Braun J, Bernarding J, Koennecke HC, Wolf KJ, Tolxdorff T. Feature-based, automated segmentation of cerebral infarct patterns using T2- and diffusion-weighted imaging.
Comput Methods Biomech Biomed Engin 2002;
5:411-20. [PMID:
12468422 DOI:
10.1080/1025584021000011082]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Diffusion-weighted imaging enables the diagnosis of cerebral ischemias very early, thus supporting therapies such as thrombolysis. However, morphology and tissue-characterizing parameters (e.g. relaxation times or water diffusion) may vary strongly in ischemic regions, indicating different underlying pathologic processes. As the determination of the parameters by a supervised segmentation is very time consuming, we evaluated whether different infarct patterns may be segmented by an automated, multidimensional feature-based method using a unified segmentation procedure. Ischemias were classified into 5 characteristic patterns. For each class, a 3D histogram based on T(2)- and diffusion-weighted images as well as calculated apparent diffusion coefficients (ADC) was generated from a representative data set. Healthy and pathologic tissue classes were segmented in the histogram as separate, local density maxima with freely shaped borders. Segmentation control parameters were optimized in a 3-step procedure. The method was evaluated using synthetic images as well as results of a supervised segmentation. For the analysis of cerebral ischemias, the optimal control parameter set led to sensitivities and specificities between 1.0 and 0.9.
Collapse