1
|
Functional and Expressional Analyses Reveal the Distinct Role of Complement Factor I in Regulating Complement System Activation during GCRV Infection in Ctenopharyngodon idella. Int J Mol Sci 2022; 23:ijms231911369. [PMID: 36232671 PMCID: PMC9569754 DOI: 10.3390/ijms231911369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Complement factor I (CFI), a complement inhibitor, is well known for regulating the complement system activation by degrading complement component 3b (C3b) in animal serum, thus becoming involved in innate defense. Nevertheless, the functional mechanisms of CFI in the complement system and in host-pathogen interactions are far from being clarified in teleost fish. In the present study, we cloned and characterized the CFI gene, CiCFI, from grass carp (Ctenopharyngodon idella) and analyzed its function in degrading serum C3b and expression changes after grass carp reovirus (GCRV) infection. The open reading frame of CiCFI was found to be 2121 bp, encoding 706 amino acids with a molecular mass of 79.06 kDa. The pairwise alignments showed that CiCFI shared the highest identity (66.9%) with CFI from Carassius gibelio and the highest similarity (78.7%) with CFI from Danio rerio. The CiCFI protein was characterized by a conserved functional core Tryp_SPc domain with the catalytic triad and substrate binding sites. Phylogenetic analysis indicated that CiCFI and the homologs CFIs from other teleost fish formed a distinct evolutionary branch. Similar with the CFIs reported in mammals, the recombinant CiCFI protein could significantly reduce the C3b content in the serum, demonstrating the conserved function of CiCFI in the complement system in the grass carp. CiCFI mRNA and protein showed the highest expression level in the liver. After GCRV infection, the mRNA expressions of CiCFI were first down-regulated, then up-regulated, and then down-regulated to the initial level, while the protein expression levels maintained an overall downward trend to the late stage of infection in the liver of grass carps. Unexpectedly, the protein levels of CiCFI were also continuously down-regulated in the serum of grass carps during GCRV infection, while the content of serum C3b proteins first increases and then returns to the initial level, suggesting a distinct role of CiCFI in regulating complement activation and fish-virus interaction. Combining our previous results that complement factor D, a complement enhancer, shows continuously up-regulated expression levels in grass carps during GCRV infection, and this study may provide the further essential data for the full picture of complex complement regulation mechanism mediated by Df and CFI of the grass carp during pathogen infection.
Collapse
|
2
|
Dietrich MA, Irnazarow I, Adamek M, Jurecka P, Teich L, Rakus K, Kodzik N, Chadzińska M, Steinhagen D, Ciereszko A. 2D-DIGE proteomic analysis of blood plasma reveals changes in immune- and stress-associated proteins following hormonal stimulation of carp males. FISH & SHELLFISH IMMUNOLOGY 2021; 118:354-368. [PMID: 34560285 DOI: 10.1016/j.fsi.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/31/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
In carp aquaculture, hormonal manipulation with an analog of GnRH (Ovopel) and carp pituitary extract (CPE), which act at different levels of the hypothalamic-pituitary-gonadal axis, is a routine practice to enhance sperm production. Our recent studies revealed that hormonal stimulation of male carp was associated with changes in the seminal plasma proteome, including blood origin proteins. Here, we explored whether Ovopel and CPE could affect the blood proteome of male carp. Both preparations induced increases in semen volume, total number of sperm, and testosterone level. However, hormonal stimulation did not affect the plasma cortisol and glucose levels. A comparative proteomic analysis of carp blood plasma between the control (PBS) and the hormonally treated males revealed significant changes (>1.2 <-1.2-fold change, P < 0.05) in the abundance of 30 spots (14 up- and 16 downregulated) and 44 spots (28 up- and 16 downregulated) upon CPE and Ovopel treatment, respectively. The most significantly affected pathways were acute phase response signaling, the coagulation system, LXR/RXR and FXR/RXR activation; however, there were different sets of proteins in Ovopel- and CPE-treated males. The majority of differentially abundant proteins were involved in the regulation of the immune defense response, the response to stress, and complement activation. Moreover hormonal stimulation with CPE markedly increased the bactericidal activity of blood and both preparations caused profound changes in gene expression in hematopoietic organs. This work is important in understanding the biological processes behind the protein-based response to hormonal stimulation of sperm production in fish.
Collapse
Affiliation(s)
- Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Ilgiz Irnazarow
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Mikołaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Patrycja Jurecka
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Lukas Teich
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Natalia Kodzik
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Magdalena Chadzińska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
3
|
Petit J, Bailey EC, Wheeler RT, de Oliveira CAF, Forlenza M, Wiegertjes GF. Studies Into β-Glucan Recognition in Fish Suggests a Key Role for the C-Type Lectin Pathway. Front Immunol 2019; 10:280. [PMID: 30863400 PMCID: PMC6400144 DOI: 10.3389/fimmu.2019.00280] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/01/2019] [Indexed: 11/17/2022] Open
Abstract
Immune-modulatory effects of β-glucans are generally considered beneficial to fish health. Despite the frequent application of β-glucans in aquaculture practice, the exact receptors and downstream signalling remains to be described for fish. In mammals, Dectin-1 is a member of the C-type lectin receptor (CLR) family and the best-described receptor for β-glucans. In fish genomes, no clear homologue of Dectin-1 could be identified so far. Yet, in previous studies we could activate carp macrophages with curdlan, considered a Dectin-1-specific β-(1,3)-glucan ligand in mammals. It was therefore proposed that immune-modulatory effects of β-glucan in carp macrophages could be triggered by a member of the CLR family activating the classical CLR signalling pathway, different from Dectin-1. In the current study, we used primary macrophages of common carp to examine immune modulation by β-glucans using transcriptome analysis of RNA isolated 6 h after stimulation with two different β-glucan preparations. Pathway analysis of differentially expressed genes (DEGs) showed that both β-glucans regulate a comparable signalling pathway typical of CLR activation. Carp genome analysis identified 239 genes encoding for proteins with at least one C-type Lectin Domains (CTLD). Narrowing the search for candidate β-glucan receptors, based on the presence of a conserved glucan-binding motif, identified 13 genes encoding a WxH sugar-binding motif in their CTLD. These genes, however, were not expressed in macrophages. Instead, among the β-glucan-stimulated DEGs, a total of six CTLD-encoding genes were significantly regulated, all of which were down-regulated in carp macrophages. Several candidates had a protein architecture similar to Dectin-1, therefore potential conservation of synteny of the mammalian Dectin-1 region was investigated by mining the zebrafish genome. Partial conservation of synteny with a region on the zebrafish chromosome 16 highlighted two genes as candidate β-glucan receptor. Altogether, the regulation of a gene expression profile typical of a signalling pathway associated with CLR activation and, the identification of several candidate β-glucan receptors, suggest that immune-modulatory effects of β-glucan in carp macrophages could be a result of signalling mediated by a member of the CLR family.
Collapse
Affiliation(s)
- Jules Petit
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Erin C. Bailey
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Robert T. Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | | | - Maria Forlenza
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Geert F. Wiegertjes
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
- Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
4
|
Thermal acclimation in the perch (Perca fluviatilis L.) immunity. J Therm Biol 2015; 54:47-55. [DOI: 10.1016/j.jtherbio.2015.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/31/2014] [Accepted: 01/15/2015] [Indexed: 11/30/2022]
|
5
|
Wang H, Wang C, Zhao MH, Chen M. Neutrophil extracellular traps can activate alternative complement pathways. Clin Exp Immunol 2015; 181:518-27. [PMID: 25963026 DOI: 10.1111/cei.12654] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2015] [Indexed: 12/27/2022] Open
Abstract
The interaction between neutrophils and activation of alternative complement pathway plays a pivotal role in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). ANCAs activate primed neutrophils to release neutrophil extracellular traps (NETs), which have recently gathered increasing attention in the development of AAV. The relationship between NETs and alternative complement pathway has not been elucidated. The current study aimed to investigate the relationship between NETs and alternative complement pathway. Detection of components of alternative complement pathway on NETs in vitro was assessed by immunostain and confocal microscopy. Complement deposition on NETs were detected after incubation with magnesium salt ethyleneglycol tetraacetic acid (Mg-EGTA)-treated human serum. After incubation of serum with supernatants enriched in ANCA-induced NETs, levels of complement components in supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Complement factor B (Bb) and properdin deposited on NETs in vitro. The deposition of C3b and C5b-9 on NETs incubated with heat-inactivated normal human serum (Hi-NHS) or EGTA-treated Hi-NHS (Mg-EGTA-Hi-NHS) were significantly less than that on NETs incubated with NHS or EGTA-treated NHS (Mg-EGTA-NHS). NETs induced by ANCA could activate the alternative complement cascade in the serum. In the presence of EGTA, C3a, C5a and SC5b-9 concentration decreased from 800·42 ± 244·81 ng/ml, 7·68 ± 1·50 ng/ml, 382·15 ± 159·75 ng/ml in the supernatants enriched in ANCA induced NETs to 479·07 ± 156·2 ng/ml, 4·86 ± 1·26 ng/ml, 212·65 ± 44·40 ng/ml in the supernatants of DNase I-degraded NETs (P < 0·001, P = 0·008, P < 0·001, respectively). NETs could activate the alternative complement pathway, and might thus participate in the pathogenesis of AAV.
Collapse
Affiliation(s)
- H Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - C Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - M-H Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - M Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
6
|
Pierrard MA, Roland K, Kestemont P, Dieu M, Raes M, Silvestre F. Fish peripheral blood mononuclear cells preparation for future monitoring applications. Anal Biochem 2012; 426:153-65. [DOI: 10.1016/j.ab.2012.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 03/19/2012] [Accepted: 04/04/2012] [Indexed: 01/08/2023]
|
7
|
Garcia-Garcia E, Grayfer L, Stafford JL, Belosevic M. Evidence for the presence of functional lipid rafts in immune cells of ectothermic organisms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:257-269. [PMID: 22450166 DOI: 10.1016/j.dci.2012.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 05/31/2023]
Abstract
The role of lipid rafts in non-mammalian leukocytes has been scarcely investigated. We performed biochemical and functional analysis of lipid rafts in fish leukocytes. Fish Flotillin-1 and a fish GM1-like molecule (fGM1-L) were found in low density detergent-resistant membranes (LD-DRM) in goldfish macrophages and catfish B lymphocytes, similarly to mammals. The presence of flotillin-1 and fGM1-L in LD-DRM was sensitive to increased detergent concentrations, and cholesterol extraction. Confocal microscopy analysis of flotillin-1 and fGM1-L in fish leukocytes showed a distinctive punctuated staining pattern, suggestive of pre-existing rafts. Confocal microscopy analysis of macrophages showed that the membrane of phagosomes containing serum-opsonized zymosan was enriched in fGM1-L, and zymosan phagocytosis was reduced after cholesterol extraction. The presence of flotillin-1 and fGM1-L in LD-DRM, the microscopic evidence of flotillin-1 and fGM1-L on fish macrophages and B-cells, and the sensitivity of phagocytosis to cholesterol extraction, indicate that lipid rafts are biochemically and functionally similar in leukocytes from fish and mammals.
Collapse
Affiliation(s)
- Erick Garcia-Garcia
- Department of Biological Sciences, University of Alberta, Edmonton, Canada AB T6G 2E9
| | | | | | | |
Collapse
|
8
|
Nakao M, Tsujikura M, Ichiki S, Vo TK, Somamoto T. The complement system in teleost fish: progress of post-homolog-hunting researches. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1296-1308. [PMID: 21414344 DOI: 10.1016/j.dci.2011.03.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/05/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
Studies on the complement system of bony fish are now finishing a stage of homologue-hunting identification of the components, unveiling existence of almost all the orthologues of mammalian complement components in teleost. Genomic and transcriptomic data for several teleost species have contributed much for the homologue-hunting research progress. Only an exception is identification of orthologues of mammalian complement regulatory proteins and complement receptors. It is of particular interest that teleost complement components often exist as multiple isoforms with possible functional divergence. This review summarizes research progress of teleost complement system following the molecular identification and sequence analysis of the components. The findings of extensive expression analyses of the complement components with special emphasis of their prominent extrahepatic expression, acute-phase response to immunostimulation and various microbial infections, and ontogenic development including maternal transfer are discussed to infer teleost-specific functions of the complement system. Importance of the protein level characterization of the complement components is also emphasized, especially for understanding of the isotypic diversity of the components, a unique feature of teleost complement system.
Collapse
Affiliation(s)
- Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|
9
|
Saunders HL, Oko AL, Scott AN, Fan CW, Magor BG. The cellular context of AID expressing cells in fish lymphoid tissues. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:669-676. [PMID: 20105439 DOI: 10.1016/j.dci.2010.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 01/18/2010] [Accepted: 01/20/2010] [Indexed: 05/28/2023]
Abstract
It has long been held that the cold-blooded vertebrates lack mammalian-like germinal centers, though they do have affinity maturation and the immunoglobulin mutator activation-induced cytidine deaminase or AID. Using AID as a marker of sites of somatic hypermutation, we have identified discrete cell clusters of up to several thousand cells, in the spleen and kidney of channel catfish (Ictalurus punctatus), which may be primordial germinal centers. In situ hybridization revealed that AID expressing cells are interspersed or surrounded by a population of pigmented CSF1-R expressing cells called melano-macrophages. Significantly, melano-macrophages or associated reticular cells have been previously noted for their ability to retain soluble antigen on or near their surface for several weeks following vaccination. Laser capture microdissection and RT-PCR were used to establish that these cell clusters also contained cells expressing Ig heavy chain transcripts as well as transcripts of TcRbeta and the putative CD4 homologue of fish. These observations, coupled with past work showing that mutations develop in B-cell lineages in fishes, allow us to develop a model for how affinity maturation may have evolved in early gnathostome vertebrates.
Collapse
Affiliation(s)
- Holly L Saunders
- Department of Biological Sciences, University of Alberta, Edmonton, T6G-2E5 Canada
| | | | | | | | | |
Collapse
|
10
|
Nitric oxide hinders antibody clearance from the surface of Trypanoplasma borreli and increases susceptibility to complement-mediated lysis. Mol Immunol 2009; 46:3188-97. [DOI: 10.1016/j.molimm.2009.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/07/2009] [Accepted: 08/12/2009] [Indexed: 11/22/2022]
|
11
|
Stakauskas R, Schuberth HJ, Leibold W, Steinhagen D. Modulation of carp (Cyprinus carpio) neutrophil functions during an infection with the haemoparasite Trypanoplasma borreli. FISH & SHELLFISH IMMUNOLOGY 2007; 23:446-58. [PMID: 17350287 DOI: 10.1016/j.fsi.2007.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 12/21/2006] [Accepted: 01/10/2007] [Indexed: 05/14/2023]
Abstract
Trypanoplasma borreli is an extracellular blood parasite of common carp (Cyprinus carpio) transmitted by fish-biting leeches. The infestation with this parasite in juvenile carp may range between 75% and 100%, especially in fish recovering from the first hibernation period. T. borreli is perfectly adapted to its prolonged survival in a cyprinid host. Elevated numbers of activated neutrophils in peripheral blood and tissues are reported during T. borreli infection, but in context of the disease, the direct reason for elevated neutrophil numbers and their role during the infection remain unclear. In this study, a quantitative transmigration system, permitting the harvest of highly pure (> or = 97%) neutrophil populations was applied to investigate the modulation of carp neutrophil functions during T. borreli infection. We demonstrate time-dependent kinetics of a serum-induced down-regulation of neutrophil chemotaxis and an up-regulation of ROS production during the course of infection. With highly pure neutrophil populations, we could show that this divergent alteration of neutrophil functions was neither caused by T. borreli metabolites nor by the parasite itself. Moreover, when added to highly purified neutrophils, parasite metabolites did not alter the leukotriene B4-induced neutrophil chemotaxis nor the Staphylococcus aureus-induced ROS production. We conclude that the haemoparasite T. borreli does not interact with neutrophils directly, but indirectly modulates their functions via serum factors induced by parasite interaction with other components of the immune system.
Collapse
Affiliation(s)
- Rimantas Stakauskas
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Buenteweg 17, D-30559 Hannover, Germany.
| | | | | | | |
Collapse
|
12
|
Nakao M, Kato-Unoki Y, Nakahara M, Mutsuro J, Somamoto T. Diversified Components of the Bony Fish Complement System: More Genes for Robuster Innate Defense? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 586:121-38. [PMID: 16893069 DOI: 10.1007/0-387-34134-x_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
13
|
Boshra H, Li J, Sunyer JO. Recent advances on the complement system of teleost fish. FISH & SHELLFISH IMMUNOLOGY 2006; 20:239-62. [PMID: 15950490 DOI: 10.1016/j.fsi.2005.04.004] [Citation(s) in RCA: 403] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 04/04/2005] [Indexed: 05/02/2023]
Abstract
The complement system plays an essential role in alerting the host of the presence of potential pathogens, as well as in their clearing. In addition, activation of the complement system contributes significantly in the orchestration and development of an acquired immune response. Although the complement system has been studied extensively in mammals, considerably less is known about complement in lower vertebrates, in particular teleost fish. Here we review our current understanding of the role of fish complement in phagocytosis, respiratory burst, chemotaxis and cell lysis. We also thoroughly review the specific complement components characterized thus far in various teleost fish species. In addition, we provide a comprehensive compilation on complement host-pathogen interactions, in which we analyze the role of fish complement in host defense against bacteria, viruses, fungi and parasites. From a more physiological perspective, we evaluate the knowledge accumulated on the influence of stress, nutrition and environmental factors on levels of complement activity and components, and how the use of this knowledge can benefit the aquaculture industry. Finally, we propose future directions that are likely to advance our understanding of the molecular evolution, structure and function of complement proteins in teleosts. Such studies will be pivotal in providing new insights into complement-related mechanisms of recognition and defense that are essential to maintaining fish homeostasis.
Collapse
Affiliation(s)
- H Boshra
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 413 Rosenthal, 3800 Spruce St., Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
14
|
Roberts ML, Lewis JW, Wiegertjes GF, Hoole D. Interaction between the blood fluke,Sanguinicola inermisand humoral components of the immune response of carp,Cyprinus carpio. Parasitology 2005; 131:261-71. [PMID: 16145943 DOI: 10.1017/s0031182005007651] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effect ofSanguinicola inermison serum antibody and complement activity inCyprinus carpiowas assessed using an ELISA and haemolytic assays. Possible immune evasion strategies were assessed using immunodetection of host proteins on the surface of the parasite. Carp acclimatized to 20 or 25 °C were infected by exposure to 500 cercariae or injected intraperitoneally with 150 cercariae, and serum monitored over a 63-day period. In cercariae-injected carp, irrespective of time and temperature, a significant increase occurred in complement activity being greatest at 25 °C. In addition, fish exposed to the cercariae ofS. inermisand maintained at 20 °C the level of complement activity was significantly higher after 5 weeks compared to controls. At 20 °C intraperitoneal injections of parasites increased serum antibody levels which peaked after 7 days. In contrast, at 25 °C, antibody levels were maintained over 63 days. Exposure of fish to infection did not appear to stimulate antibody production. Immunofluorescence studies revealed ‘host-like’ molecules on the surface of the cercarial body exposed to carp serum and adult flukes obtained directly from the fish or cultured for 24 h in L15 medium. The possible role of ‘host-like’ molecules in immune evasion is discussed and the response at different temperatures is related to infection dynamics.
Collapse
Affiliation(s)
- M L Roberts
- Centre for Applied Entomology and Parasitology, Huxley Building, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
| | | | | | | |
Collapse
|