1
|
Lungerich D, Hitzenberger JF, Ruppel M, Döpper T, Witt M, Ivanović-Burmazović I, Görling A, Jux N, Drewello T. Gas-Phase Transformation of Fluorinated Benzoporphyrins to Porphyrin-Embedded Conical Nanocarbons. Chemistry 2020; 26:12180-12187. [PMID: 32578918 PMCID: PMC7540561 DOI: 10.1002/chem.202002638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 01/07/2023]
Abstract
Geodesic nitrogen-containing graphene fragments are interesting candidates for various material applications, but the available synthetic protocols, which need to overcome intrinsic strain energy during the formation of the bowl-shaped skeletons, are often incompatible with heteroatom-embedded structures. Through this mass spectrometry-based gas-phase study, we show by means of collision-induced dissociation experiments and supported by density functional theory calculations, the first evidence for the formation of a porphyrin-embedded conical nanocarbon. The influences of metalation and functionalization of the used tetrabenzoporphyrins have been investigated, which revealed different cyclization efficiencies, different ionization possibilities, and a variation of the dissociation pathway. Our results suggest a stepwise process for HF elimination from the fjord region, which supports a selective pathway towards bent nitrogen-containing graphene fragments.
Collapse
Affiliation(s)
- Dominik Lungerich
- Department of Chemistry and Pharmacy, & Interdisciplinary Center for Molecular Materials (ICMM), Organic Chemistry II, Friedrich-Alexander-University Erlangen-Nuernberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.,Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea.,Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jakob Felix Hitzenberger
- Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander-University Erlangen-Nuernberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Michael Ruppel
- Department of Chemistry and Pharmacy, & Interdisciplinary Center for Molecular Materials (ICMM), Organic Chemistry II, Friedrich-Alexander-University Erlangen-Nuernberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Tibor Döpper
- Department of Chemistry and Pharmacy, Theoretical Chemistry, Friedrich-Alexander-University Erlangen-Nuernberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Matthias Witt
- Bruker Daltonics GmbH, Fahrenheitstrasse 4, 28359, Bremen, Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy, Bioinorganic Chemistry, Friedrich-Alexander-University Erlangen-Nuernberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Andreas Görling
- Department of Chemistry and Pharmacy, Theoretical Chemistry, Friedrich-Alexander-University Erlangen-Nuernberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Norbert Jux
- Department of Chemistry and Pharmacy, & Interdisciplinary Center for Molecular Materials (ICMM), Organic Chemistry II, Friedrich-Alexander-University Erlangen-Nuernberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Thomas Drewello
- Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander-University Erlangen-Nuernberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Giorgi G, Bellani L, Giorgetti L. Characterization of additives in plastics: From MS to MS 10 multistep mass analysis and theoretical calculations of tris(2,4-di-tert-butylphenyl)phosphate. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4515. [PMID: 32363623 DOI: 10.1002/jms.4515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
In the analysis by electrospray (+) of an extract of hemp sprouts put in a polypropylene vial, we found a large contamination of a plastic additive. It was characterized by multiple-stage MSn experiments (MS ÷ MS10 ) and identified as tris(2,4-di-tert-butylphenyl)phosphate, also known with the synonyms F32IRS6B46, oxidized Naugard 524, and others. The MS2 ÷ MS7 spectra are characterized by consecutive eliminations of six isobutene molecules from the tert-butyl moieties, some of them also occurring in the ion source. The first three are calculated to occur preferentially from the ortho positions, whereas eliminations from the para positions are estimated to be less favored at about 5-6 kcal/mol in each step. Once the first three isobutene molecules are eliminated, the remaining three are lost from the tert-butyl moieties in para positions (MS5 ÷ MS7 ), yielding protonated triphenylphosphate, whose structure has been confirmed by the MS2 spectrum of triphenylphosphate standard: the latter spectrum is almost superimposable with the MS8 spectrum of the analyte under investigation. MS8 and MS9 spectra show main losses of water and C6 H4 molecules. The MS10 spectrum of precursor ions at m/z 215 shows the gas-phase addition of water and methanol and ions at m/z 168, attributable to the loss of a phosphorus oxide radical. Density functional theory (DFT) calculations (Becke 3LYP [B3LYP] 6-311+G(2d,2p)) have been used to evaluate structure and stability of different ionic and neutral species involved in the decomposition pathways and to calculate thermochemical data of the decomposition reactions. This multistep mass analysis combined with theoretical calculations resulted to be particularly useful and effective, yielding chemical, thermochemical, and mechanistic data of significant utility in the structural characterization and identification of the unknown analyte as well as to define its gas-phase reactivity under a multistep low-energy collision-induced dissociation regime.
Collapse
Affiliation(s)
- Gianluca Giorgi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100, Siena, Italy
| | - Lorenza Bellani
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, I-53100, Siena, Italy
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology, Research Area of Pisa, Via Moruzzi 1, I-56124, Pisa, Italy
| | - Lucia Giorgetti
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology, Research Area of Pisa, Via Moruzzi 1, I-56124, Pisa, Italy
| |
Collapse
|
3
|
Qi Y, Volmer DA. Structural analysis of small to medium-sized molecules by mass spectrometry after electron-ion fragmentation (ExD) reactions. Analyst 2016; 141:794-806. [PMID: 26725919 DOI: 10.1039/c5an02171e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron capture dissociation (ECD) is a tandem mass spectrometry (MS/MS) method that utilizes the interaction of ions and electrons. Its unique ability to preserve labile bonds distinguishes it from conventional threshold-based MS/MS methods, the most important of which is collision-induced dissociation (CID). During the last decade, ECD has opened up several new venues in protein analyses, for example top-down sequencing, identification of post-translational modifications, and characterization of protein-protein interactions. In recent years, a number of related dissociation techniques, so-called ExD techniques, particularly electron transfer dissociation (ETD), electron detachment dissociation (EDD), electron induced dissociation (EID), and negative electron transfer dissociation (NETD), have emerged and have extended the application range of ion-electron dissociations further. Importantly, ExD techniques have been applied beyond protein analyses, which is the focus of the current paper. This short introduction describes the application of ExD to small and medium-sized molecules and reviews important applications to natural products, biomedical compounds, synthetic molecules, crude oils, and environmental toxins.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Bioanalytical Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| | | |
Collapse
|
4
|
Wei J, O'Connor PB. Extensive fragmentation of pheophytin-a by infrared multiphoton dissociation tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:2411-2418. [PMID: 26563711 DOI: 10.1002/rcm.7391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE In a previous tandem mass spectrometry (MS/MS) study on chlorophyll-a, infrared multiphoton dissociation (IRMPD) was demonstrated as a more effective fragmentation method than collision-induced dissociation (CID) and electron-induced dissociation (EID), where odd-electron product ions were observed ubiquitously in CID and IRMPD. To further understand the role of the macrocycle and the central Mg atom in the MS/MS process, the fragmentation behaviour of pheophytin-a, the Mg-free chlorophyll-a, was investigated. METHODS CID, IRMPD, and EID were applied to the singly protonated pheophytin-a using an ultra-high-resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. The result is compared with the MS/MS study of chlorophyll-a. RESULTS For pheophytin-a, some different fragmentation patterns from chlorophyll-a were obtained by all three MS/MS methods, but IRMPD still appears the most efficient method of generating product ions. The detection of odd-electron fragments in the CID and IRMPD spectra of protonated pheophytin-a suggests that the macrocyclic structure effectively stabilizes radicals, and these radical ions seem to have a relatively higher abundance in the presence of the central Mg atom. CONCLUSIONS The strong absorption in the infrared region of pheophytin-a and secondary free radical rearrangement are proposed to explain the extensive frgmentation in IRMPD spectra. In addition, a comparison of the IRMPD spectra of chlorophyll-a and pheophytin-a shows that the macrocycle in the absence of the Mg atom is much more fragile.
Collapse
Affiliation(s)
- Juan Wei
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
5
|
Qi Y, Geib T, Huynh AM, Jung G, Volmer DA. Fragmentation patterns of boron-dipyrromethene (BODIPY) dyes by electrospray ionization high-resolution tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:885-890. [PMID: 26377017 DOI: 10.1002/rcm.7179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/24/2015] [Accepted: 02/21/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene derivatives (BODIPYs) are fluorescent organic dyes that are widely used as non-radioactive labels in biological analyses. The fragmentation behaviour of ten structurally related BODIPYs was studied using tandem mass spectrometry (MS/MS), to support the structural elucidation process during synthesis. METHODS The BODIPYs were investigated by electrospray ionization (ESI)-MS/MS, utilizing collision-induced dissociation (CID) data from triple quadrupole MS and high-resolution, accurate mass CID data from Fourier transform ion cyclotron resonance (FTICR) experiments. RESULTS Unusual radical molecular cations ([M](+•)) were formed directly during the ESI process. These radical species dissociated into a large range of product ions during the subsequent CID experiments. Superimposed dissociations originating from parallel [M](+•) and [M+H](+) decompositions significantly complicated the interpretation of the MS/MS spectra. CONCLUSIONS Detailed dissociation mechanisms were proposed in this study for BODIPY dyes. The elemental formulae of CID product ions were unambiguously assigned using FTICR-MS and unique fragment ions were discovered for the rapid identification of methyl, ethyl, butyl, tert-butyl, and phenyl substituents of individual dyes in BODIPY synthesis mixtures by low-resolution MS.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Bioanalytical Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Timon Geib
- Institute of Bioanalytical Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Anh-Minh Huynh
- Biophysical Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Gregor Jung
- Biophysical Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Dietrich A Volmer
- Institute of Bioanalytical Chemistry, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
6
|
Wei J, Li H, Barrow MP, O'Connor PB. Structural characterization of chlorophyll-a by high resolution tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:753-760. [PMID: 23504642 DOI: 10.1007/s13361-013-0577-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/20/2012] [Accepted: 12/31/2012] [Indexed: 06/01/2023]
Abstract
A high resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer is used for characterizing the fragmentation of chlorophyll-a. Three tandem mass spectrometry (MS/MS) techniques, including electron-induced dissociation (EID), collisionally activated dissociation (CAD), and infrared mutiphoton dissociation (IRMPD) are applied to the singly protonated chlorophyll-a. Some previously unpublished fragments are identified unambiguously by utilizing high resolution and accurate mass value provided by the FTICR mass spectrometer. According to this research, the two long aliphatic side chains are shown to be the most labile parts, and favorable cleavage sites are proposed. Even though similar fragmentation patterns are generated by all three methods, there are much more abundant peaks in EID and IRMPD spectra. The similarities and differences are discussed in detail. Comparatively, cleavage leading to odd electron species and H(•) loss both seem more common in EID experiments. Extensive loss of small side groups (e.g., methyl and ethyl) next to the macrocyclic ring was observed. Coupling the high performance FTICR mass spectrometer with contemporary MS/MS techniques, especially IRMPD and EID, proved to be very promising for the structural characterization of chlorophyll, which is also suitable for the rapid and accurate structural investigation of other singly charged porphyrinic compounds.
Collapse
Affiliation(s)
- Juan Wei
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | |
Collapse
|
7
|
Silva EMP, Domingues MRM, Barros C, Faustino MAF, Tomé JPC, Neves MGPMS, Tomé AC, Santana-Marques MG, Cavaleiro JAS, Ferrer-Correia AJ. Characterization of dinitroporphyrin zinc complexes by electrospray ionization tandem mass spectrometry. Unusual fragmentations of beta-(1,3-dinitroalkyl) porphyrins. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:117-122. [PMID: 15643640 DOI: 10.1002/jms.789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The zinc complexes of diaryl bis(p-nitrophenyl)porphyrins and beta-(1,3-dinitroalkyl)tetraphenylporphyrins were studied by electrospray ionization (ESI) tandem mass spectrometry (MS/MS). All porphyrins showed the protonated molecule under ESI conditions. The protonated molecules were induced to fragment and the corresponding ESI tandem mass spectra were analysed. Porphyrins with two p-nitrophenyl groups showed, as expected, characteristic fragmentations including either loss of one nitro group, as the major fragment of the tandem mass spectra, and loss of both nitro groups. In contrast, MS/MS of the beta-(1,3-dinitroalkyl)porphyrins provided interesting and unexpected results such as the absence (or in insignificant abundance) of the ions formed by loss of one nitro group. However, these porphyrins show an abundant fragment due to combined loss of the two nitro groups. Also, the typical beta-cleavage of the alkyl chain is not observed per se, only when combined with loss of HNO2 or *NO2. Instead, alpha-cleavage, with loss of the beta-pyrrolic substituent, is the most favourable process.
Collapse
Affiliation(s)
- E M P Silva
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Tandem mass spectrometry is becoming an increasingly important analytical technology in the clinical laboratory environment. Applications in toxicology and therapeutic drug monitoring have opened the door for tandem mass spectrometry and now we are seeing a vast array of new applications being developed. It has been the combination of tandem mass spectrometry with sample introduction techniques employing atmospheric pressure ionization that has enabled this technology to be readily implemented in the clinical laboratory. Although its major research applications started with pharmacology and proteomics, tandem mass spectrometry is being used for a great variety of analyses from steroids to catecholamines to peptides. As with chromatographic methods, tandem mass spectrometry is most cost effective when groups of compounds need to be measured simultaneously. However as the price/performance of this technology continues to improve, it will become even more widely utilized for clinical laboratory applications.
Collapse
Affiliation(s)
- Kent C Dooley
- Department of Pathology and Laboratory Medicine, IWK Health Centre and Department of Pathology, Dalhousie University Medical School, Halifax, Nova Scotia, Canada.
| |
Collapse
|
9
|
Chen G, Pramanik BN, Bartner PL, Saksena AK, Gross ML. Multiple-stage mass spectrometric analysis of complex oligosaccharide antibiotics (everninomicins) in a quadrupole ion trap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2002; 13:1313-1321. [PMID: 12443022 DOI: 10.1016/s1044-0305(02)00624-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Electrospray ionization (ESI) quadrupole ion-trap tandem mass spectrometry (MS/MS) was utilized to characterize a class of complex oligosaccharide antibiotics (everninomicins) that include SCH 27899, everninomicin-D, amino everninomicin (SCH 27900), and SCH 49088 (containing a hydroxylamino-ether sugar). The addition of sodium chloride (approximately 1 microg/mL) facilitates the formation of abundant metal complex ions, and this was used because protonation does not readily occur for most of these compounds. The multiple-stage mass analysis (MS(n)) of the sodiated species provides an important series of fragment ions that are specific for sugar sequence and for some sugar-ring opening. These data suggest a general charge-remote fragmentation pattern with the sodium cation residing in a specific, central location of the sugar chain and fragmentation occurring to trim the end of the molecule. For protonated everninomicin (SCH 27900), however, the proton appears to be mobile during the collisional activation process, opening different fragmentation pathways depending on the proton location. The use of water and acetonitrile with 0.1% acetic acid as the solvent in ESI-MS promotes rapid hydrolysis of the central ortho ester, resulting in the formation of abundant sodiated products that are hydrated. These product ions of the hydrated molecules are likely formed by the same charge-remote fragmentation processes as those that occur for the unhydrolyzed precursor.
Collapse
Affiliation(s)
- Guodong Chen
- Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | |
Collapse
|
10
|
Combariza MY, Vachet RW. Gas-phase ion-molecule reactions of transition metal complexes: the effect of different coordination spheres on complex reactivity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2002; 13:813-825. [PMID: 12148806 DOI: 10.1016/s1044-0305(02)00378-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Using a modified quadrupole ion trap mass spectrometer, a series of metal complex ions have been reacted with acetonitrile in the gas phase. Careful control of the coordination number and the type of coordinating functionality in diethylenetriamine-substituted ligands enable the effects of the coordination sphere on metal complex reactivity to be examined. The association reaction kinetics of acetonitrile with these pentacoordinate complexes are followed in order to obtain information about the starting complexes and the reaction dynamics. The kinetics and thermodynamics of acetonitrile addition to the metal complex ions are strongly affected by the chemical environment around the metal center such that significant differences in reactivity are observed for Co(II) and Cu(II) complexes with various coordination spheres. When thiophene, furan, or benzene moieties are present in the coordination sphere of the complex, addition of two acetonitrile molecules is readily observed. In contrast, ligands with better sigma donors react mainly to add one acetonitrile molecule. Among the ligands with good sigma donors, a clear trend in reactivity is observed in which complexes with nitrogen-containing ligands are the least reactive, sulfur-containing complexes are more reactive, and oxygen-containing complexes are the most reactive. In general, equilibrium and reaction rate constants seem to be consistent with the hard and soft acid and base (HSAB) principle. Interestingly, the presence of certain groups (e.g., pyridine and imidazole) in the coordination sphere clearly can change the acid character of the metal as seen by their effect on the binding properties of other functional groups in the same ligand. Finally, we conclude that because complexes with different coordination spheres react to noticeably different extents, ion-molecule (I-M) reactions may be potentially useful for obtaining coordination structure information for transition metal complexes.
Collapse
|