1
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Felekkis K, Pieri M, Papaneophytou C. Exploring the Feasibility of Circulating miRNAs as Diagnostic and Prognostic Biomarkers in Osteoarthritis: Challenges and Opportunities. Int J Mol Sci 2023; 24:13144. [PMID: 37685951 PMCID: PMC10487837 DOI: 10.3390/ijms241713144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by progressive cartilage degradation and joint inflammation. As the most common aging-related joint disease, OA is marked by inadequate extracellular matrix synthesis and the breakdown of articular cartilage. However, traditional diagnostic methods for OA, relying on clinical assessments and radiographic imaging, often need to catch up in detecting early-stage disease or i accurately predicting its progression. Consequently, there is a growing interest in identifying reliable biomarkers that can facilitate early diagnosis and prognosis of OA. MicroRNAs (miRNAs) have emerged as potential candidates due to their involvement in various cellular processes, including cartilage homeostasis and inflammation. This review explores the feasibility of circulating miRNAs as diagnostic and prognostic biomarkers in OA, focusing on knee OA while shedding light on the challenges and opportunities associated with their implementation in clinical practice.
Collapse
Affiliation(s)
| | | | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, Nicosia 2417, Cyprus; (K.F.); (M.P.)
| |
Collapse
|
3
|
Kong H, Sun ML, Zhang XA, Wang XQ. Crosstalk Among circRNA/lncRNA, miRNA, and mRNA in Osteoarthritis. Front Cell Dev Biol 2022; 9:774370. [PMID: 34977024 PMCID: PMC8714905 DOI: 10.3389/fcell.2021.774370] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a joint disease that is pervasive in life, and the incidence and mortality of OA are increasing, causing many adverse effects on people's life. Therefore, it is very vital to identify new biomarkers and therapeutic targets in the clinical diagnosis and treatment of OA. ncRNA is a nonprotein-coding RNA that does not translate into proteins but participates in protein translation. At the RNA level, it can perform biological functions. Many studies have found that miRNA, lncRNA, and circRNA are closely related to the course of OA and play important regulatory roles in transcription, post-transcription, and post-translation, which can be used as biological targets for the prevention, diagnosis, and treatment of OA. In this review, we summarized and described the various roles of different types of miRNA, lncRNA, and circRNA in OA, the roles of different lncRNA/circRNA-miRNA-mRNA axis in OA, and the possible prospects of these ncRNAs in clinical application.
Collapse
Affiliation(s)
- Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
4
|
Lara-Barba E, Araya MJ, Hill CN, Bustamante-Barrientos FA, Ortloff A, García C, Galvez-Jiron F, Pradenas C, Luque-Campos N, Maita G, Elizondo-Vega R, Djouad F, Vega-Letter AM, Luz-Crawford P. Role of microRNA Shuttled in Small Extracellular Vesicles Derived From Mesenchymal Stem/Stromal Cells for Osteoarticular Disease Treatment. Front Immunol 2021; 12:768771. [PMID: 34790203 PMCID: PMC8591173 DOI: 10.3389/fimmu.2021.768771] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarticular diseases (OD), such as rheumatoid arthritis (RA) and osteoarthritis (OA) are chronic autoimmune/inflammatory and age-related diseases that affect the joints and other organs for which the current therapies are not effective. Cell therapy using mesenchymal stem/stromal cells (MSCs) is an alternative treatment due to their immunomodulatory and tissue differentiation capacity. Several experimental studies in numerous diseases have demonstrated the MSCs’ therapeutic effects. However, MSCs have shown heterogeneity, instability of stemness and differentiation capacities, limited homing ability, and various adverse responses such as abnormal differentiation and tumor formation. Recently, acellular therapy based on MSC secreted factors has raised the attention of several studies. It has been shown that molecules embedded in extracellular vesicles (EVs) derived from MSCs, particularly those from the small fraction enriched in exosomes (sEVs), effectively mimic their impact in target cells. The biological effects of sEVs critically depend on their cargo, where sEVs-embedded microRNAs (miRNAs) are particularly relevant due to their crucial role in gene expression regulation. Therefore, in this review, we will focus on the effect of sEVs derived from MSCs and their miRNA cargo on target cells associated with the pathology of RA and OA and their potential therapeutic impact.
Collapse
Affiliation(s)
- Eliana Lara-Barba
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Charlotte Nicole Hill
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias Biológicas, Millennium Institute for Immunology and Immunotherapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Cynthia García
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Felipe Galvez-Jiron
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Carolina Pradenas
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Gabriela Maita
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Farida Djouad
- Institute for Regenerative Medicine and Biotherapy (IRMB), Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
| | - Ana María Vega-Letter
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
5
|
Lv Z, Yang YX, Li J, Fei Y, Guo H, Sun Z, Lu J, Xu X, Jiang Q, Ikegawa S, Shi D. Molecular Classification of Knee Osteoarthritis. Front Cell Dev Biol 2021; 9:725568. [PMID: 34513847 PMCID: PMC8429960 DOI: 10.3389/fcell.2021.725568] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/09/2021] [Indexed: 01/15/2023] Open
Abstract
Knee osteoarthritis (KOA) is the most common form of joint degeneration with increasing prevalence and incidence in recent decades. KOA is a molecular disorder characterized by the interplay of numerous molecules, a considerable number of which can be detected in body fluids, including synovial fluid, urine, and blood. However, the current diagnosis and treatment of KOA mainly rely on clinical and imaging manifestations, neglecting its molecular pathophysiology. The mismatch between participants' molecular characteristics and drug therapeutic mechanisms might explain the failure of some disease-modifying drugs in clinical trials. Hence, according to the temporal alteration of representative molecules, we propose a novel molecular classification of KOA divided into pre-KOA, early KOA, progressive KOA, and end-stage KOA. Then, progressive KOA is furtherly divided into four subtypes as cartilage degradation-driven, bone remodeling-driven, inflammation-driven, and pain-driven subtype, based on the major pathophysiology in patient clusters. Multiple clinical findings of representatively investigated molecules in recent years will be reviewed and categorized. This molecular classification allows for the prediction of high-risk KOA individuals, the diagnosis of early KOA patients, the assessment of therapeutic efficacy, and in particular, the selection of homogenous patients who may benefit most from the appropriate therapeutic agents.
Collapse
Affiliation(s)
- Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yannick Xiaofan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiawei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuxiang Fei
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hu Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ziying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Science (IMS, RIKEN), Tokyo, Japan
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
6
|
Gu W, Shi Z, Song G, Zhang H. MicroRNA-199-3p up-regulation enhances chondrocyte proliferation and inhibits apoptosis in knee osteoarthritis via DNMT3A repression. Inflamm Res 2021; 70:171-182. [PMID: 33433641 DOI: 10.1007/s00011-020-01430-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/05/2020] [Accepted: 12/10/2020] [Indexed: 01/09/2023] Open
Abstract
AIM Studies have pivoted on the position of microRNAs (miRNAs) in knee osteoarthritis (KOA) but not the more specific function of miR-199-3p. Thus, this study is to uncover the mechanism of miR-199-3p in KOA. METHODS Rats KOA models were established by modified Hulth method. miR-199-3p expression was observed in cartilage of KOA rats. The binding sites of miR-199-3p were predicted by bioinformatics analysis and the potential interaction between DNA methyltransferase 3A (DNMT3A) and miR-199-3p was verified by dual-luciferase reporter gene assay. Rats were injected with miR-199-3p agomir or antagomir and DNMT3A siRNA into the knee joint. Inflammatory response factors in serum and cartilage tissues, cell apoptosis, and pathological status of cartilage tissues were detected. Chondrocytes were isolated from KOA cartilages and treated with miR-199-3p mimic or inhibitor and DNMT3A siRNA. Chondrocyte proliferation and apoptosis were detected. RESULTS miR-199-3p expression was suppressed in cartilage of KOA rats. Dual-luciferase reporter gene assay proved that a miR-199-3p-binding site was located in the 3'UTR of DNMT3A mRNA. Inflammation, chondrocyte apoptosis and cartilage pathological changes were improved by miR-199-3p agomir but aggravated by miR-199-3p antagomir. The effects of miR-199-3p antagomir on KOA rats were partially reversed by DNMT3A siRNA. miR-199-3p mimic or DNMT3A siRNA decreased KOA chondrocytes apoptosis and promoted proliferation. miR-199-3p inhibitor showed the opposite functions to miR-199-3p mimic. The effects of miR-199-3p inhibitor on chondrocytes were reversed by DNMT3A siRNA. CONCLUSION This study highlights that miR-199-3p up-regulation or down-regulation of DNMT3A induces chondrocyte proliferation and inhibits apoptosis in KOA, which may widen our eyes to treat patients with KOA.
Collapse
Affiliation(s)
- Wenqi Gu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Zhongmin Shi
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Guoxun Song
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Hongtao Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China.
| |
Collapse
|
7
|
Huang PY, Wu JG, Gu J, Zhang TQ, Li LF, Wang SQ, Wang M. Bioinformatics analysis of miRNA and mRNA expression profiles to reveal the key miRNAs and genes in osteoarthritis. J Orthop Surg Res 2021; 16:63. [PMID: 33468167 PMCID: PMC7814623 DOI: 10.1186/s13018-021-02201-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic degenerative joint disease and the most frequent type of arthritis. This study aimed to identify the key miRNAs and genes associated with OA progression. METHODS The GSE105027 (microRNA [miRNA/miR] expression profile; 12 OA samples and 12 normal samples) and GSE48556 (messenger RNA [mRNA] expression profile; 106 OA samples and 33 normal samples) datasets were selected from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and miRNAs (DEMs) were analyzed using the limma and ROCR packages in R, respectively. The target genes that negatively correlated with the DEMs were predicted, followed by functional enrichment analysis and construction of the miRNA-gene and miRNA-transcription factor (TF)-gene regulatory networks. Additionally, key miRNAs and genes were screened, and their expression levels were verified by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS A total of 1696 DEGs (739 upregulated and 957 downregulated) and 108 DEMs (56 upregulated and 52 downregulated) were identified in the OA samples. Furthermore, 56 target genes that negatively correlated with the DEMs were predicted and found to be enriched in three functional terms (e.g., positive regulation of intracellular protein transport) and three pathways (e.g., human cytomegalovirus infection). In addition, three key miRNAs (miR-98-5p, miR-7-5p, and miR-182-5p) and six key genes (murine double minute 2, MDM2; glycogen synthase kinase 3-beta, GSK3B; transmembrane P24-trafficking protein 10, TMED10; DDB1 and CUL4-associated factor 12, DCAF12; caspase 3, CASP3; and ring finger protein 44, RNF44) were screened, among which the miR-7-5p → TMED10/DCAF12, miR-98-5p → CASP3/RNF44, and miR-182-5p → GSK3B pairs were observed in the regulatory network. Moreover, the expression levels of TMED10, miR-7-5p, CASP3, miR-98-5p, GSK3B, and miR-182-5p showed a negative correlation with qRT-PCR verification. CONCLUSION MiR-98-5p, miR-7-5p, miR-182-5p, MDM2, GSK3B, TMED10, DCAF12, CASP3, and RNF44 may play critical roles in OA progression.
Collapse
Affiliation(s)
- Pei-Yan Huang
- Department of Orthopaedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, No. 128 Ruili Road, Minhang District, Shanghai, 200240, China
| | - Jun-Guo Wu
- Department of Orthopaedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, No. 128 Ruili Road, Minhang District, Shanghai, 200240, China
| | - Jun Gu
- Department of Orthopaedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, No. 128 Ruili Road, Minhang District, Shanghai, 200240, China
| | - Tie-Qi Zhang
- Department of Orthopaedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, No. 128 Ruili Road, Minhang District, Shanghai, 200240, China
| | - Ling-Feng Li
- Department of Orthopaedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, No. 128 Ruili Road, Minhang District, Shanghai, 200240, China
| | - Si-Qun Wang
- Department of Orthopaedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, No. 128 Ruili Road, Minhang District, Shanghai, 200240, China
| | - Minghai Wang
- Department of Orthopaedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, No. 128 Ruili Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
8
|
De Luna A, Otahal A, Nehrer S. Mesenchymal Stromal Cell-Derived Extracellular Vesicles - Silver Linings for Cartilage Regeneration? Front Cell Dev Biol 2020; 8:593386. [PMID: 33363147 PMCID: PMC7758223 DOI: 10.3389/fcell.2020.593386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/19/2020] [Indexed: 01/15/2023] Open
Abstract
As the world's population is aging, the incidence of the degenerative disease Osteoarthritis (OA) is increasing. Current treatment options of OA focus on the alleviation of the symptoms including pain and inflammation rather than on restoration of the articular cartilage. Cell-based therapies including the application of mesenchymal stromal cells (MSCs) have been a promising tool for cartilage regeneration approaches. Due to their immunomodulatory properties, their differentiation potential into cells of the mesodermal lineage as well as the plurality of sources from which they can be isolated, MSCs have been applied in a vast number of studies focusing on the establishment of new treatment options for Osteoarthritis. Despite promising outcomes in vitro and in vivo, applications of MSCs are connected with teratoma formation, limited lifespan of differentiated cells as well as rejection of the cells after transplantation, highlighting the need for new cell free approaches harboring the beneficial properties of MSCs. It has been demonstrated that the regenerative potential of MSCs is mediated by the release of paracrine factors rather than by differentiation into cells of the desired tissue. Besides soluble factors, extracellular vesicles are the major component of a cell's secretome. They represent novel mechanisms by which (pathogenic) signals can be communicated between cell types as they deliver bioactive molecules (nucleic acids, proteins, lipids) from the cell of origin to the target cell leading to specific biological processes upon uptake. This review will give an overview about extracellular vesicles including general characteristics, isolation methods and characterization approaches. Furthermore, the role of MSC-derived extracellular vesicles in in vitro and in vivo studies for cartilage regeneration will be summarized with special focus on transported miRNA which either favored the progression of OA or protected the cartilage from degradation. In addition, studies will be reviewed investigating the impact of MSC-derived extracellular vesicles on inflammatory arthritis. As extracellular vesicles are present in all body fluids, their application as potential biomarkers for OA will also be discussed in this review. Finally, studies exploring the combination of MSC-derived extracellular vesicles with biomaterials for tissue engineering approaches are summarized.
Collapse
Affiliation(s)
- Andrea De Luna
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, Danube University Krems, Krems an der Donau, Austria
| | | | | |
Collapse
|
9
|
Duan L, Liang Y, Xu X, Xiao Y, Wang D. Recent progress on the role of miR-140 in cartilage matrix remodelling and its implications for osteoarthritis treatment. Arthritis Res Ther 2020; 22:194. [PMID: 32811552 PMCID: PMC7437174 DOI: 10.1186/s13075-020-02290-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 01/15/2023] Open
Abstract
Cartilage matrix remodelling homeostasis is a crucial factor in maintaining cartilage integrity. Loss of cartilage integrity is a typical characteristic of osteoarthritis (OA). Strategies aimed at maintaining cartilage integrity have attracted considerable attention in the OA research field. Recently, a series of studies have suggested dual functions of microRNA-140 (miR-140) in cartilage matrix remodelling. Here, we discuss the significance of miR-140 in promoting cartilage formation and inhibiting degeneration. Additionally, we focused on the role of miR-140 in the chondrogenesis of mesenchymal stem cells (MSCs). Of note, we carefully reviewed recent advances in MSC exosomes for miRNA delivery in OA treatment.
Collapse
Affiliation(s)
- Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Yujie Liang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.,Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518003, China
| | - Xiao Xu
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Faculty of Science and Engineering, Queensland University of Technology, Kelvin Grove Campus, Brisbane, QLD, 4059, Australia
| | - Daping Wang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China. .,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
10
|
MIR-140-5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting HMGB1 in osteoarthritis. Inflamm Res 2019; 69:63-73. [PMID: 31712854 DOI: 10.1007/s00011-019-01294-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 09/11/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This study aimed to test the expression and biological function of miR-140-5p in osteoarthritis (OA), and identify its target gene and explore its mechanism in OA. METHODS Differential genes were screened and analyzed by gene microarray and WGCNA analysis. The normal human chondrocytes C28/I2 were induced by IL-1β to construct the OA cell model. The expression of miR-140-5p and high mobility group box 1 (HMGB1) was quantified by quantitative real-time PCR (qRT-PCR) in OA tissues and IL-1β-induced chondrocytes. Western blotting was performed to evaluate the expression of HMGB1 and PI3K/AKT pathway activation. The concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-6, MMP-1 and MMP-3 were determined by ELISA. CCK-8 and flow cytometry were conducted to determine the cellular capabilities of proliferation and cell apoptosis. RESULTS Bioinformatics analysis demonstrated that HMGB1 was highly expressed in OA and activated PI3K/AKT pathway. Also, HMGB1 was predicted as a target of miR-140-5p. The levels of miR-140-5p were negatively correlated with HMGB1 in OA tissues and IL-1β-induced chondrocytes. The overexpression of miR-140-5p reduced the expression of HMGB1 protein, p-AKT (Ser473) and p-PI3K in IL-1β-induced chondrocytes. Besides, the expression of p-AKT (Ser473) and p-PI3K was significantly upregulated by employing miR-140-5p inhibitor, but retrieved after treating with LY294002. Furthermore, miR-140-5p inhibited inflammation, matrix metalloprotease expression and apoptosis in IL-1β-induced chondrocytes through regulating HMGB1. CONCLUSION MiR-140-5p was down-regulated while HMGB1 was upregulated in OA. MiR-140-5p could inhibit the PI3K/AKT signaling pathway and suppress the progression of OA through targeting HMGB1.
Collapse
|
11
|
miR-140 Attenuates the Progression of Early-Stage Osteoarthritis by Retarding Chondrocyte Senescence. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:15-30. [PMID: 31790972 PMCID: PMC6909049 DOI: 10.1016/j.omtn.2019.10.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/01/2019] [Accepted: 10/25/2019] [Indexed: 02/05/2023]
Abstract
Osteoarthritis (OA) is a major cause of joint pain and disability, and chondrocyte senescence is a key pathological process in OA and may be a target of new therapeutics. MicroRNA-140 (miR-140) plays a protective role in OA, but little is known about its epigenetic effect on chondrocyte senescence. In this study, we first validated the features of chondrocyte senescence characterized by increased cell cycle arrest in the G0/G1 phase and the expression of senescence-associated β-galactosidase (SA-βGal), p16INK4a, p21, p53, and γH2AX in human knee OA. Then, we revealed in interleukin 1β (IL-1β)-induced OA chondrocytes in vitro that pretransfection with miR-140 effectively inhibited the expression of SA-βGal, p16INK4a, p21, p53, and γH2AX. Furthermore, in vivo results from trauma-induced early-stage OA rats showed that intra-articularly injected miR-140 could rapidly reach the chondrocyte cytoplasm and induce molecular changes similar to the in vitro results, resulting in a noticeable alleviation of OA progression. Finally, bioinformatics analysis predicted the potential targets of miR-140 and a mechanistic network by which miR-140 regulates chondrocyte senescence. Collectively, miR-140 can effectively attenuate the progression of early-stage OA by retarding chondrocyte senescence, contributing new evidence of the involvement of miR-mediated epigenetic regulation of chondrocyte senescence in OA pathogenesis.
Collapse
|
12
|
Fan L, Li M, Cao FY, Zeng ZW, Li XB, Ma C, Ru JT, Wu XJ. Astragalus polysaccharide ameliorates lipopolysaccharide-induced cell injury in ATDC5 cells via miR-92a/KLF4 mediation. Biomed Pharmacother 2019; 118:109180. [DOI: 10.1016/j.biopha.2019.109180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
|
13
|
Si H, Liang M, Cheng J, Shen B. [Effects of cartilage progenitor cells and microRNA-140 on repair of osteoarthritic cartilage injury]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:650-658. [PMID: 31090363 PMCID: PMC8337193 DOI: 10.7507/1002-1892.201806060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 03/12/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To summarize the effect of cartilage progenitor cells (CPCs) and microRNA-140 (miR-140) on the repair of osteoarthritic cartilage injury, and analyze their clinical prospects. METHODS The recent researches regarding the CPCs, miR-140, and repair of cartilage in osteoarthritis (OA) disease were extensively reviewed and summarized. RESULTS CPCs possess the characteristics of self-proliferation, expression of stem cell markers, and multi-lineage differentiation potential, and their chondrogenic ability is superior to other tissues-derived mesenchymal stem cells. CPCs are closely related to the development of OA, but the autonomic activation and chondrogenic ability of CPCs around the osteoarthritic cartilage lesion cannot meet the requirements of complete cartilage repair. miR-140 specifically express in cartilage, and has the potential to activate CPCs by inhibiting key molecules of Notch signaling pathway and enhance its chondrogenic ability, thus promoting the repair of osteoarthritic cartilage injury. Intra-articular delivery of drugs is one of the main methods of OA treatment, although intra-articular injection of miR-140 has a significant inhibitory effect on cartilage degeneration in rats, it also exhibit some limitations such as non-targeted aggregation, low bioavailability, and rapid clearance. So it is a good application prospect to construct a carrier with good safety, cartilage targeting, and high-efficiency for miR-140 based on articular cartilage characteristics. In addition, CPCs are mainly dispersed in the cartilage surface, while OA cartilage injury also begins from this layer, it is therefore essential to emphasize early intervention of OA. CONCLUSION miR-140 has the potential to activate CPCs and promote the repair of cartilage injury in early OA, and it is of great clinical significance to further explore the role of miR-140 in OA etiology and to develop new OA treatment strategies based on miR-140.
Collapse
Affiliation(s)
- Haibo Si
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Mingwei Liang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jingqiu Cheng
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Bin Shen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
14
|
Zhao R, Wang S, Jia L, Li Q, Qiao J, Peng X. Interleukin-1 receptor antagonist protein (IL-1Ra) and miR-140 overexpression via pNNS-conjugated chitosan-mediated gene transfer enhances the repair of full-thickness cartilage defects in a rabbit model. Bone Joint Res 2019; 8:165-178. [PMID: 30997042 PMCID: PMC6444021 DOI: 10.1302/2046-3758.83.bjr-2018-0222.r1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objectives Previously, we reported the improved transfection efficiency of a plasmid DNA-chitosan (pDNA-CS) complex using a phosphorylatable nuclear localization signal-linked nucleic kinase substrate short peptide (pNNS) conjugated to chitosan (pNNS-CS). This study investigated the effects of pNNS-CS-mediated miR-140 and interleukin-1 receptor antagonist protein (IL-1Ra) gene transfection both in rabbit chondrocytes and a cartilage defect model. Methods The pBudCE4.1-miR-140, pBudCE4.1-IL-1Ra, and negative control pBudCE4.1 plasmids were constructed and combined with pNNS-CS to form pDNA/pNNS-CS complexes. These complexes were transfected into chondrocytes or injected into the knee joint cavity. Results High IL-1Ra and miR-140 expression levels were detected both in vitro and in vivo. In vitro, compared with the pBudCE4.1 group, the transgenic group presented with significantly increased chondrocyte proliferation and glycosaminoglycan (GAG) synthesis, as well as increased collagen type II alpha 1 chain (COL2A1), aggrecan (ACAN), and TIMP metallopeptidase inhibitor 1 (TIMP-1) levels. Nitric oxide (NO) synthesis was reduced, as were a disintegrin and metalloproteinase with thrombospondin type 1 motif 5 (ADAMTS-5) and matrix metalloproteinase (MMP)-13 levels. In vivo, the exogenous genes reduced the synovial fluid GAG and NO concentrations and the ADAMTS-5 and MMP-13 levels in cartilage. In contrast, COL2A1, ACAN, and TIMP-1 levels were increased, and the cartilage Mankin score was decreased in the transgenic group compared with the pBudCE4.1 group. Double gene combination produced greater efficacies than each single gene, both in vitro and in vivo. Conclusion This study suggests that pNNS-CS is a good candidate for treating cartilage defects via gene therapy, and that IL-1Ra in combination with miR-140 produces promising biological effects on cartilage defects. Cite this article: R. Zhao, S. Wang, L. Jia, Q. Li, J. Qiao, X. Peng. Interleukin-1 receptor antagonist protein (IL-1Ra) and miR-140 overexpression via pNNS-conjugated chitosan-mediated gene transfer enhances the repair of full-thickness cartilage defects in a rabbit model. Bone Joint Res 2019;8:165–178. DOI: 10.1302/2046-3758.83.BJR-2018-0222.R1.
Collapse
Affiliation(s)
- R Zhao
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Weifang Medical University, Weifang, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China; Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - S Wang
- Department of Cardiovascular Medicine, Weifang Peoples Hospital, Weifang, China
| | - L Jia
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Weifang Medical University, Weifang, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China; Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Q Li
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Weifang Medical University, Weifang, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China; Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - J Qiao
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Weifang Medical University, Weifang, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China; Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - X Peng
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Weifang Medical University, Weifang, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China; Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
15
|
pNNS-Conjugated Chitosan Mediated IGF-1 and miR-140 Overexpression in Articular Chondrocytes Improves Cartilage Repair. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2761241. [PMID: 31016187 PMCID: PMC6448336 DOI: 10.1155/2019/2761241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to investigate the effects of phosphorylatable nucleus localization signal linked nucleic kinase substrate short peptide (pNNS)-conjugated chitosan (pNNS-CS) mediated miR-140 and IGF-1 in both rabbit chondrocytes and cartilage defects model. pNNS-CS was combined with pBudCE4.1-IGF-1, pBudCE4.1-miR-140, and negative control pBudCE4.1 to form pDNA/pNNS-CS complexes. Then these complexes were transfected into chondrocytes or injected intra-articularly into the knee joints. High levels of IGF-1 and miR-140 expression were detected both in vitro and in vivo. Compared with pBudCE4.1 group, in vitro, the transgenic groups significantly promoted chondrocyte proliferation, increased glycosaminoglycan (GAG) synthesis, and ACAN, COL2A1, and TIMP-1 levels, and reduced the levels of nitric oxide (NO), MMP-13, and ADAMTS-5. In vivo, the exogenous genes enhanced COL2A1, ACAN, and TIMP-1 expression in cartilage and reduced cartilage Mankin score and the contents of NO, IL-1β, TNF-α, and GAG contents in synovial fluid of rabbits, MMP-13, ADAMTS-5, COL1A2, and COL10A1 levels in cartilage. Double gene combination showed better results than single gene. This study indicate that pNNS-CS is a better gene delivery vehicle in gene therapy for cartilage defects and that miR-140 combination IGF-1 transfection has better biologic effects on cartilage defects.
Collapse
|
16
|
Zhou J, Zhao Y, Wu G, Lin B, Li Z, Liu X. Differential miRNAomics of the synovial membrane in knee osteoarthritis induced by bilateral anterior cruciate ligament transection in rats. Mol Med Rep 2018; 18:4051-4057. [PMID: 30106113 DOI: 10.3892/mmr.2018.9385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/13/2018] [Indexed: 11/05/2022] Open
Abstract
The differential microRNA (miRNA) omics of the synovial membrane were investigated using a rat model of knee osteoarthritis (KOA) induced by bilateral anterior cruciate ligament transection, which produced pathological biomarkers in KOA. Sprague‑Dawley rats were randomly divided into two groups; Sham‑operated and KOA‑operated group. The KOA rats were subjected to bilateral anterior cruciate ligament transection. After 6 weeks, total RNA was extracted from the knee joint synovial membrane of the rats and a microRNA (miR) microarray was performed to identify differentially expressed miRs. Subsequently, the obtained differentially expressed miRs were validated by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis. A total of 24 miRs were identified with alterations ≥1.5‑fold in the synovial membrane in the KOA‑operated group compared with the sham‑operated group, of which 4 miRs (miR‑532‑5p, ‑200b‑5p, ‑377‑3p and ‑759‑5p) were decreased and 20 miRs (miR‑382‑3p, ‑223‑3p, ‑100‑5p, ‑30d‑5p, ‑183‑5p, ‑130, ‑92b‑3p, ‑125b‑3p, ‑151‑3p, ‑155‑3p, 27a‑3p, ‑146b‑3p, ‑885‑5p, ‑352, ‑184, ‑345‑5p, ‑30a‑5p and ‑9a‑5p) were increased. Subsequently, RT‑qPCR was used to validate the expressions of miR‑223, ‑100, ‑345, ‑130, ‑382, ‑377, ‑352, ‑200b, ‑9a and ‑183, which were upregulated by a fold change of ≥1.5 in synovial membranes of KOA rats compared with shams. Furthermore, in vitro miR‑223 mimic could suppress the luciferase activity of NACHT, LRR and PYD domains‑containing protein 3 (NLRP3) 3' untranslated region by detecting of dual luciferase reporter vector. Additionally, the expression of NLRP3, interleukin (IL)‑1β and IL‑18 significantly increased in the synovial membrane of KOA rats. A total of 24 different miRs were determined by comparing the miRNAomics in the synovial membrane of the KOA model rats. Furthermore, the miR‑233‑regulated NLRP3 inflammasome was implicated in synovial membrane injury, which may be an important mechanism of KOA pathogenesis.
Collapse
Affiliation(s)
- Jiangtao Zhou
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yina Zhao
- Department of Orthopedics and Traumatology, Affiliated Wenzhou Hospital of Traditional Chinese Medicine, Zhejiang University of Traditional Chinese Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Guangwen Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Bingbing Lin
- Department of Pharmacy, Affiliated Wenzhou Hospital of Traditional Chinese Medicine, Zhejiang University of Traditional Chinese Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Zuanfang Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xianxiang Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
17
|
Onset and Progression of Human Osteoarthritis-Can Growth Factors, Inflammatory Cytokines, or Differential miRNA Expression Concomitantly Induce Proliferation, ECM Degradation, and Inflammation in Articular Cartilage? Int J Mol Sci 2018; 19:ijms19082282. [PMID: 30081513 PMCID: PMC6121276 DOI: 10.3390/ijms19082282] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative whole joint disease, for which no preventative or therapeutic biological interventions are available. This is likely due to the fact that OA pathogenesis includes several signaling pathways, whose interactions remain unclear, especially at disease onset. Early OA is characterized by three key events: a rarely considered early phase of proliferation of cartilage-resident cells, in contrast to well-established increased synthesis, and degradation of extracellular matrix components and inflammation, associated with OA progression. We focused on the question, which of these key events are regulated by growth factors, inflammatory cytokines, and/or miRNA abundance. Collectively, we elucidated a specific sequence of the OA key events that are described best as a very early phase of proliferation of human articular cartilage (AC) cells and concomitant anabolic/catabolic effects that are accompanied by incipient pro-inflammatory effects. Many of the reviewed factors appeared able to induce one or two key events. Only one factor, fibroblast growth factor 2 (FGF2), is capable of concomitantly inducing all key events. Moreover, AC cell proliferation cannot be induced and, in fact, is suppressed by inflammatory signaling, suggesting that inflammatory signaling cannot be the sole inductor of all early OA key events, especially at disease onset.
Collapse
|
18
|
Yang R, Zhang D, Yu K, Sun L, Yang J, Zhao C, Li X, Chen Y. Detection of miR-22, miR-140 and Bone Morphogenetic Proteins (BMP)-2 Expression Levels in Synovial Fluid of Osteoarthritis Patients Before and After Arthroscopic Debridement. Med Sci Monit 2018; 24:863-868. [PMID: 29429984 PMCID: PMC5819307 DOI: 10.12659/msm.908110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Osteoarthritis (OA) is a degenerative joint disease often present on the surface and edge of the joint and beneath cartilage forming new bone. Arthroscopy had been used for the treatment of knee OA. This study aimed to measure the expression of miR-22, miR-140, and BMP-2 in patients with OA before and after arthroscopy operation. Material/Methods The synovial fluid of 80 patients and 60 healthy volunteers were aspirated using a syringe before OA operation and again six months post-operation in patients with OA. The total RNA was extracted and analyzed by quantitative PCR. Results The level of miR-22 was elevated in the progression of OA. The expression of miR-140 level in the synovial fluid was significantly reduced in the patients with OA and was negatively correlated with OA severity compared to controls. Expression of miR-22 and miR-120 returned to normal levels post-operatively. BMP-2 expression was reduced in patients with OA, and returned to normal levels post-operatively. Bioinformatics analysis showed that miR-22 and miR-140 closely target with 3′-UTR of BMP-2 in different positions. The correlation between BMP-2 and miR-22 was negative. The correlation between BMP-2 and miR-140 was positive. Conclusions The present study identified a change in miR-22, miR-140, and BMP-2 expression in the synovial fluid of patients with OA before and after arthroscopic debridement. Results provide a novel characterization of the pathogenesis and therefore underlying therapeutic target for OA.
Collapse
Affiliation(s)
- Renjun Yang
- Department of Osteology, Tianjin Fifth Central Hospital, Tianjin, China (mainland)
| | - Dianying Zhang
- Department of Osteology, Tianjin Fifth Central Hospital, Tianjin, China (mainland)
| | - Kai Yu
- Department of Osteology, Tianjin Fifth Central Hospital, Tianjin, China (mainland)
| | - Luping Sun
- Department of Osteology, Tianjin Fifth Central Hospital, Tianjin, China (mainland)
| | - Jie Yang
- Department of Osteology, Tianjin Fifth Central Hospital, Tianjin, China (mainland)
| | - Chunmei Zhao
- Department of Osteology, Tianjin Fifth Central Hospital, Tianjin, China (mainland)
| | - Xiang Li
- Department of Osteology, Tianjin Fifth Central Hospital, Tianjin, China (mainland)
| | - Yuhong Chen
- Department of Osteology, Tianjin Fifth Central Hospital, Tianjin, China (mainland)
| |
Collapse
|
19
|
Abstract
INTRODUCTION Osteoarthritis (OA), a chronic, debilitating and degenerative disease of the joints, is the most common form of arthritis. The seriousness of this prevalent and chronic disease is often overlooked. Disease modifying OA drug development is hindered by the lack of soluble biomarkers to detect OA early. The objective of OA biomarker research is to identify early OA prior to the appearance of radiographic signs and the development of pain. Areas covered: This review has focused on extracellular genomic material that could serve as biomarkers of OA. Recent studies have examined the expression of extracellular genomic material such as miRNA, lncRNA, snoRNA, mRNA and cell-free DNA, which are aberrantly expressed in the body fluids of OA patients. Changes in genomic content of peripheral blood mononuclear cells in OA could also function as biomarkers of OA. Expert commentary: There is an unmet need for soluble biomarkers for detecting and then monitoring OA disease progression. Extracellular genomic material research may also reveal more about the underlying pathophysiology of OA. Minimally-invasive liquid biopsies such as synovial fluid and blood sampling of genomic material may be more sensitive over radiography in the detection, diagnosis and monitoring of OA in the future.
Collapse
Affiliation(s)
- Emma Budd
- a The D-BOARD European Consortium for Biomarker Discovery, School of Veterinary Medicine , University of Surrey , Guildford , UK.,b Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK
| | - Giovanna Nalesso
- b Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK
| | - Ali Mobasheri
- a The D-BOARD European Consortium for Biomarker Discovery, School of Veterinary Medicine , University of Surrey , Guildford , UK.,b Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK.,c Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis , Queen's Medical Centre , Nottingham , UK
| |
Collapse
|
20
|
Si HB, Zeng Y, Liu SY, Zhou ZK, Chen YN, Cheng JQ, Lu YR, Shen B. Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats. Osteoarthritis Cartilage 2017. [PMID: 28647469 DOI: 10.1016/j.joca.2017.06.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Disruptions of extracellular matrix (ECM) homeostasis are key events in the pathogenesis of osteoarthritis (OA). MicroRNA-140 (miRNA-140) is expressed specifically in cartilage and regulates ECM-degrading enzymes. Our objective in this study was to determine if intra-articular injection of miRNA-140 can attenuate OA progression in rats. DESIGN miRNA-140 levels in human normal and OA cartilage derived chondrocytes and synovial fluid were assessed by polymerase chain reaction (PCR). After primary human chondrocytes were transfected with miRNA-140 mimic or inhibitor, PCR and western blotting were performed to quantify Collagen II, MMP-13, and ADAMTS-5 expression. An OA model was induced surgically in rats, and subsequently treated with one single intra-articular injection of miRNA-140 agomir. At 4, 8, and 12 weeks after surgery, OA progression were evaluated macroscopically, histologically, and immunohistochemically in these rats. RESULTS miRNA-140 levels were significantly reduced in human OA cartilage derived chondrocytes and synovial fluid compared with normal chondrocytes and synovial fluid. Overexpressing miRNA-140 in primary human chondrocytes promoted Collagen II expression and inhibited MMP-13 and ADAMTS-5 expression. miRNA-140 levels in rat cartilage were significantly higher in the miRNA-140 agomir group than in the control group. Moreover, behavioural scores, chondrocyte numbers, cartilage thickness and Collagen II expression levels in cartilage were significantly higher, while pathological scores and MMP-13 and ADAMTS-5 expression levels were significantly lower in the miRNA-140 agomir group than in the control group. CONCLUSION Intra-articular injection of miRNA-140 can alleviate OA progression by modulating ECM homeostasis in rats, and may have potential as a new therapy for OA.
Collapse
Affiliation(s)
- H-B Si
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China; Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| | - Y Zeng
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| | - S-Y Liu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| | - Z-K Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| | - Y-N Chen
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| | - J-Q Cheng
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| | - Y-R Lu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| | - B Shen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|