1
|
Yuan M, Feng M, Guo C, Qiu S, Zhang K, Yang Z, Wang F. La-Ca/Fe-LDH-coupled electrochemical enhancement of organophosphorus removal in water: Organophosphorus oxidation improves removal efficiency. CHEMOSPHERE 2023; 336:139251. [PMID: 37331662 DOI: 10.1016/j.chemosphere.2023.139251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Metal ions or metal (hydrogen) oxides are widely used as active sites in the construction of phosphate-adsorbing materials in water, but the removal of soluble organophosphorus from water remains technically difficult. Herein, synchronous organophosphorus oxidation and adsorption removal were achieved using electrochemically coupled metal-hydroxide nanomaterials. La-Ca/Fe-layered double hydroxide (LDH) composites prepared using the impregnation method removed both phytic acid (inositol hexaphosphate, IHP) and hydroxy ethylidene diphosphonic acid (HEDP) acid under an applied electric field. The solution properties and electrical parameters were optimized under the following conditions: organophosphorus solution pH = 7.0, organophosphorus concentration = 100 mg L-1, material dosage = 0.1 g, voltage = 15 V, and plate spacing = 0.3 cm. The electrochemically coupled LDH accelerates the removal of organophosphorus. The IHP and HEDP removal rates were 74.9% and 47%, respectively in only 20 min, 50% and 30% higher, respectively, than that of La-Ca/Fe-LDH alone. The removal rate in actual wastewater reached 98% in only 5 min. Meanwhile, the good magnetic properties of electrochemically coupled LDH allow easy separation. The LDH adsorbent was characterized using scanning electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analysis. It exhibits a stable structure under electric field conditions, and its adsorption mechanism mainly includes ion exchange, electrostatic attraction, and ligand exchange. This new approach for enhancing the adsorption capacity of LDH has broad application prospects in organophosphorus removal from water.
Collapse
Affiliation(s)
- Mingyao Yuan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China; Dali Cimprehensive Experimental Station of Environment Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali, 671004, China
| | - Menghan Feng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Cimprehensive Experimental Station of Environment Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali, 671004, China
| | - Changbin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Cimprehensive Experimental Station of Environment Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali, 671004, China
| | - Shangkai Qiu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Cimprehensive Experimental Station of Environment Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali, 671004, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Cimprehensive Experimental Station of Environment Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali, 671004, China
| | - Zengjun Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Cimprehensive Experimental Station of Environment Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali, 671004, China.
| | - Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Cimprehensive Experimental Station of Environment Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali, 671004, China.
| |
Collapse
|
2
|
Zhang S, Lin T, Li W, Li M, Su K, Chen J, Yang H. Lanthanum-loaded peanut shell biochar prepared via one-step pyrolysis method for phosphorus removal and immobilization. ENVIRONMENTAL TECHNOLOGY 2023; 44:1169-1178. [PMID: 34666616 DOI: 10.1080/09593330.2021.1996468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) is a nutrient element triggering eutrophication. Therefore, the removal of excess phosphorus has become an emergent demand. In this study, lanthanum-loaded biochar (La-BC) was prepared via a simple one-step pyrolysis method. Its surface properties and structural characteristics were analyzed by SEM, XRD, FTIR and pHpzc. The phosphate removal by the La-BC was systematically investigated in batch mode. Results showed that the phosphorus adsorption obeyed the pseudo-second-order model and Langmuir isotherm. The calculated maximum adsorption capacities were 31.94, 33.06 and 33.98 mg/g at 25, 35 and 45°C, respectively. Except for SO42- and CO32-, phosphate adsorption by the La-BC showed strong anti-interference to coexisting ions. For real water samples, the phosphate concentrations in the effluents were below 0.02 mg/L after treatment. The P loaded the La-BC was difficult to be desorbed, suggesting that the La-BC was not only a P-capping agent but also a P-immobilizing agent. More interestingly, a large number of stable LaPO4 nanofibers were formed on the La-BC surface via the reaction between the dissolved phosphate anions and La(OH)3 loaded on the adsorbent. Their intertwining facilitated the formation of the floc, which was conducive to the solid-liquid separation. Hence, the developed La-BC can be used as a potential adsorbent for natural waterbody remediation.
Collapse
Affiliation(s)
- Shengli Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Tong Lin
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Wei Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Menglin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Kai Su
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Junmin Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Hongwei Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Lingamdinne LP, Choi JS, Choi YL, Chang YY, Koduru JR. Stable and recyclable lanthanum hydroxide-doped graphene oxide biopolymer foam for superior aqueous arsenate removal: Insight mechanisms, batch, and column studies. CHEMOSPHERE 2023; 313:137615. [PMID: 36572366 DOI: 10.1016/j.chemosphere.2022.137615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/17/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In this study, a graphene oxide-based lanthanum hydroxide/chitosan foam (CSGOL foam) was synthesized for arsenate (As(V)) remediation in surface water. The synthesized CSGOL foam texture and purity was assessed using scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) studies. The results proved that the foam was highly porous, stable, and had high surface functionality that facilitated adsorption for water pollutant removal. The sorption results proved that the As(V) removal was high (146.20 mg/g at pH 6 with 0.5 g/L CSGOL foam) when compared to the similar type of materials, endothermic chemisorption due to the production of monodentate and bidentate inner-sphere complexes. Furthermore, continuous column results indicated that the As(V) concentration in real surface waters was reduced to WHO standards (less than 10 μg As/L of water) of As(V) in drinking water for up to 10,000 bed volume. Further it can be used up to four cycles without loss of efficacy less than 93%. Because of its excellent removal capabilities and simple synthesis technique, CSGOL foam shows significant promise for treating As(V)-containing water. Further, the XPS analysis and batch studies results suggests that As(V) removal mechanism was involved electrostatic and surface complexation through chemical interaction predominately.
Collapse
Affiliation(s)
| | - Jong-Soo Choi
- Environmental Engineering Department, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Yu-Lim Choi
- Environmental Engineering Department, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Yoon-Young Chang
- Environmental Engineering Department, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Janardhan Reddy Koduru
- Environmental Engineering Department, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
4
|
Yuan MY, Qiu SK, Li MM, Li Y, Wang JX, Luo Y, Zhang KQ, Wang F. Adsorption properties and mechanism research of phosphorus with different molecular structures from aqueous solutions by La-modified biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14902-14915. [PMID: 36161587 DOI: 10.1007/s11356-022-23124-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In order to explore the adsorption characteristics of phosphorus from molecules with different molecular structures and varying number of phosphate groups on metal-modified biochar, walnut shell biochar was modified with LaCl3 to prepare lanthanum-loaded biochar (BC-La). Adsorption of four polar components, namely phytic acid (IHP), adenosine-5'-disodium triphosphate (5-ATP), hydroxyethylidene diphosphonic acid (HEDP), and sodium pyrophosphate (PP), was studied. The adsorption properties and mechanism of phosphorus sorption by BC-La were analyzed by SEM-EDS and FTIR for the different structures. The results showed that the maximum adsorption capacity of BC-La for IHP, 5-ATP, HEDP, and PP was 85.85, 9.04, 15.80, and 14.45 mg/g, respectively. The adsorption capacity was positively correlated with the polarity of organic phosphorus. The adsorption behavior conformed to the quasi second-order kinetic fitting equation, and the increase of temperature was conducive to the removal of all four phosphorus pollutants. BC-La adsorbs IHP and HEDP mainly through electrostatic attraction. The adsorption of 5-ATP and PP is dominated by complexation. The La-modified biochar has broad prospects in water remediation, which can provide a theoretical basis for removal of different forms of phosphorus pollutants and prevention and control of water eutrophication.
Collapse
Affiliation(s)
- Ming-Yao Yuan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
| | - Shang-Kai Qiu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
| | - Meng-Meng Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
| | - Yuan Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Ji-Xiu Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yuan Luo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
| | - Ke-Qiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
| | - Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China.
| |
Collapse
|
5
|
Eftekhari M, Gheibi M, Monhemi H, Gaskin Tabrizi M, Akhondi M. Graphene oxide-sulfated lanthanum oxy-carbonate nanocomposite as an adsorbent for the removal of malachite green from water samples with application of statistical optimization and machine learning computations. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Muthulakshmi V, Dhilip Kumar C, Sundrarajan M. Biological applications of green synthesized lanthanum oxide nanoparticles via Couroupita guianensis abul leaves extract. Anal Biochem 2022; 638:114482. [PMID: 34856185 DOI: 10.1016/j.ab.2021.114482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/01/2022]
Abstract
In this work, extract from leaves of Couroupita guianensis (C.guianensis) abul was used as a potential reducing agent for the synthesis of lanthanum oxide (La2O3) nanoparticles (NPs). In addition, the morphology and several physicochemical properties of the La2O3 NPs were improved by introducing the ionic liquid of 1-butyl 3-methyl imidazolium tetra fluoroborate (BMIM BF4) as a stabilizing agent. The structure of the La2O3 (without ionic liquid) and IL-La2O3 (with ionic liquid) NPs were analyzed by X-ray diffraction (XRD). The chemical composition of the synthesized NPs was analyzed using the energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) studies. Optical and morphological studies were also performed. The antibacterial, antioxidant, anti-inflammatory, anti-diabetic and anticancer properties of the La2O3 and IL-La2O3 NPs were evaluated.
Collapse
Affiliation(s)
- V Muthulakshmi
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, 03, Tamil Nadu, India
| | - C Dhilip Kumar
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, 03, Tamil Nadu, India
| | - M Sundrarajan
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, 03, Tamil Nadu, India.
| |
Collapse
|
7
|
Yang W, Shi F, Jiang W, Chen Y, Zhang K, Jian S, Jiang S, Zhang C, Hu J. Outstanding fluoride removal from aqueous solution by a La-based adsorbent †. RSC Adv 2022; 12:30522-30528. [PMID: 36337969 PMCID: PMC9597601 DOI: 10.1039/d2ra06284d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
A La-based adsorbent was prepared with La(NO3)3·6H2O, 2-methylimidazole and DMF via amide-hydrolysis and used for fluoride decontamination from aqueous water. The obtained adsorbent was lanthanum methanoate (La(COOH)3). The effects of pH value, initial F− concentration and interfering ions on defluoridation properties of as-prepared La(COOH)3 were assessed through batch adsorption tests. The adsorption kinetics, isotherm models and thermodynamics were employed to verify the order, nature and feasibility of La(COOH)3 towards fluoride removal. The results imply that La(COOH)3 is preferable for defluoridation over a wide pH range of 2 to 9 without interference. Simultaneously, the defluoridation process of La(HCOO)3 accords to the pseudo-second order model and Langmuir isotherm, revealing chemical adsorption is the main control step. The maximum fluoride capture capacities of La(COOH)3 at 30, 40 and 50 °C are 245.02, 260.40 and 268.99 mg g−1, respectively. The mechanism for defluoridation by La(COOH)3 was revealed by PXRD and XPS. To summarize, the as-synthesized La based adsorbent could serve as a promising adsorbent for defluoridation from complex fluoride-rich water. A La-based adsorbent was prepared with La(NO3)3·6H2O, 2-methylimidazole and DMF via amide-hydrolysis and used for fluoride decontamination from aqueous water.![]()
Collapse
Affiliation(s)
- Weisen Yang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| | - Fengshuo Shi
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| | - Wenlong Jiang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| | - Yuhuang Chen
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| | - Kaiyin Zhang
- College of Mechanical and Electrical Engineering, Wuyi UniversityWuyishan 354300China
| | - Shaoju Jian
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| | - Shaohua Jiang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry UniversityNanjing 210037China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and TechnologySuzhou 215009China
| | - Jiapeng Hu
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| |
Collapse
|
8
|
Shih KY, Yu SC. Microwave-Assisted Rapid Synthesis of Eu(OH) 3/RGO Nanocomposites and Enhancement of Their Antibacterial Activity against Escherichia coli. MATERIALS (BASEL, SWITZERLAND) 2021; 15:43. [PMID: 35009189 PMCID: PMC8745867 DOI: 10.3390/ma15010043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/05/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Nanomaterials with high antibacterial activity and low cytotoxicity have attracted extensive attention from scientists. In this study, europium (III) hydroxide (Eu(OH)3)/reduced graphene oxide (RGO) nanocomposites were synthesized using a rapid, one-step method, and their antibacterial activity against Escherichia coli (E. coli) was investigated using the synergistic effect of the antibacterial activity between Eu and graphene oxide (GO). The Eu(OH)3/RGO nanocomposites were prepared using a microwave-assisted synthesis method and characterized using X-ray diffraction, scanning electron microscopy, photoluminescence spectroscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. Raman sprectroscopy and X-ray diffraction confirmed the pure hexagonal phase structure of the nanocomposites. Further, the antibacterial properties of Eu(OH)3/RGO were investigated using the minimum inhibitory concentration assay, colony counting method, inhibition zone diameter, and optical density measurements. The results revealed that the Eu(OH)3/RGO exhibited a superior inhibition effect against E. coli and a larger inhibition zone diameter compared to RGO and Eu(OH)3. Further, the reusability test revealed that Eu(OH)3/RGO nanocomposite retained above 98% of its bacterial inhibition effect after seven consecutive applications. The high antibacterial activity of the Eu(OH)3/RGO nanocomposite could be attributed to the release of Eu3+ ions from the nanocomposite and the sharp edge of RGO. These results indicated the potential bactericidal applications of the Eu(OH)3/RGO nanocomposite.
Collapse
|
9
|
Wimalasiri AKVK, Fernando MS, Dziemidowicz K, Williams GR, Koswattage KR, Dissanayake DP, de Silva KMN, de Silva RM. Structure-Activity Relationship of Lanthanide-Incorporated Nano-Hydroxyapatite for the Adsorption of Fluoride and Lead. ACS OMEGA 2021; 6:13527-13543. [PMID: 34095648 PMCID: PMC8173547 DOI: 10.1021/acsomega.0c05935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 05/03/2021] [Indexed: 05/10/2023]
Abstract
The growing demand for water purification provided the initial momentum to produce lanthanide-incorporated nano-hydroxyapatite (HAP) such as HAP·CeO2, HAP·CeO2·La(OH)3 (2:1), and HAP·CeO2·La(OH)3 (3:2). These materials open avenues to remove fluoride and lead ions from contaminated water bodies effectively. Composites of HAP containing CeO2 and La(OH)3 were prepared using in situ wet precipitation of HAP, followed by the addition of Ce(SO4)2 and La(NO3)3 into the same reaction mixture. The resultant solids were tested for the removal of fluoride and lead ions from contaminated water. It was found that the composite HAP·CeO2 shows fluoride and lead ion removal capacities of 185 and 416 mg/g, respectively. The fluoride removal capacity of the composite was improved when La(OH)3 was incorporated and it was observed that the composite HAP·CeO2·La(OH)3 (3:2) has the highest recorded fluoride removal capacity of 625 mg/g. The materials were characterized using scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) spectrometry, Fourier transform infrared (FT-IR) spectrometry, X-ray powder diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) surface area analysis. Analysis of results showed that Ce and La are incorporated in the HAP matrix. Results of kinetic and leaching analyses indicated a chemisorptive behavior during fluoride and lead ion adsorption by the composites; meanwhile, the thermodynamic profile shows a high degree of feasibility for fluoride and lead adsorption.
Collapse
Affiliation(s)
| | - M. Shanika Fernando
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - Karolina Dziemidowicz
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Gareth R. Williams
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | | | - D. P. Dissanayake
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - K. M. Nalin de Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - Rohini M. de Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| |
Collapse
|
10
|
Luo Y, Xie K, Feng Y, He Q, Zhang K, Shen S, Wang F. Synthesis of a La(OH)3 nanorod/walnut shell biochar composite for reclaiming phosphate from aqueous solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125736] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Ahmed S, Lo IMC. Phosphate removal from river water using a highly efficient magnetically recyclable Fe 3O 4/La(OH) 3 nanocomposite. CHEMOSPHERE 2020; 261:128118. [PMID: 33113641 DOI: 10.1016/j.chemosphere.2020.128118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Lanthanum based nanocomposites have attracted much attention for their efficiency and capacity in removing phosphate from water. This study developed a Fe3O4/La(OH)3 nanocomposite through a precipitation route at room temperature and used the nanocomposite to remove phosphate from river water. Performance of the Fe3O4/La(OH)3 nanocomposite was evaluated in terms of sorption kinetics, sorption isotherms, different solution pH values, competing ions, and regenerative ability. The Fe3O4/La(OH)3 nanocomposite showed a nanosphere-like morphology with 97% magnetic separation efficiency, excellent phosphate removal capacity of 253.83 mg/g, 99% phosphate selectivity in the presence of chloride, nitrate, sulfate, fluoride, and calcium as competing ions and excellent reusability in ten cycles. Based on these findings, the Fe3O4/La(OH)3 nanocomposite was used to remove phosphate from river water. It was found that, in 60 min, a 0.1 g/L dosage of the nanocomposite was able to reduce the phosphate in the water from 0.087 mg/L to 0.002 mg/L. Moreover, studying of the removal mechanism of the nanocomposite revealed that surface complexation and the electrostatic interaction between phosphate species and lanthanum hydroxide played a prominent role in the sorption of phosphate.
Collapse
Affiliation(s)
- Saeed Ahmed
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
12
|
Wang K, Liang Y, Yang J, Yang G, Zeng Z, Xu R, Xie X. Free-standing and flexible 0D CeO 2 nanodot/1D La(OH) 3 nanofiber heterojunction net as a novel efficient and easily recyclable photocatalyst. Inorg Chem Front 2020. [DOI: 10.1039/d0qi01074j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel 0D CeO2 nanodot/1D La(OH)3 nanofiber heterojunction net with in-built Ce4+/Ce3+ redox centers was fabricated, which exhibits excellent photocatalytic performance and remarkable recoverability.
Collapse
Affiliation(s)
- Kun Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Yujun Liang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Jian Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Gui Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Zikang Zeng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Rui Xu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies
- China University of Geosciences
- Wuhan 430074
- China
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies
- China University of Geosciences
- Wuhan 430074
- China
| |
Collapse
|
13
|
Meng D, Zhao Q, Pan X, Zhang T. Preparation of La2O3 by ion-exchange membrane electrolysis of LaCl3 aqueous solution. J RARE EARTH 2019. [DOI: 10.1016/j.jre.2018.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Salehi Z, Zinatloo-Ajabshir S, Salavati-Niasari M. Dysprosium cerate nanostructures: facile synthesis, characterization, optical and photocatalytic properties. J RARE EARTH 2017. [DOI: 10.1016/s1002-0721(17)60980-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Mousavi-Kamazani M, Rahmatolahzadeh R, Beshkar F. Facile Solvothermal Synthesis of CeO2–CuO Nanocomposite Photocatalyst Using Novel Precursors with Enhanced Photocatalytic Performance in Dye Degradation. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0588-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|