have neutral preference and lepidopteran ones have clear alkaline preference. The enzyme structure shows interesting variations shaped by evolutionary convergences, such as the recurrent loss of a loop involved in substrate handling. Many works have focused on the action of plant amylase inhibitors on pest insect amylases, in the frame of crop protection by transgenesis. It appears that sensitivity or resistance to inhibitors is finely tuned and very specific and that amylases and their inhibitors have coevolved. The multicopy feature of insect amylases appears to allow tissue-specific or stage-specific regulation, but also to broaden enzymological abilities, such as pH range, and to overcome plant inhibitory defenses.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- UMR 9191 Évolution, Génomes, Comportement, Écologie,
CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette,
France
| |
Collapse
|
17
|
Peng F, Chen X, Meng T, Li E, Zhou Y, Zhang S. Hematology and serum biochemistry parameters of captive Chinese alligators (Alligator sinensis) during the active and hibernating periods. Tissue Cell 2018; 51:8-13. [PMID: 29622092 DOI: 10.1016/j.tice.2018.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/03/2018] [Accepted: 02/04/2018] [Indexed: 10/18/2022]
Abstract
The Chinese alligator Alligator sinensis is an endangered freshwater crocodilian species endemic to China. Hematology and serum biochemistry reference range are useful in the assessment and management of animal health condition. In this study, a total of 74 Chinese Alligators (30 males and 44 females) were examined to establish reference range values of hematology and serum biochemistry parameters during the active and hibernating periods. We measured and analyzed 9 hematology and 21 serum biochemistry parameters including 4 serum electrolyte parameters, and described the morphology of different types of blood cells. No statistical differences between the sexes were found for hematology parameter, while significant differences were noted for some serum biochemistry parameters, with males having greater alkaline phosphatase activity level and lower globulin concentration value than females. There were some significant differences between the two different periods with alligators during the active period possessing lower values for mean corpuscular volume, mean corpuscular hemoglobin, total bilirubin and creatine kinase, but higher values for red blood cell and white blood cell counts, monocyte percentage, aspartate aminotransferase, a-amylase, blood urea nitrogen, creatinine, triglycerides, and cholesterol. These baseline data were essential for health condition evaluation and disease diagnosis of this endangered species.
Collapse
Affiliation(s)
- Fei Peng
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xianxian Chen
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Ting Meng
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - En Li
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yongkang Zhou
- Alligator Research Center of Anhui Province, Xuancheng, 242000, China
| | - Shengzhou Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
18
|
Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Phys Chem Chem Phys 2018; 18:22129-39. [PMID: 27444142 DOI: 10.1039/c6cp03670h] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Understanding protein-protein interactions (PPIs) is quite important to elucidate crucial biological processes and even design compounds that interfere with PPIs with pharmaceutical significance. Protein-protein docking can afford the atomic structural details of protein-protein complexes, but the accurate prediction of the three-dimensional structures for protein-protein systems is still notoriously difficult due in part to the lack of an ideal scoring function for protein-protein docking. Compared with most scoring functions used in protein-protein docking, the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) methodologies are more theoretically rigorous, but their overall performance for the predictions of binding affinities and binding poses for protein-protein systems has not been systematically evaluated. In this study, we first evaluated the performance of MM/PBSA and MM/GBSA to predict the binding affinities for 46 protein-protein complexes. On the whole, different force fields, solvation models, and interior dielectric constants have obvious impacts on the prediction accuracy of MM/GBSA and MM/PBSA. The MM/GBSA calculations based on the ff02 force field, the GB model developed by Onufriev et al. and a low interior dielectric constant (εin = 1) yield the best correlation between the predicted binding affinities and the experimental data (rp = -0.647), which is better than MM/PBSA (rp = -0.523) and a number of empirical scoring functions used in protein-protein docking (rp = -0.141 to -0.529). Then, we examined the capability of MM/GBSA to identify the possible near-native binding structures from the decoys generated by ZDOCK for 43 protein-protein systems. The results illustrate that the MM/GBSA rescoring has better capability to distinguish the correct binding structures from the decoys than the ZDOCK scoring. Besides, the optimal interior dielectric constant of MM/GBSA for re-ranking docking poses may be determined by analyzing the characteristics of protein-protein binding interfaces. Considering the relatively high prediction accuracy and low computational cost, MM/GBSA may be a good choice for predicting the binding affinities and identifying correct binding structures for protein-protein systems.
Collapse
Affiliation(s)
- Fu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Hui Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Huiyong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China. and State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
19
|
Yoshisada R, van Gijzel L, Jongkees SAK. Towards Tuneable Retaining Glycosidase-Inhibiting Peptides by Mimicry of a Plant Flavonol Warhead. Chembiochem 2017; 18:2333-2339. [PMID: 28984404 DOI: 10.1002/cbic.201700457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Indexed: 11/06/2022]
Abstract
Retaining glycosidases are an important class of enzymes involved in glycan degradation. To study better the role of specific enzymes in deglycosylation processes, and thereby the importance of particular glycosylation patterns, a set of potent inhibitors, each specific to a particular glycosidase, would be an invaluable toolkit. Towards this goal, we detail here a more in-depth study of a prototypical macrocyclic peptide inhibitor of the model retaining glycosidase human pancreatic α-amylase (HPA). Notably, incorporation of l-DOPA into this peptide affords an inhibitor of HPA with potency that is tenfold higher (Ki =480 pm) than that of the previously found consensus sequence. This represents a first successful step in converting a recently discovered natural-product-derived motif, already specific for the catalytic side-chain arrangement conserved in the active sites of retaining glycosidases, into a tuneable retaining glycosidase inhibition warhead.
Collapse
Affiliation(s)
- Ryoji Yoshisada
- Department of Chemical Biology and Drug Discovery, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584CG, The Netherlands
| | - Lieke van Gijzel
- Department of Chemical Biology and Drug Discovery, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584CG, The Netherlands
| | - Seino A K Jongkees
- Department of Chemical Biology and Drug Discovery, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584CG, The Netherlands
| |
Collapse
|
20
|
Bhide AJ, Channale SM, Yadav Y, Bhattacharjee K, Pawar PK, Maheshwari VL, Gupta VS, Ramasamy S, Giri AP. Genomic and functional characterization of coleopteran insect-specific α-amylase inhibitor gene from Amaranthus species. PLANT MOLECULAR BIOLOGY 2017; 94:319-332. [PMID: 28405784 DOI: 10.1007/s11103-017-0609-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
The smallest 32 amino acid α-amylase inhibitor from Amaranthus hypochondriacus (AAI) is reported. The complete gene of pre-protein (AhAI) encoding a 26 amino acid (aa) signal peptide followed by the 43 aa region and the previously identified 32 aa peptide was cloned successfully. Three cysteine residues and one disulfide bond conserved within known α-amylase inhibitors were present in AhAI. Identical genomic and open reading frame was found to be present in close relatives of A. hypochondriacus namely Amaranthus paniculatus, Achyranthes aspera and Celosia argentea. Interestingly, the 3'UTR of AhAI varied in these species. The highest expression of AhAI was observed in A. hypochondriacus inflorescence; however, it was not detected in the seed. We hypothesized that the inhibitor expressed in leaves and inflorescence might be transported to the seeds. Sub-cellular localization studies clearly indicated the involvement of AhAI signal peptide in extracellular secretion. Full length rAhAI showed differential inhibition against α-amylases from human, insects, fungi and bacteria. Particularly, α-amylases from Helicoverpa armigera (Lepidoptera) were not inhibited by AhAI while Tribolium castaneum and Callosobruchus chinensis (Coleoptera) α-amylases were completely inhibited. Molecular docking of AhAI revealed tighter interactions with active site residues of T. castaneum α-amylase compared to C. chinensis α-amylase, which could be the rationale behind the disparity in their IC50. Normal growth, development and adult emergence of C. chinensis were hampered after feeding on rAhAI. Altogether, the ability of AhAI to affect the growth of C. chinensis demonstrated its potential as an efficient bio-control agent, especially against stored grain pests.
Collapse
Affiliation(s)
- Amey J Bhide
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Sonal M Channale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Yashpal Yadav
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Kabita Bhattacharjee
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Pankaj K Pawar
- Department of Biochemistry, Shivaji University, Kolhapur, 416 004, India
| | - V L Maheshwari
- School of Life Sciences, North Maharashtra University, Jalgaon, 425 001, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Sureshkumar Ramasamy
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.
| |
Collapse
|
21
|
Møller MS, Svensson B. Structural biology of starch-degrading enzymes and their regulation. Curr Opin Struct Biol 2016; 40:33-42. [DOI: 10.1016/j.sbi.2016.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 02/05/2023]
|
22
|
Cuccioloni M, Mozzicafreddo M, Ali I, Bonfili L, Cecarini V, Eleuteri AM, Angeletti M. Interaction between wheat alpha-amylase/trypsin bi-functional inhibitor and mammalian digestive enzymes: Kinetic, equilibrium and structural characterization of binding. Food Chem 2016; 213:571-578. [PMID: 27451220 DOI: 10.1016/j.foodchem.2016.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/05/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Abstract
Alpha-amylase/trypsin bi-functional inhibitors (ATIs) are non-gluten protein components of wheat and other cereals that can hypersensitise the human gastrointestinal tract, eventually causing enteropathies in predisposed individuals. These inhibitory proteins can act both directly by targeting specific pro-inflammatory receptors, and indirectly by impairing the activity of digestive enzymes, the latter event causing the accumulation of undigested peptides with potential immunogenic properties. Herein, according to a concerted approach based on in vitro and in silico methods we characterized kinetics, equilibrium parameters and modes of binding of the complexes formed between wheat ATI and two representative mammalian digestive enzymes, namely trypsin and alpha-amylase. Interestingly, we demonstrated ATI to target both enzymes with independent binding sites and with moderately high affinity.
Collapse
Affiliation(s)
- Massimiliano Cuccioloni
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, 62032 Camerino (MC), Italy.
| | - Matteo Mozzicafreddo
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, 62032 Camerino (MC), Italy
| | - Ishtiaq Ali
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, 62032 Camerino (MC), Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, 62032 Camerino (MC), Italy
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, 62032 Camerino (MC), Italy
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, 62032 Camerino (MC), Italy
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, 62032 Camerino (MC), Italy
| |
Collapse
|
23
|
Channale SM, Bhide AJ, Yadav Y, Kashyap G, Pawar PK, Maheshwari VL, Ramasamy S, Giri AP. Characterization of two coleopteran α-amylases and molecular insights into their differential inhibition by synthetic α-amylase inhibitor, acarbose. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 74:1-11. [PMID: 27132147 DOI: 10.1016/j.ibmb.2016.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
Post-harvest insect infestation of stored grains makes them unfit for human consumption and leads to severe economic loss. Here, we report functional and structural characterization of two coleopteran α-amylases viz. Callosobruchus chinensis α-amylase (CcAmy) and Tribolium castaneum α-amylase (TcAmy) along with their interactions with proteinaceous and non-proteinaceous α-amylase inhibitors. Secondary structural alignment of CcAmy and TcAmy with other coleopteran α-amylases revealed conserved motifs, active sites, di-sulfide bonds and two point mutations at spatially conserved substrate or inhibitor-binding sites. Homology modeling and molecular docking showed structural differences between these two enzymes. Both the enzymes had similar optimum pH values but differed in their optimum temperature. Overall, pattern of enzyme stabilities were similar under various temperature and pH conditions. Further, CcAmy and TcAmy differed in their substrate affinity and catalytic efficiency towards starch and amylopectin. HPLC analysis detected common amylolytic products like maltose and malto-triose while glucose and malto-tetrose were unique in CcAmy and TcAmy catalyzed reactions respectively. At very low concentrations, wheat α-amylase inhibitor was found to be superior over the acarbose as far as complete inhibition of amylolytic activities of CcAmy and TcAmy was concerned. Mechanism underlying differential amylolytic reaction inhibition by acarbose was discussed.
Collapse
Affiliation(s)
- Sonal M Channale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Amey J Bhide
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Yashpal Yadav
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Garima Kashyap
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Pankaj K Pawar
- Department of Biochemistry, Shivaji University, Kolhapur 416 004, MS, India
| | - V L Maheshwari
- School of Life Sciences, North Maharashtra University, Jalgaon 425 001, MS, India
| | - Sureshkumar Ramasamy
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India.
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India.
| |
Collapse
|
24
|
Grosse-Holz FM, van der Hoorn RAL. Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants. THE NEW PHYTOLOGIST 2016; 210:794-807. [PMID: 26800491 DOI: 10.1111/nph.13839] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/01/2015] [Indexed: 05/13/2023]
Abstract
Multifunctional protease inhibitors juggle jobs by targeting different enzymes and thereby often controlling more than one biological process. Here, we discuss the biological functions, mechanisms and evolution of three types of multifunctional protease inhibitors in plants. The first type is double-headed inhibitors, which feature two inhibitory sites targeting proteases with different specificities (e.g. Bowman-Birk inhibitors) or even different hydrolases (e.g. α-amylase/protease inhibitors preventing both early germination and seed predation). The second type consists of multidomain inhibitors which evolved by intragenic duplication and are released by processing (e.g. multicystatins and potato inhibitor II, implicated in tuber dormancy and defence, respectively). The third type consists of promiscuous inhibitory folds which resemble mouse traps that can inhibit different proteases cleaving the bait they offer (e.g. serpins, regulating cell death, and α-macroglobulins). Understanding how multifunctional inhibitors juggle biological jobs increases our knowledge of the connections between the networks they regulate. These examples show that multifunctionality evolved independently from a remarkable diversity of molecular mechanisms that can be exploited for crop improvement and provide concepts for protein design.
Collapse
Affiliation(s)
- Friederike M Grosse-Holz
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
25
|
Møller MS, Vester-Christensen MB, Jensen JM, Hachem MA, Henriksen A, Svensson B. Crystal structure of barley limit dextrinase-limit dextrinase inhibitor (LD-LDI) complex reveals insights into mechanism and diversity of cereal type inhibitors. J Biol Chem 2015; 290:12614-29. [PMID: 25792743 DOI: 10.1074/jbc.m115.642777] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 12/11/2022] Open
Abstract
Molecular details underlying regulation of starch mobilization in cereal seed endosperm remain unknown despite the paramount role of this process in plant growth. The structure of the complex between the starch debranching enzyme barley limit dextrinase (LD), hydrolyzing α-1,6-glucosidic linkages, and its endogenous inhibitor (LDI) was solved at 2.7 Å. The structure reveals an entirely new and unexpected binding mode of LDI as compared with previously solved complex structures of related cereal type family inhibitors (CTIs) bound to glycoside hydrolases but is structurally analogous to binding of dual specificity CTIs to proteases. Site-directed mutagenesis establishes that a hydrophobic cluster flanked by ionic interactions in the protein-protein interface is vital for the picomolar affinity of LDI to LD as assessed by analysis of binding by using surface plasmon resonance and also supported by LDI inhibition of the enzyme activity. A phylogenetic analysis identified four LDI-like proteins in cereals among the 45 sequences from monocot databases that could be classified as unique CTI sequences. The unprecedented binding mechanism shown here for LDI has likely evolved in cereals from a need for effective inhibition of debranching enzymes having characteristic open active site architecture. The findings give a mechanistic rationale for the potency of LD activity regulation and provide a molecular understanding of the debranching events associated with optimal starch mobilization and utilization during germination. This study unveils a hitherto not recognized structural basis for the features endowing diversity to CTIs.
Collapse
Affiliation(s)
- Marie S Møller
- From Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark and the Protein Chemistry Group, Carlsberg Laboratory, DK-1799 København V, Denmark
| | - Malene B Vester-Christensen
- From Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark and the Protein Chemistry Group, Carlsberg Laboratory, DK-1799 København V, Denmark
| | - Johanne M Jensen
- From Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark and the Protein Chemistry Group, Carlsberg Laboratory, DK-1799 København V, Denmark
| | - Maher Abou Hachem
- From Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark and
| | - Anette Henriksen
- the Protein Chemistry Group, Carlsberg Laboratory, DK-1799 København V, Denmark
| | - Birte Svensson
- From Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark and
| |
Collapse
|
26
|
Wei K, Zhong X. Non-specific lipid transfer proteins in maize. BMC PLANT BIOLOGY 2014; 14:281. [PMID: 25348423 PMCID: PMC4226865 DOI: 10.1186/s12870-014-0281-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/09/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND In plant, non-specific lipid transfer proteins (nsLTPs) are small, basic proteins that have been reported to be involved in numerous biological processes such as transfer of phospholipids, reproductive development, pathogen defence and abiotic stress response. To date, only a tiny fraction of plant nsLTPs have been functionally identified, and even fewer have been identified in maize [Zea mays (Zm)]. RESULTS In this study, we carried out a genome-wide analysis of nsLTP gene family in maize and identified 63 nsLTP genes, which can be divided into five types (1, 2, C, D and G). Similar intron/exon structural patterns were observed in the same type, strongly supporting their close evolutionary relationship. Gene duplication analysis indicated that both tandem and segmental duplication contribute to the diversification of this gene family. Additionally, the three-dimensional structures of representative nsLTPs were studied with homology modeling to understand their molecular functions. Gene ontology analysis was performed to obtain clues about biological function of the maize nsLTPs (ZmLTPs). The analyses of putative upstream regulatory elements showed both shared and distinct transcriptional regulation motifs of ZmLTPs, further indicating that ZmLTPs may play roles in diverse biological processes. The dynamic expression patterns of ZmLTPs family across the different developmental stages showed that several of them exhibit tissue-specific expression, indicative of their important roles in maize life cycle. Furthermore, we focused on the roles of maize nsLTPs in biotic and abiotic stress responses. Our analyses demonstrated that some ZmLTPs exhibited a delayed expression pattern after the infection of Ustilago maydis and differentially expressed under drought, salt and cold stresses, and these may be a great help for further studies to improve the stress resistance and tolerance in maize breeding. CONCLUSIONS Our results provide new insights into the phylogenetic relationships and characteristic functions of maize nsLTPs and will be useful in studies aimed at revealing the global regulatory network in maize development and stress responses, thereby contributing to the maize molecular breeding with enhanced quality traits.
Collapse
Affiliation(s)
- Kaifa Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, 363000 China
| | - Xiaojun Zhong
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, 363000 China
| |
Collapse
|
27
|
Sorkhabi-Abdolmaleki S, Zibaee A, Hoda H, Fazeli-Dinan M. Purification and characterization of midgut α-amylase in a predatory bug, Andralus spinidens. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:65. [PMID: 25373212 PMCID: PMC4207512 DOI: 10.1093/jis/14.1.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 01/31/2013] [Indexed: 06/04/2023]
Abstract
α-Amylases are widespread enzymes that catalyze endohydrolysis of long α-1,4-glucan chains such as starch and glycogen. The highest amylolytic activity was found in 5th instar nymphs and midgut of the predatory bug, Andrallus spinidens F. (Hemiptera: Pentatomidae). The α-amylase was purified following a three-step procedure. The purified α-amylase had a specific activity of 13.46 U/mg protein, recovery of 4.21, purification fold of 13.87, and molecular weight of 21.3 kDa. The enzyme had optimal pH and temperature of 7 and 45°C, respectively. Na+, Mn+, Mg2+, and Zn2+ significantly decreased activity of the purified α-amylase, but some concentrations of K+, Ca2+, and Cu2+ had the opposite effect. EDTA, EGTA, and DTC significantly decreased enzymatic activity, showing the presence of metal ions in the catalytic site of the enzyme. Kinetic parameters of the purified α-amylase showed a Km of 3.71% in starch and 4.96% for glycogen, suggesting that the enzyme had a higher affinity for starch.
Collapse
Affiliation(s)
| | - Arash Zibaee
- Biological Control Department, Iranian Research Institute of Plant Protection, Amol, Iran
| | - Hassan Hoda
- Biological Control Department, Iranian Research Institute of Plant Protection, Amol, Iran
| | - Mahmoud Fazeli-Dinan
- Department of Medical Entomology, Health Sciences Research Center, Faculty of Health, Mazandaran University of Medical Science, Sari, Iran
| |
Collapse
|
28
|
Lagarda-Diaz I, Geiser D, Guzman-Partida AM, Winzerling J, Vazquez-Moreno L. Recognition and binding of the PF2 lectin to α-amylase from Zabrotes subfasciatus (Coleoptera:Bruchidae) larval midgut. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:ieu066. [PMID: 25528751 PMCID: PMC5633945 DOI: 10.1093/jisesa/ieu066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/22/2013] [Indexed: 05/31/2023]
Abstract
Amylases are an important family of enzymes involved in insect carbohydrate metabolism that are required for the survival of insect larvae. For this reason, enzymes from starch-dependent insects are targets for insecticidal control. PF2 (Olneya tesota) is a lectin that is toxic to Zabrotes subfasciatus (Coleoptera: Bruchidae) larvae. In this study, we evaluated recognition of the PF2 lectin to α-amylases from Z. subfasciatus midgut and the effect of PF2 on α-amylase activity. PF2 caused a decrease of total amylase activity in vitro. Subsequently, several α-amylase isoforms were isolated from insect midgut tissues using ion exchange chromatography. Three enzyme isoforms were verified by an in-gel assay for amylase activity; however, only one isoform was recognized by antiamylase serum and PF2. The identity of this Z. subfasciatus α-amylase was confirmed by liquid chromatography-tandem mass spectrometry. The findings strongly suggest that a glycosylated α-amylase isoform from larval Z. subfasciatus midgut interacts with PF2, which interferes with starch digestion.
Collapse
Affiliation(s)
- I Lagarda-Diaz
- Coordinación de Ciencia de los Alimentos, Centro de Investigación en Alimentación y Desarrollo, A.C. Apartado Postal 1735, Hermosillo, México
| | - D Geiser
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721
| | - A M Guzman-Partida
- Coordinación de Ciencia de los Alimentos, Centro de Investigación en Alimentación y Desarrollo, A.C. Apartado Postal 1735, Hermosillo, México
| | - J Winzerling
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721
| | - L Vazquez-Moreno
- Coordinación de Ciencia de los Alimentos, Centro de Investigación en Alimentación y Desarrollo, A.C. Apartado Postal 1735, Hermosillo, México
| |
Collapse
|
29
|
Gasparis S, Orczyk W, Nadolska-Orczyk A. Sina and Sinb genes in triticale do not determine grain hardness contrary to their orthologs Pina and Pinb in wheat. BMC PLANT BIOLOGY 2013; 13:190. [PMID: 24279512 PMCID: PMC4222565 DOI: 10.1186/1471-2229-13-190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/20/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND Secaloindoline a (Sina) and secaloindoline b (Sinb) genes of hexaploid triticale (x Triticosecale Wittmack) are orthologs of puroindoline a (Pina) and puroindoline b (Pinb) in hexaploid wheat (Triticum aestivum L.). It has already been proven that RNA interference (RNAi)-based silencing of Pina and Pinb genes significantly decreased the puroindoline a and puroindoline b proteins in wheat and essentially increased grain hardness (J Exp Bot 62:4025-4036, 2011). The function of Sina and Sinb in triticale was tested by means of RNAi silencing and compared to wheat. RESULTS Novel Sina and Sinb alleles in wild-type plants of cv. Wanad were identified and their expression profiles characterized. Alignment with wheat Pina-D1a and Pinb-D1a alleles showed 95% and 93.3% homology with Sina and Sinb coding sequences. Twenty transgenic lines transformed with two hpRNA silencing cassettes directed to silence Sina or Sinb were obtained by the Agrobacterium-mediated method. A significant decrease of expression of both Sin genes in segregating progeny of tested T1 lines was observed independent of the silencing cassette used. The silencing was transmitted to the T4 kernel generation. The relative transcript level was reduced by up to 99% in T3 progeny with the mean for the sublines being around 90%. Silencing of the Sin genes resulted in a substantial decrease of secaloindoline a and secaloindoline b content. The identity of SIN peptides was confirmed by mass spectrometry. The hardness index, measured by the SKCS (Single Kernel Characterization System) method, ranged from 22 to 56 in silent lines and from 37 to 49 in the control, and the mean values were insignificantly lower in the silent ones, proving increased softness. Additionally, the mean total seed protein content of silenced lines was about 6% lower compared with control lines. Correlation coefficients between hardness and transcript level were weakly positive. CONCLUSIONS We documented that RNAi-based silencing of Sin genes resulted in significant decrease of their transcripts and the level of both secaloindoline proteins, however did not affect grain hardness. The unexpected, functional differences of Sin genes from triticale compared with their orthologs, Pin of wheat, are discussed.
Collapse
MESH Headings
- Agrobacterium/metabolism
- Alleles
- Crosses, Genetic
- Edible Grain/genetics
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Gene Silencing
- Genes, Plant/genetics
- Hardness
- Indoles/metabolism
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Quantitative Trait, Heritable
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Seeds/chemistry
- Seeds/genetics
- Sequence Alignment
- Sequence Homology, Nucleic Acid
- Transformation, Genetic
- Triticum/genetics
Collapse
Affiliation(s)
- Sebastian Gasparis
- Department of Functional Genetics, Plant Breeding and Acclimatization Institute – National Research Institute, Radzikow, 05-870 Blonie, Poland
| | - Waclaw Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute – National Research Institute, Radzikow, 05-870 Blonie, Poland
| | - Anna Nadolska-Orczyk
- Department of Functional Genetics, Plant Breeding and Acclimatization Institute – National Research Institute, Radzikow, 05-870 Blonie, Poland
| |
Collapse
|
30
|
da Silva MCM, Del Sarto RP, Lucena WA, Rigden DJ, Teixeira FR, Bezerra CDA, Albuquerque EVS, Grossi-de-Sa MF. Employing in vitro directed molecular evolution for the selection of α-amylase variant inhibitors with activity toward cotton boll weevil enzyme. J Biotechnol 2013; 167:377-85. [PMID: 23892157 DOI: 10.1016/j.jbiotec.2013.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 01/30/2023]
Abstract
Numerous species of insect pests attack cotton plants, out of which the cotton boll weevil (Anthonomus grandis) is the main insect in Brazil and must be controlled to avert large economic losses. Like other insect pests, A. grandis secretes a high level of α-amylases in the midgut lumen, which are required for digestion of carbohydrates. Thus, α-amylase inhibitors (α-AIs) represent a powerful tool to apply in the control of insect pests. Here, we applied DNA shuffling and phage display techniques and obtained a combinatorial library containing 10⁸ α-AI variant forms. From this library, variants were selected exhibiting in vitro affinity for cotton boll weevil α-amylases. Twenty-six variant sequences were cloned into plant expression vectors and expressed in Arabidopsis thaliana. Transformed plant extracts were assayed in vitro to select specific and potent α-amylase inhibitors against boll weevil amylases. While the wild type inhibitors, used to create the shuffled library, did not inhibit the A. grandis α-amylases, three α-AI mutants, named α-AIC3, α-AIA11 and α-AIG4 revealed high inhibitory activities against A. grandis α-amylases in an in vitro assay. In summary, data reported here shown the potential biotechnology of new α-AI variant genes for cotton boll weevil control.
Collapse
Affiliation(s)
- Maria Cristina Mattar da Silva
- Embrapa Recursos Genéticos e Biotecnologia, Laboratório Interação Molecular Planta Praga, Asa Norte, Brasília, DF 70770-917, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Capocchi A, Muccilli V, Cunsolo V, Saletti R, Foti S, Fontanini D. A heterotetrameric alpha-amylase inhibitor from emmer (Triticum dicoccon Schrank) seeds. PHYTOCHEMISTRY 2013; 88:6-14. [PMID: 23320956 DOI: 10.1016/j.phytochem.2012.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/04/2012] [Accepted: 12/17/2012] [Indexed: 06/01/2023]
Abstract
Plants have developed a constitutive defense system against pest attacks, which involves the expression of a set of inhibitors acting on heterologous amylases of different origins. Investigating the soluble protein complement of the hulled wheat emmer we have isolated and characterized a heterotetrameric α-amylase inhibitor (ETI). Based on mass spectrometry data, it is an assembly of proteins highly similar to the CM2/CM3/CM16 found in durum wheat. Our data indicate that these proteins can also inhibit exogenous α-amylases in binary assemblies. The calculated dissociation constants (K(i)) for the pancreatic porcine amylase- and human salivary amylase-ETI complexes are similar to those found in durum and soft wheat. Homology modeling of the CM subunits indicate structural similarities with other proteins belonging to the cereal family of trypsin/α-amylase inhibitors; a possible homology modeled structure for a tetrameric assembly of the subunits is proposed.
Collapse
Affiliation(s)
- A Capocchi
- Department of Biology, University of Pisa, Via L. Ghini 5, 56126 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Wang HW, Hwang SG, Karuppanapandian T, Liu A, Kim W, Jang CS. Insight into the molecular evolution of non-specific lipid transfer proteins via comparative analysis between rice and sorghum. DNA Res 2012; 19:179-94. [PMID: 22368182 PMCID: PMC3325081 DOI: 10.1093/dnares/dss003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phylogenetic analysis was conducted on 9 kDa non-specific lipid transfer protein (nsLTP) genes from nine plant species. Each of the five classified types in angiosperms exhibited eight conserved cysteine patterns. The most abundant nsLTP genes fell into the type I category, which was particularly enriched in a grass-specific lineage of clade I.1. Six pairs of tandem copies of nsLTP genes on the distal region of rice chromosomes 11 and 12 were well-preserved under concerted evolution, which was not observed in sorghum. The transgenic promoter–reporter assay revealed that both rice and sorghum nsLTP genes of type I displayed a relatively conserved expression feature in the epidermis of growing tissue, supporting its functional roles in cutin synthesis or defence against phytopathogens. For type I, the frequent expression in the stigma and seed are indicative of functional involvement in pistil–pollen interactions and seed development. By way of contrast, several type V genes were observed, mainly in the vascular bundle of the rosette as well as the young shoots, which might be related with vascular tissue differentiation or defence signalling. Compared with sorghum, the highly redundant tissue-specific expression pattern among members of rice nsLTP genes in clade I.1 suggests that concerted evolution via gene conversion favours the preservation of crucial expression motifs via the homogenization of proximal promoter sequences under high selection constraints. However, extensive regulatory subfunctionalization might also have occurred under relative low selection constraints, resulting in functional divergence at the expression level.
Collapse
Affiliation(s)
- Hong Wei Wang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
34
|
TSUKAMOTO KOKI, YOSHIKAWA TATSUYA, HOURAI YUICHIRO, FUKUI KAZUHIKO, AKIYAMA YUTAKA. DEVELOPMENT OF AN AFFINITY EVALUATION AND PREDICTION SYSTEM BY USING THE SHAPE COMPLEMENTARITY CHARACTERISTIC BETWEEN PROTEINS. J Bioinform Comput Biol 2011; 6:1133-56. [DOI: 10.1142/s0219720008003904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 03/25/2008] [Accepted: 04/28/2008] [Indexed: 11/18/2022]
Abstract
A system was developed to evaluate and predict the interaction between protein pairs by using the widely used shape complementarity search method as the algorithm for docking simulations between the proteins. This system, which we call the affinity evaluation and prediction (AEP) system, was used to evaluate the interaction between 20 protein pairs. The system first executes a "round robin" shape complementarity search of the target protein group, and evaluates the interaction of the complex structures obtained by shape complementarity search. These complex structures are selected by using a statistical procedure that we developed called "grouping". At a low prevalence of 5.0%, our AEP system predicted protein–protein interaction with 65.0% recall, 15.1% precision, 80.0% accuracy, and had an area under the curve (AUC) of 0.74. By optimizing the grouping process, our AEP system successfully predicted 13 protein pairs (among 20 pairs) that were biologically significant combinations. Our ultimate goal is to construct an affinity database that will provide crucial information obtained using our AEP system to cell biologists and drug designers.
Collapse
Affiliation(s)
- KOKI TSUKAMOTO
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - TATSUYA YOSHIKAWA
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - YUICHIRO HOURAI
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - KAZUHIKO FUKUI
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - YUTAKA AKIYAMA
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
35
|
Efficient secretory expression of functional barley limit dextrinase inhibitor by high cell-density fermentation of Pichia pastoris. Protein Expr Purif 2011; 79:217-22. [DOI: 10.1016/j.pep.2011.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 11/18/2022]
|
36
|
Mueller GA, Gosavi RA, Pomés A, Wünschmann S, Moon AF, London RE, Pedersen LC. Ara h 2: crystal structure and IgE binding distinguish two subpopulations of peanut allergic patients by epitope diversity. Allergy 2011; 66:878-85. [PMID: 21255036 DOI: 10.1111/j.1398-9995.2010.02532.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Peanut allergy affects 1% of the population and causes the most fatal food-related anaphylactic reactions. The protein Ara h 2 is the most potent peanut allergen recognized by 80-90% of peanut allergic patients. METHODS The crystal structure of the major peanut allergen Ara h 2 was determined for the first time at 2.7 Å resolution using a customized maltose-binding protein (MBP)-fusion system. IgE antibody binding to the MBP fusion construct vs the natural allergen was compared by ELISA using sera from peanut allergic patients. RESULTS The structure of Ara h 2 is a five-helix bundle held together by four disulfide bonds and related to the prolamin protein superfamily. The fold is most similar to other amylase and trypsin inhibitors. The MBP--Ara h 2 fusion construct was positively recognized by IgE from 76% of allergic patients (25/33). Two populations of patients could be identified. Subpopulation 1 (n = 14) showed an excellent correlation of IgE antibody binding to natural vs recombinant Ara h 2. Subpopulation 2 (n = 15) showed significantly reduced IgE binding to the MBP fusion protein. Interestingly, about 20% of the IgE binding in subpopulation 2 could be recovered by increasing the distance between MBP and Ara h 2 in a second construct. DISCUSSION The reduced IgE binding to the MBP--Ara h 2 of subpopulation 2 indicates that the MBP molecule protects an immunodominant epitope region near the first helix of Ara h 2. Residues involved in the epitope(s) are suggested by the crystal structure. The MBP--Ara h 2 fusion constructs will be useful to further elucidate the relevance of certain epitopes to peanut allergy.
Collapse
MESH Headings
- 2S Albumins, Plant/chemistry
- 2S Albumins, Plant/genetics
- 2S Albumins, Plant/immunology
- 2S Albumins, Plant/metabolism
- Antigens, Plant/chemistry
- Antigens, Plant/genetics
- Antigens, Plant/immunology
- Antigens, Plant/metabolism
- Arachis/genetics
- Arachis/immunology
- Arachis/metabolism
- Crystallization
- Crystallography, X-Ray
- Glycoproteins/chemistry
- Glycoproteins/genetics
- Glycoproteins/immunology
- Glycoproteins/metabolism
- Humans
- Immunodominant Epitopes/chemistry
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunoglobulin E/immunology
- Immunoglobulin E/metabolism
- Maltose-Binding Proteins/chemistry
- Maltose-Binding Proteins/genetics
- Maltose-Binding Proteins/metabolism
- Models, Molecular
- Peanut Hypersensitivity/classification
- Peanut Hypersensitivity/diagnosis
- Peanut Hypersensitivity/immunology
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- G A Mueller
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Altug C, Mengulluoglu U, Kurt E, Kaya S, Dinckaya E. A novel biosensor based on glucose oxidase for activity determination of α - amylase. ACTA ACUST UNITED AC 2011; 39:298-303. [PMID: 21574907 DOI: 10.3109/10731199.2011.574635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A glucose oxidase-based biosensor was developed for the determination of α-amylase activity. The determination method is based on monitoring the decrease in dissolved oxygen concentration related to the starch concentration, for which starch gives a reaction with α-amylase. Optimization parameters, including glucose oxidase amount, gelatin amount, and glutaraldehyde percentage for cross-linking, were investigated. The effects of pH, buffer system, and temperature on the biosensor system were also investigated. The biosensor had a linear relation to α-amylase activity and good measurement correlation between 0.66 and 9.83 U/ml. In sample analysis studies, α-amylase activity in baker's yeast was determined by the biosensor.
Collapse
Affiliation(s)
- Cagrı Altug
- Ege University, Biochemistry Department, Bornova-Izmir, Turkey
| | | | | | | | | |
Collapse
|
38
|
Do Nascimento VV, Castro HC, Abreu PA, Oliveira AEA, Fernandez JH, Araújo JDS, Machado OLT. In silico structural characteristics and α-amylase inhibitory properties of Ric c 1 and Ric c 3, allergenic 2S albumins from Ricinus communis seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4814-21. [PMID: 21425874 DOI: 10.1021/jf104638b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The major Ricinus communis allergens are the 2S albumins, Ric c 1 and Ric c 3. These proteins contain a trypsin/α-amylase inhibitor family domain, suggesting that they have a role in insect resistance. In this study, we verified that Ric c 1 and Ric c 3 inhibited the α-amylase activity of Callosobruchus maculatus, Zabrotes subfasciatus, and Tenebrio molitor (TMA) larvae as well as mammalian α-amylase. The toxicity of 2S albumin was determined through its incorporation in C. maculatus larvae as part of an artificial diet. Bioassays revealed that 2S albumin reduced larval growth by 20%. We also analyzed the tridimensional structures of Ric c 1 and Ric c 3 by (a) constructing a comparative model of Ric c 1 based on Ric c 3 NMR structure and (b) constructing the theoretical structure of the Ric c 1-TMA and Ric c 3-TMA complexes. Our biological and theoretical results revealed that Ric c 1 and Ric c 3 are a new class of α-amylase inhibitors. They could potentially be used to help design inhibitors that would be useful in diverse fields, ranging from diabetes treatment to crop protection.
Collapse
Affiliation(s)
- Viviane Veiga Do Nascimento
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Naseri B, Fathipour Y, Moharramipour S, Hosseininaveh V, Gatehouse AMR. Digestive proteolytic and amylolytic activities of Helicoverpa armigera in response to feeding on different soybean cultivars. PEST MANAGEMENT SCIENCE 2010; 66:1316-23. [PMID: 20712044 DOI: 10.1002/ps.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/23/2010] [Accepted: 06/18/2010] [Indexed: 05/29/2023]
Abstract
BACKGROUND Digestive proteolytic and amylolytic activities of the larvae of Helicoverpa armigera (Hübner) fed either on artificial diet or on different soybean cultivars (356, M4, M7, M9, Clark, Sahar, JK, BP, Williams, L17, Zane, Gorgan3 and DPX) and response of the larvae to feeding on some soybean-based protease inhibitors were studied. RESULTS The highest general and specific proteolytic activities were in artificial-diet-fed larvae. Although the highest general proteolytic activity was in the larvae fed on L17, M4 and Sahar cultivars, the lowest tryptic activity was on L17 and Sahar, which may be due to the presence of some serine protease inhibitors in these two cultivars, resulting in hyperproduction of chymotrypsin- and elastase-like enzymes in response to the inhibition of these enzymes. The highest amylolytic activity was on M4, and the lowest was on Williams and DPX. General proteolytic activity of SKTI-fed larvae was the highest compared with SBBI- and STI-fed larvae. CONCLUSION The findings demonstrated that the cultivars L17 and Sahar were partially resistant to this pest, probably because of some secondary chemicals or proteinaceous protease inhibitors of these cultivars.
Collapse
Affiliation(s)
- Bahram Naseri
- Department of Entomology, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
40
|
Geppert T, Proschak E, Schneider G. Protein-protein docking by shape-complementarity and property matching. J Comput Chem 2010; 31:1919-28. [PMID: 20087900 DOI: 10.1002/jcc.21479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We present a computational approach to protein-protein docking based on surface shape complementarity ("ProBinder"). Within this docking approach, we implemented a new surface decomposition method that considers local shape features on the protein surface. This new surface shape decomposition results in a deterministic representation of curvature features on the protein surface, such as "knobs," "holes," and "flats" together with their point normals. For the actual docking procedure, we used geometric hashing, which allows for the rapid, translation-, and rotation-free comparison of point coordinates. Candidate solutions were scored based on knowledge-based potentials and steric criteria. The potentials included electrostatic complementarity, desolvation energy, amino acid contact preferences, and a van-der-Waals potential. We applied ProBinder to a diverse test set of 68 bound and 30 unbound test cases compiled from the Dockground database. Sixty-four percent of the protein-protein test complexes were ranked with an root mean square deviation (RMSD) < 5 A to the target solution among the top 10 predictions for the bound data set. In 82% of the unbound samples, docking poses were ranked within the top ten solutions with an RMSD < 10 A to the target solution.
Collapse
Affiliation(s)
- Tim Geppert
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Organic Chemistry and Chemical Biology, LiFF/ZAFES, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
41
|
Abstract
Finger millet (Eleusine coracana) is a grass crop grown in Africa, India Nepal, and many countries of Asia. The plant and grain is resistant to drought, pests, and pathogens. It is rich in polyphenols and particularly in calcium. The double headed trypsin, α-amylase inhibitor from this grain has been isolated and characterized extensively. One major use for the grain is the making of fermented beverages after malting. α-Amylase and β-amylase are produced during germination. Food made from malted ragi is traditionally used for weaning and has been the source of low viscosity weaning foods that can deliver more energy per feed than those based on gelatinized starch. There is some evidence that foods from finger millet have a low gylcaemic index and are good for diabetic patients. Decortication, puffing, extrusion, and expansion are some of the new uses that the grain has been put to.
Collapse
|
42
|
Yezdani E, Sendi JJ, Zibaee A, Ghadamyari M. Enzymatic properties of alpha-amylase in the midgut and the salivary glands of mulberry moth, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). C R Biol 2010; 333:17-22. [PMID: 20176331 DOI: 10.1016/j.crvi.2009.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 11/01/2009] [Accepted: 11/14/2009] [Indexed: 10/19/2022]
Abstract
The pyralid moth, Glyphode pyloalis Walker, is an important pest of the mulberry. Amylases are the hydrolytic enzymes that catalyze the hydrolysis of the alpha-D-(1,4)-glucan linkage in glycogen and other related carbohydrates. Laboratory-reared fifth stadium larvae were randomly selected; the midgut (MG) and the salivary glands (SG) were removed by dissection under a dissecting microscope and alpha-amylase activity was assayed using the dinitrosalicylic acid procedure. The activity of alpha-amylase in the MG and the SG were 0.011 and 0.0018 micromol/min, respectively. The optimal pH and temperature for alpha-amylase were 9 for MG at 37-40 degrees C and 10 for SG at 37 degrees C respectively. Various concentrations of compounds (NaCl, KCl, MgCl(2), Urea, EDTA, SDS and CaCl(2)) had differential effects on the enzyme activity. Plant amylase inhibitors may play an important role against insect pests. Hence, the characterization of digestive enzymes and the examination of their inhibitors may be a useful tool in future management of this important mulberry pest.
Collapse
Affiliation(s)
- Elham Yezdani
- Department of Plant Protection, University of Guilan, Rast Ghazvin Road, PO Box. 41635, 41635, Rasht, Iran
| | | | | | | |
Collapse
|
43
|
Pytelková J, Hubert J, Lepsík M, Sobotník J, Sindelka R, Krízková I, Horn M, Mares M. Digestive alpha-amylases of the flour moth Ephestia kuehniella--adaptation to alkaline environment and plant inhibitors. FEBS J 2009; 276:3531-46. [PMID: 19476481 DOI: 10.1111/j.1742-4658.2009.07074.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The digestive tract of lepidopteran insects is extremely alkaline. In the present work, molecular adaptation of amylolytic enzymes to this environment was investigated in the flour moth Ephestia kuehniella, an important stored-product pest. Three digestive alpha-amylases [Ephestia kuehniella alpha-amylase isoenzymes 1-3 (EkAmy1-3)] with an alkaline pH optimum were purified from larvae and biochemically characterized. These isoenzymes differ significantly in their sensitivity to alpha-amylase inhibitors of plant origin that are directed against herbivores as antifeedants. Such functional variability renders the amylolytic system less vulnerable to suppression by plant defensive molecules. Moreover, we found that expression of alpha-amylases is upregulated in larvae feeding on a diet enriched with an alpha-amylase inhibitor. The alpha-amylases are secreted into the larval midgut by an exocytotic mechanism, as revealed by immunogold microscopy. The cDNA sequence of EkAmy3 was determined, and a homology model of EkAmy3 was built in order to analyze the structural features responsible for adaptation to alkaline pH. First, the overall fold was found to be stabilized by remodeling of ion pairs. Second, molecular simulations supported by activity measurements showed that EkAmy3 does not bind a Cl(-), owing to an Arg-to-Gln mutation in a conserved binding site. The Cl(-)-binding residues are in contact with the catalytic residues, and this change might help to fine-tune the catalytic pK(a) values to an alkaline pH optimum. We conclude that lepidopteran alpha-amylases are evolutionarily adapted in terms of structure and expression dynamics for effective functioning in the digestive system.
Collapse
Affiliation(s)
- Jana Pytelková
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Praha, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mammalian metallopeptidase inhibition at the defense barrier of Ascaris parasite. Proc Natl Acad Sci U S A 2009; 106:1743-7. [PMID: 19179285 DOI: 10.1073/pnas.0812623106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Roundworms of the genus Ascaris are common parasites of the human gastrointestinal tract. A battery of selective inhibitors protects them from host enzymes and the immune system. Here, a metallocarboxypeptidase (MCP) inhibitor, ACI, was identified in protein extracts from Ascaris by intensity-fading MALDI-TOF mass spectrometry. The 67-residue amino acid sequence of ACI showed no significant homology with any known protein. Heterologous overexpression and purification of ACI rendered a functional molecule with nanomolar equilibrium dissociation constants against MCPs, which denoted a preference for digestive and mast cell A/B-type MCPs. Western blotting and immunohistochemistry located ACI in the body wall, intestine, female reproductive tract, and fertilized eggs of Ascaris, in accordance with its target specificity. The crystal structure of the complex of ACI with human carboxypeptidase A1, one of its potential targets in vivo, revealed a protein with a fold consisting of two tandem homologous domains, each containing a beta-ribbon and two disulfide bonds. These domains are connected by an alpha-helical segment and a fifth disulfide bond. Binding and inhibition are exerted by the C-terminal tail, which enters the funnel-like active-site cavity of the enzyme and approaches the catalytic zinc ion. The findings reported provide a basis for the biological function of ACI, which may be essential for parasitic survival during infection.
Collapse
|
45
|
Johnson MA, Pinto BM. Structural and functional studies of Peptide-carbohydrate mimicry. Top Curr Chem (Cham) 2008; 273:55-116. [PMID: 23605459 DOI: 10.1007/128_2007_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Certain peptides act as molecular mimics of carbohydrates in that they are specifically recognizedby carbohydrate-binding proteins. Peptides that bind to anti-carbohydrate antibodies, carbohydrate-processingenzymes, and lectins have been identified. These peptides are potentially useful as vaccines andtherapeutics; for example, immunologically functional peptide molecular mimics (mimotopes) can strengthenor modify immune responses induced by carbohydrate antigens. However, peptides that bind specificallyto carbohydrate-binding proteins may not necessarily show the corresponding biological activity, andfurther selection based on biochemical studies is always required. The degree of structural mimicryrequired to generate the desired biological activity is therefore an interesting question. This reviewwill discuss recent structural studies of peptide-carbohydrate mimicry employing NMR spectroscopy,X-ray crystallography, and molecular modeling, as well as relevant biochemical data. These studiesprovide insights into the basis of mimicry at the molecular level. Comparisons with other carbohydrate-mimeticcompounds, namely proteins and glycopeptides, will be drawn. Finally, implications for the designof new therapeutic compounds will also be presented.
Collapse
Affiliation(s)
- Margaret A Johnson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB-44, 92037, La Jolla, CA, USA,
| | | |
Collapse
|
46
|
Bonavides KB, Pelegrini PB, Laumann RA, Grossi-de-Sá MF, Bloch C, Melo JAT, Quirino BF, Noronha EF, Franco OL. Molecular identification of four different alpha-amylase inhibitors from baru (Dipteryx alata) seeds with activity toward insect enzymes. BMB Rep 2007; 40:494-500. [PMID: 17669264 DOI: 10.5483/bmbrep.2007.40.4.494] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endophytic bruchid pest Callosobruchus maculatus causes severe damage to storage cowpea seeds, leading to economical losses. For this reason the use of alpha-amylase inhibitors to interfere with the pest digestion process has been an interesting alternative to control bruchids. With this aim, alpha-amylase inhibitors from baru seeds (Dipteryx alata) were isolated by affinity chromatographic procedures, causing enhanced inhibition of C. maculatus and Anthonomus grandis alpha-amylases. To attempt further purification, this fraction was applied onto a reversed-phase HPLC column, generating four peaks with remarkable inhibition toward C. maculatus alpha-amylases. SDS-PAGE and MALDI-ToF analysis identified major proteins of approximately 5.0, 11.0, 20.0 and 55 kDa that showed alpha-amylase inhibition. Results of in vivo bioassays using artificial seeds containing 1.0% (w/w) of baru crude extract revealed 40% cowpea weevil larvae mortality. These results provide evidence that several alpha-amylase inhibitors classes, with biotechnological potential, can be isolated from a single plant species.
Collapse
Affiliation(s)
- Krishna B Bonavides
- Centro de Análises Proteomicas e Bioquimicas, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lin KF, Lee TR, Tsai PH, Hsu MP, Chen CS, Lyu PC. Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensin. Proteins 2007; 68:530-40. [PMID: 17444520 DOI: 10.1002/prot.21378] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structure of a novel plant defensin isolated from the seeds of the mung bean, Vigna radiate, has been determined by (1)H nuclear magnetic resonance spectroscopy. The three-dimensional structure of VrD2, the V. radiate plant defensin 2 protein, comprises an alpha-helix and one triple-stranded anti-parallel beta-sheet stabilized by four disulfide bonds. This protein exhibits neither insecticidal activity nor alpha-amylase inhibitory activity in spite of showing a similar global fold to that of VrD1, an insecticidal plant defensin that has been suggested to function by inhibiting insect alpha-amylase. Our previous study proposed that loop L3 of plant defensins is important for this inhibition. Structural analyses and surface charge comparisons of VrD1 and VrD2 revealed that the charged residues of L3 correlate with the observed difference in inhibitory activities of these proteins. A VrD2 chimera that was produced by transferring the proposed functional loop of VrD1 onto the structurally equivalent loop of VrD2 supported this hypothesis. The VrD2 chimera, which differs by only five residues compared with VrD2, showed obvious activity against Tenebrio molitor alpha-amylase. These results clarify the mode of alpha-amylase inhibition of plant defensins and also represent a possible approach for engineering novel alpha-amylase inhibitors. Plant defensins are important constituents of the innate immune system of plants, and thus the application of protein engineering to this protein family may provide an efficient method for protecting against crop losses.
Collapse
Affiliation(s)
- Ku-Feng Lin
- Department of Life Sciences, National Tsing Hua University, Hsinchu,Taiwan
| | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Liu YJ, Cheng CS, Lai SM, Hsu MP, Chen CS, Lyu PC. Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins 2006; 63:777-86. [PMID: 16544327 DOI: 10.1002/prot.20962] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Vigna radiata plant defensin 1 (VrD1) is the first reported plant defensin exhibiting insecticidal activity. We report herein the nuclear magnetic resonance solution structure of VrD1 and the implication on its insecticidal activity. The root-mean-square deviation values are 0.51 +/- 0.35 and 1.23 +/- 0.29 A for backbone and all heavy atoms, respectively. The VrD1 structure comprises a triple-stranded antiparallel beta-sheet, an alpha-helix, and a 3(10) helix stabilized by four disulfide bonds, forming a typical cysteine-stabilized alphabeta motif. Among plant defensins of known structure, VrD1 is the first to contain a 3(10) helix. Glu26 is highly conserved among defensins; VrD1 contains an arginine at this position, which may induce a shift in the orientation of Trp10, thereby promoting the formation of this 3(10) helix. Moreover, VrD1 inhibits Tenebrio molitor alpha-amylase. Alpha-amylase has an essential role in the digestion of plant starch in the insect gut, and expression of the common bean alpha-amylase inhibitor 1 in transgenic pea imparts complete resistance against bruchids. These results imply that VrD1 insecticidal activity has its basis in the inhibition of a polysaccharide hydrolase. Sequence and structural comparisons between two groups of plant defensins having different specificity toward insect alpha-amylase reveal that the loop between beta2 and beta3 is the probable binding site for the alpha-amylase. Computational docking experiments were used to study VrD1-alpha-amylase interactions, and these results provide information that may be used to improve the insecticidal activity of VrD1.
Collapse
Affiliation(s)
- Yaw-Jen Liu
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
In this issue of Chemistry and Biology, a library screening approach reveals a linear octapeptide inhibitor of alpha-amylases reached by de novo design . The selected molecule shares characteristics with naturally occurring protein inhibitors -- a result that suggests general rules for the design of peptide-based amylase inhibitors may be achievable.
Collapse
Affiliation(s)
- Nicola Pohl
- Department of Chemistry and The Plant Sciences Institute, Gilman Hall, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|