1
|
Shoemaker LN, Matern T, Kamar F, St Lawrence K, Ortega-Gutierrez S, Zanaty M, Shoemaker JK. Blood pressure in human large cerebral arteries: a feasibility study. J Appl Physiol (1985) 2025; 138:693-698. [PMID: 39918464 DOI: 10.1152/japplphysiol.00825.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
The lack of direct measures of brain blood pressure (BBP) has severely restricted understanding of cerebral pressure-flow relationships and their control. We sought to evaluate the feasibility of directly measuring BBP and its pulsatility between the aorta and middle cerebral artery (MCA) during elective endovascular surgical procedures. We report five case studies (four female, 61 ± 13 yr; means ± SD) of patients undergoing cerebrovascular interventional procedures for aneurysm and stenoses, using direct BBP measures with the COMET 2 pressure guidewire system (Boston Scientific). Patients were supine, intubated, and under anesthesia. The sensor wire was inserted via the femoral artery, measuring, as feasible, blood pressure (BP) in the aorta to MCA vascular segments, referenced to the radial artery BP waveform (arterial catheter). Mean arterial pressure varied between the radial (80 ± 18 mmHg), internal carotid artery (ICA; 70 ± 25 mmHg), and MCA (62 ± 29 mmHg), and marked interindividual heterogeneity was observed. Pulse pressure was higher in the radial artery (68 ± 23 mmHg) compared with the intracranial ICA (ICAi; 43 ± 29 mmHg) and MCA (M1; 25 ± 12 mmHg) segments. Direct measures of BBP in humans are feasible in this interventional surgery model. Although limited by the small sample size, the results suggest a heterogenous pattern of change between systemic and brain measures of blood pressure and pulse pressure.NEW & NOTEWORTHY We explored the feasibility of making direct measures of blood pressure in the large arteries at the base of the brain in humans. Measures were made with an optical sensor positioned in the aorta, common carotid, internal carotid artery external to the cranium, internal carotid artery within the cranium, and/or middle cerebral artery (MCA), M1 segment. Measures varied across individuals, as did the pressure gradient from systemic pressures to those in the MCA.
Collapse
Affiliation(s)
- Leena N Shoemaker
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Tyson Matern
- Department of Neurosurgery, University of Iowa Healthcare, Iowa City, Iowa, United States
| | - Farah Kamar
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Keith St Lawrence
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | | - Mario Zanaty
- Department of Neurosurgery, University of Iowa Healthcare, Iowa City, Iowa, United States
| | - J Kevin Shoemaker
- School of Kinesiology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Ito H, Ibaraki M, Yamakuni R, Hakozaki M, Ukon N, Ishii S, Fukushima K, Kubo H, Takahashi K. Oxygen extraction fraction is not uniform in human brain: a positron emission tomography study. J Physiol Sci 2023; 73:25. [PMID: 37828449 PMCID: PMC10717292 DOI: 10.1186/s12576-023-00880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
The regional differences in cerebral oxygen extraction fraction (OEF) in brain were investigated using positron emission tomography (PET) in detail with consideration of systemic errors in PET measurement estimated by simulation studies. The cerebral blood flow (CBF), cerebral blood volume (CBV), OEF, and cerebral metabolic rate of oxygen (CMRO2) were measured on healthy men by PET with 15O-labeled gases. The OEF values in the pons and the parahippocampal gyrus were significantly smaller than in the other brain regions. The OEF value in the lateral side of the occipital cortex was largest among the cerebral cortical regions. Simulation studies have revealed that errors in OEF caused by regional differences in the distribution volume of 15O-labeled water, as well as errors in OEF caused by a mixture of gray and white matter, must be negligible. The regional differences in OEF in brain must exist which might be related to physiological meanings.Article title: Kindly check and confirm the edit made in the article title.I have checked the article title and it is OK as is. Trial registration: The UMIN clinical trial number: UMIN000033382, https://www.umin.ac.jp/ctr/index.htm.
Collapse
Affiliation(s)
- Hiroshi Ito
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-Oka, Fukushima, 960-1295, Japan.
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan.
| | - Masanobu Ibaraki
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, 6-10 Senshu-Kubota-Machi, Akita, 010-0874, Japan.
| | - Ryo Yamakuni
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-Oka, Fukushima, 960-1295, Japan
| | - Motoharu Hakozaki
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-Oka, Fukushima, 960-1295, Japan
| | - Naoyuki Ukon
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Shiro Ishii
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-Oka, Fukushima, 960-1295, Japan
| | - Kenji Fukushima
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-Oka, Fukushima, 960-1295, Japan
| | - Hitoshi Kubo
- School of Medical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
3
|
Huang SHS, Pavenski K, Lee TY, Jurkiewicz MT, Bharatha A, Thiessen JD, St. Lawrence K, Théberge J, Mandzia J, Barth D, Licht C, Patriquin CJ. Blood-brain barrier permeability in survivors of immune-mediated thrombotic thrombocytopenic purpura: a pilot study. Blood Adv 2021; 5:4211-4218. [PMID: 34521110 PMCID: PMC8945621 DOI: 10.1182/bloodadvances.2021005317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare, life-threatening disorder of systemic microthrombosis and organ ischemia. The etiology of chronic cerebrovascular outcomes in iTTP survivors is largely unknown. In this pilot study, we measured blood-brain barrier (BBB) permeability in patients with iTTP at the start of remission and 6 months later. This prospective pilot study included 7 adult patients with incident iTTP. Eligibility criteria included ADAMTS13 activity < 10% and detectable inhibitor at diagnosis. Patients were recruited from London Health Sciences Centre in Canada (2017-2019) within 3 days of hospital admission and followed for 6 months after remission (defined as normalization of platelet count and lactate dehydrogenase with no clinical signs or symptoms of microvascular injury for more than 30 days after the last plasma exchange). All patients had cerebral computed tomography perfusion scans with BBB permeability surface product measurements. Patients (5 women, 2 men) had a mean age of 48 years (range, 21-77 years). At diagnosis, patients had a mean platelet count of 22 (standard deviation [SD], 25) × 109/L. At the start of remission, mean BBB permeability surface product was 0.91 (0.30) mL/min/100 g. Six months later, the mean permeability surface product was 0.56 (0.22) mL/min/100 g, with a mean difference of -0.312 mL/min/100 g (95% confidence interval: -0.4729 to -0.1510; P = .0032). In this pilot study of patients with iTTP, pathologically increased BBB permeability was evident, and although there was some improvement, this persisted 6 months after remission. Future work will explore the chronicity of these findings and their clinical implications.
Collapse
Affiliation(s)
| | | | - Ting-Yim Lee
- Department of Medical Biophysics, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- Department of Medical Imaging, Western University, London, Canada
| | | | - Aditya Bharatha
- Department of Radiology, St. Michael’s Hospital, Toronto, Canada
| | - Jonathan Dale Thiessen
- Department of Medical Biophysics, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- Department of Medical Imaging, Western University, London, Canada
| | - Keith St. Lawrence
- Department of Medical Biophysics, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
| | - Jean Théberge
- Department of Medical Biophysics, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- Department of Medical Imaging, Western University, London, Canada
| | | | - David Barth
- Department of Medicine, Division of Medical Oncology and Hematology, University Health Network, Toronto, Canada; and
| | - Christoph Licht
- Department of Pediatric, Division of Nephrology, SickKids Hospital, Toronto, Canada
| | - Christopher Jordan Patriquin
- Department of Medicine, Division of Medical Oncology and Hematology, University Health Network, Toronto, Canada; and
| |
Collapse
|
4
|
Ibaraki M, Nakamura K, Matsubara K, Shinohara Y, Kinoshita T. Effect of hematocrit on cerebral blood flow measured by pseudo-continuous arterial spin labeling MRI: A comparative study with 15O-water positron emission tomography. Magn Reson Imaging 2021; 84:58-68. [PMID: 34562565 DOI: 10.1016/j.mri.2021.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION In cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical value (e.g., 1650 ms). However, individual T1a depends strongly on hematocrit (Hct) level. To investigate the utility of Hct-based T1a as an alternative to the fixed T1a method, we performed a comparative study with 15O-water positron emission tomography (PET). METHODS For patients with unilateral occlusion or stenosis of major arteries, hemispheric CBF on the healthy side was measured using pCASL and 15O-water PET. The pCASL CBFs were calculated with both (a) fixed T1a (1650 ms) and (b) individual T1a estimated from blood-sampled Hct (Hct-based T1a). Correlation coefficients of Hct-CBF were calculated and compared between pCASL and PET. RESULTS In pCASL, CBF with fixed T1a showed a strong negative correlation with Hct (r = -0.568), which was reduced with individual Hct-based T1a (r = -0.341 to -0.190), consistent with the Hct-CBF relation measured with PET (r = -0.349). DISCUSSION AND CONCLUSION We demonstrated that Hct-based T1a resulted in smaller inter-individual variations in pCASL CBF and an inverse Hct-CBF relationship more similar to that of PET. Care must be taken in the interpretation of pCASL CBF imaging in relation to Hct level even in subjects without anemia. Further comparative studies are needed to investigate whether advanced techniques improve pCASL CBF quantification at the individual level.
Collapse
Affiliation(s)
- Masanobu Ibaraki
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Kazuhiro Nakamura
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Keisuke Matsubara
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Yuki Shinohara
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Toshibumi Kinoshita
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| |
Collapse
|
5
|
van Aalst J, Ceccarini J, Sunaert S, Dupont P, Koole M, Van Laere K. In vivo synaptic density relates to glucose metabolism at rest in healthy subjects, but is strongly modulated by regional differences. J Cereb Blood Flow Metab 2021; 41:1978-1987. [PMID: 33444094 PMCID: PMC8327121 DOI: 10.1177/0271678x20981502] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Preclinical and postmortem studies have suggested that regional synaptic density and glucose consumption (CMRGlc) are strongly related. However, the relation between synaptic density and cerebral glucose metabolism in the human brain has not directly been assessed in vivo. Using [11C]UCB-J binding to synaptic vesicle glycoprotein 2 A (SV2A) as indicator for synaptic density and [18F]FDG for measuring cerebral glucose consumption, we studied twenty healthy female subjects (age 29.6 ± 9.9 yrs) who underwent a single-day dual-tracer protocol (GE Signa PET-MR). Global measures of absolute and relative CMRGlc and specific binding of [11C]UCB-J were indeed highly significantly correlated (r > 0.47, p < 0.001). However, regional differences in relative [18F]FDG and [11C]UCB-J uptake were observed, with up to 19% higher [11C]UCB-J uptake in the medial temporal lobe (MTL) and up to 17% higher glucose metabolism in frontal and motor-related areas and thalamus. This pattern has a considerable overlap with the brain regions showing different levels of aerobic glycolysis. Regionally varying energy demands of inhibitory and excitatory synapses at rest may also contribute to this difference. Being unaffected by astroglial and/or microglial energy demands, changes in synaptic density in the MTL may therefore be more sensitive to early detection of pathological conditions compared to changes in glucose metabolism.
Collapse
Affiliation(s)
- June van Aalst
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, Leuven, Belgium.,Radiology, UZ Leuven, Leuven, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Nuclear Medicine, UZ Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Abstract
We propose a new evolutionary interpretation of the brain's circulation that has physiological, pathophysiological, and clinical implications. We review the evidence for the concept, discuss clinical implications, and suggest techniques to address outstanding questions. We conclude that the brain circulation contains complementary low-pressure and high-pressure system that must be kept in balance for optimal brain health.
Collapse
Affiliation(s)
- Vladimir Hachinski
- Department of Clinical Neurological Sciences, Western University, Ontario Canada (V.H.)
| | - Leif Østergaard
- Department of Clinical Neurological Sciences, Western University, Ontario Canada (V.H.)
| |
Collapse
|
7
|
Amemiya S, Takao H, Abe O. Origin of the Time Lag Phenomenon and the Global Signal in Resting-State fMRI. Front Neurosci 2020; 14:596084. [PMID: 33250709 PMCID: PMC7673396 DOI: 10.3389/fnins.2020.596084] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
The global mean signal of resting-state fMRI (rs-fMRI) shows a characteristic spatiotemporal pattern that is closely related to the pattern of vascular perfusion. Although being increasingly adopted in the mapping of the flow of neural activity, the mechanism that gives rise to the BOLD signal time lag remains controversial. In the present study, we compared the time lag of the global mean signal with those of the local network components obtained by applying temporal independent component analysis to the resting-state fMRI data, as well as by using simultaneous wide-field visual stimulation, and demonstrated that the time lag patterns are highly similar across all types of data. These results suggest that the time lag of the rs-fMRI signal reflects the local variance of the hemodynamic responses rather than the arrival or transit time of the stimulus, whether the trigger is neuronal or non-neuronal in origin as long as it is mediated by local hemodynamic responses. Examinations of the internal carotid artery signal further confirmed that the arterial signal is tightly inversely coupled with the global mean signal in accordance with previous studies, presumably reflecting the blood flow or blood pressure changes that are occurring almost simultaneously in the internal carotid artery and the cerebral pial/capillary arteries, within the low-frequency component in human rs-fMRI.
Collapse
Affiliation(s)
- Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidemasa Takao
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Hoiland RL, Fisher JA, Ainslie PN. Regulation of the Cerebral Circulation by Arterial Carbon Dioxide. Compr Physiol 2019; 9:1101-1154. [DOI: 10.1002/cphy.c180021] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Mejdoubi M, Pavilla A, Colombani S, Duvauferrier R, Cepeda Ibarra Y, Seiller I. Impact of Head‐Down Position on Cerebral Blood Flow in Healthy Subjects: An Arterial Spin‐Labeling MR Perfusion Study. J Magn Reson Imaging 2019; 51:218-224. [PMID: 31074120 DOI: 10.1002/jmri.26783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 11/11/2022] Open
Affiliation(s)
- Mehdi Mejdoubi
- Department of Neuroradiology, Pierre‐Zobda‐Quitman HospitalUniversity Hospital of Martinique French West Indies France
| | - Aude Pavilla
- Department of Neuroradiology, Pierre‐Zobda‐Quitman HospitalUniversity Hospital of Martinique French West Indies France
| | - Sylvie Colombani
- Department of Neuroradiology, Pierre‐Zobda‐Quitman HospitalUniversity Hospital of Martinique French West Indies France
| | - Régis Duvauferrier
- Department of Neuroradiology, Pierre‐Zobda‐Quitman HospitalUniversity Hospital of Martinique French West Indies France
| | - Yamilet Cepeda Ibarra
- Department of Neuroradiology, Pierre‐Zobda‐Quitman HospitalUniversity Hospital of Martinique French West Indies France
| | - Ian Seiller
- Department of Neuroradiology, Pierre‐Zobda‐Quitman HospitalUniversity Hospital of Martinique French West Indies France
| |
Collapse
|
10
|
Andersen JB, Lindberg U, Olesen OV, Benoit D, Ladefoged CN, Larsson HB, Højgaard L, Greisen G, Law I. Hybrid PET/MRI imaging in healthy unsedated newborn infants with quantitative rCBF measurements using 15O-water PET. J Cereb Blood Flow Metab 2019; 39:782-793. [PMID: 29333914 PMCID: PMC6501508 DOI: 10.1177/0271678x17751835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, a new hybrid PET/MRI method for quantitative regional cerebral blood flow (rCBF) measurements in healthy newborn infants was assessed and the low values of rCBF in white matter previously obtained by arterial spin labeling (ASL) were tested. Four healthy full-term newborn subjects were scanned in a PET/MRI scanner during natural sleep after median intravenous injection of 14 MBq 15O-water. Regional CBF was quantified using a one-tissue-compartment model employing an image-derived input function (IDIF) from the left ventricle. PET rCBF showed the highest values in the thalami, mesencephalon and brain stem and the lowest in cortex and unmyelinated white matter. The average global CBF was 17.8 ml/100 g/min. The average frontal and occipital unmyelinated white matter CBF was 10.3 ml/100 g/min and average thalamic CBF 31.3 ml/100 g/min. The average white matter/thalamic ratio CBF was 0.36, significantly higher than previous ASL data. The rCBF ASL measurements were all unsuccessful primarily owing to subject movement. In this study, we demonstrated for the first time, a minimally invasive PET/MRI method using low activity 15O-water PET for quantitative rCBF assessment in unsedated healthy newborn infants and found a white/grey matter CBF ratio similar to that of the adult human brain.
Collapse
Affiliation(s)
- Julie B Andersen
- 1 Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ulrich Lindberg
- 1 Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Oline V Olesen
- 1 Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,2 DTU-Compute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Didier Benoit
- 1 Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Claes N Ladefoged
- 1 Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Bw Larsson
- 1 Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Liselotte Højgaard
- 1 Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Gorm Greisen
- 3 Department of Neonatology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- 1 Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Uryga A, Kasprowicz M, Burzyńska M, Calviello L, Kaczmarska K, Czosnyka M. Cerebral arterial time constant calculated from the middle and posterior cerebral arteries in healthy subjects. J Clin Monit Comput 2018; 33:605-613. [PMID: 30291539 DOI: 10.1007/s10877-018-0207-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
The cerebral arterial blood volume changes (∆CaBV) during a single cardiac cycle can be estimated using transcranial Doppler ultrasonography (TCD) by assuming pulsatile blood inflow, constant, and pulsatile flow forward from large cerebral arteries to resistive arterioles [continuous flow forward (CFF) and pulsatile flow forward (PFF)]. In this way, two alternative methods of cerebral arterial compliance (Ca) estimation are possible. Recently, we proposed a TCD-derived index, named the time constant of the cerebral arterial bed (τ), which is a product of Ca and cerebrovascular resistance and is independent of the diameter of the insonated vessel. In this study, we aim to examine whether the τ estimated by either the CFF or the PFF model differs when calculated from the middle cerebral artery (MCA) and the posterior cerebral artery (PCA). The arterial blood pressure and TCD cerebral blood flow velocity (CBFVa) in the MCA and in the PCA were non-invasively measured in 32 young, healthy volunteers (median age: 24, minimum age: 18, maximum age: 31). The τ was calculated using both the PFF and CFF models from the MCA and the PCA and compared using a non-parametric Wilcoxon signed-rank test. Results are presented as medians (25th-75th percentiles). The cerebrovascular time constant estimated in both arteries using the PFF model was shorter than when using the CFF model (ms): [64.83 (41.22-104.93) vs. 178.60 (160.40-216.70), p < 0.001 in the MCA, and 44.04 (17.15-81.17) vs. 183.50 (153.65-204.10), p < 0.001 in the PCA, respectively]. The τ obtained using the PFF model was significantly longer from the MCA than from the PCA, p = 0.004. No difference was found in the τ when calculated using the CFF model. Longer τ from the MCA might be related to the higher Ca of the MCA than that of the PCA. Our results demonstrate MCA-PCA differences in the τ, but only when the PFF model was applied.
Collapse
Affiliation(s)
- Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wrocław, Poland.
| | - Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Małgorzata Burzyńska
- Department of Anesthesiology and Intensive Care, Wroclaw Medical University, Wrocław, Poland
| | - Leanne Calviello
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Katarzyna Kaczmarska
- Department of Neurosurgery, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.,Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
12
|
Ailion AS, Hortman K, King TZ. Childhood Brain Tumors: a Systematic Review of the Structural Neuroimaging Literature. Neuropsychol Rev 2017. [DOI: 10.1007/s11065-017-9352-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Pavilla A, Arrigo A, Colombani S, Mejdoubi M. Absolute and regional cerebral perfusion assessment feasibility in head-down position with arterial spin-labeling magnetic resonance. A preliminary report on healthy subjects. J Neuroradiol 2016; 43:392-397. [DOI: 10.1016/j.neurad.2016.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/21/2015] [Accepted: 03/05/2016] [Indexed: 10/21/2022]
|
14
|
Kasprowicz M, Czosnyka M, Poplawska K, Reinhard M. Cerebral Arterial Time Constant Recorded from the MCA and PICA in Normal Subjects. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 122:211-4. [PMID: 27165908 DOI: 10.1007/978-3-319-22533-3_42] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral arterial time constant (τ) estimates how quickly the cerebral arterial bed distal to the point of insonation is filled with arterial blood following a cardiac contraction. It is not known how τ behaves in different vascular territories in the brain. We therefore investigated the differences in τ of two cerebral arteries: the posterior inferior cerebellar artery (PICA) and the middle cerebral artery (MCA).Transcranial Doppler cerebral blood flow velocity (CBFV) in the PICA and left MCA along with Finapres arterial blood pressure (ABP) were simultaneously recorded in 35 young healthy volunteers. τ was estimated using mathematical transformations of pulse waveforms of ABP and the CBFV of the MCA and the PICA. Since τ is independent from the vessel radius, its comparison in different cerebral arteries was feasible. Mean ABP was 76.1 ± 9.6 mmHg. The CBFV of the MCA was higher than that of the PICA (59.7 ± 7.7 vs. 41.0 ± 4.5 cm/s; p < 0.000001). τ of the PICA was shorter than that of the MCA (0.15 ± 0.03 vs. 0.18 ± 0.03 s; p < 0.000001). The MCA-supplied vascular bed has a longer distal average length, measured from the place of insonation up to the small arterioles, than the PICA-supplied vascular bed. Therefore, a longer time is needed to fill it with arterial blood volume. This study thus confirms the physiological validity of the τ concept.
Collapse
Affiliation(s)
- Magdalena Kasprowicz
- Department of Biomedical Engineering, Wroclaw University of Technology, Wroclaw, Poland.
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Karolina Poplawska
- Department of Biomedical Engineering, Wroclaw University of Technology, Wroclaw, Poland
| | | |
Collapse
|
15
|
Mayhew S, Mullinger K, Bagshaw A, Bowtell R, Francis S. Investigating intrinsic connectivity networks using simultaneous BOLD and CBF measurements. Neuroimage 2014; 99:111-21. [DOI: 10.1016/j.neuroimage.2014.05.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/18/2014] [Accepted: 05/14/2014] [Indexed: 11/29/2022] Open
|
16
|
CBF/CBV maps in normal volunteers studied with (15)O PET: a possible index of cerebral perfusion pressure. Neurosci Bull 2014; 30:857-62. [PMID: 25085575 DOI: 10.1007/s12264-013-1458-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/18/2014] [Indexed: 10/25/2022] Open
Abstract
Local cerebral perfusion pressure (CPP) is a primary factor controlling cerebral circulation and previous studies have indicated that the ratio of cerebral blood flow (CBF) to cerebral blood volume (CBV) can be used as an index of the local CPP. In this study, we investigated whether the CBF/CBV ratio differs among different brain structures under physiological conditions, by means of (15)O positron emission tomography. Nine healthy volunteers (5 men and 4 women; mean age, 47.0 ± 1.2 years) were studied by H2 (15)O bolus injection for CBF measurement and by C(15)O inhalation for CBV measurement. The CBF/CBV ratio maps were created by dividing the CBF images by the CBV images after anatomical normalization. Regions of interest were placed on the CBF/CBV maps and comparing the regions. The mean CBF/CBV ratio was highest in the cerebellum (19.3 ± 5.2/min), followed by the putamen (18.2 ± 3.9), pons (16.4 ± 4.6), thalamus (14.5 ± 3.3), cerebral cortices (13.2 ± 2.4), and centrum semiovale (11.5 ± 2.1). The cerebellum and putamen showed significantly higher CBF/CBV ratios than the cerebral cortices and centrum semiovale. We created maps of the CBF/CBV ratio in normal volunteers and demonstrated higher CBF/CBV ratios in the cerebellum and putamen than in the cerebral cortices and deep cerebral white matter. The CBF/CBV may reflect the local CPP and should be studied in hemodynamically compromised patients and in patients with risk factors for small-artery diseases of the brain.
Collapse
|
17
|
Hasan KM, Ali H, Shad MU. Atlas-based and DTI-guided quantification of human brain cerebral blood flow: feasibility, quality assurance, spatial heterogeneity and age effects. Magn Reson Imaging 2013; 31:1445-52. [PMID: 23731534 DOI: 10.1016/j.mri.2013.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 04/27/2013] [Indexed: 12/28/2022]
Abstract
Accurate and noninvasive quantification of regional cerebral blood perfusion (CBF) of the human brain tissue would advance the study of the complex interplay between human brain structure and function, in both health and disease. Despite the plethora of works on CBF in gray matter, a detailed quantitative white matter perfusion atlas has not been presented on healthy adults using the International Consortium for Brain Mapping atlases. In this study, we present a host of assurance measures such as temporal stability, spatial heterogeneity and age effects of regional and global CBF in selected deep, cortical gray matter and white matter tracts identified and quantified using diffusion tensor imaging (DTI). We utilized whole brain high-resolution DTI combined with arterial spin labeling to quantify regional CBF on 15 healthy adults aged 23.2-57.1years. We present total brain and regional CBF, corresponding volume, mean diffusivity and fractional anisotropy spatial heterogeneity, and dependence on age as additional quality assurance measures to compare with published trends using both MRI and nuclear medicine methods. Total CBF showed a steady decrease with age in gray matter (r=-0.58; P=.03), whereas total CBF of white matter did not significantly change with age (r=0.11; P=.7). This quantitative report offers a preliminary baseline of CBF, volume and DTI measurements for the design of future multicenter and clinical studies utilizing noninvasive perfusion and DT-MRI.
Collapse
Affiliation(s)
- Khader M Hasan
- Medical School, Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
18
|
JÓNSDÓTTIR KRISTJANAÝR, RØNN-NIELSEN ANDERS, MOURIDSEN KIM, VEDEL JENSEN EVAB. Lévy-based Modelling in Brain Imaging. Scand Stat Theory Appl 2013. [DOI: 10.1002/sjos.12000] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Abstract
The relationship between cerebral hemodynamics and cognitive performance has increasingly become recognized as a major challenge in clinical practice for older adults. Both diabetes and hypertension worsen brain perfusion and are major risk factors for cerebrovascular disease, stroke and dementia. Cerebrovascular reserve has emerged as a potential biomarker for monitoring pressure-perfusion-cognition relationships. Endothelial dysfunction and inflammation, microvascular disease, and mascrovascular disease affect cerebral hemodynamics and play an important role in pathohysiology and severity of multiple medical conditions, presenting as cognitive decline in the old age. Therefore, the identification of cerebrovascular vascular reactivity as a new therapeutic target is needed for prevention of cognitive decline late in life.
Collapse
|
20
|
Wolfe KR, Madan-Swain A, Kana RK. Executive dysfunction in pediatric posterior fossa tumor survivors: a systematic literature review of neurocognitive deficits and interventions. Dev Neuropsychol 2012; 37:153-75. [PMID: 22339228 DOI: 10.1080/87565641.2011.632462] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Improved medical therapies have increased survivorship rates for children with posterior fossa tumors; resultantly, morbidities associated with survivorship, such as executive function deficits, have become increasingly important to identify and address. Executive dysfunction can impact academic achievement as well as functional outcomes. We summarize studies describing executive functioning deficits in pediatric posterior fossa tumor survivors who received cranial radiation therapy and intervention studies that have targeted executive functioning deficits. Previous theoretical models describing the etiology of these deficits are reviewed, and a new, more comprehensive model is proposed. Future research should move toward incorporating neuroimaging, longitudinal designs, and multiple informants.
Collapse
Affiliation(s)
- Kelly R Wolfe
- Department of Psychology, University of Alabama, Birmingham, USA.
| | | | | |
Collapse
|
21
|
Mancini M, Morra VB, Di Donato O, Maglio V, Lanzillo R, Liuzzi R, Salvatore E, Brunetti A, Iaccarino V, Salvatore M. Multiple Sclerosis: Cerebral Circulation Time. Radiology 2012; 262:947-55. [PMID: 22357894 DOI: 10.1148/radiol.11111239] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marcello Mancini
- Institute of Biostructure and Bioimaging, National Research Council of Italy, Federico II University School of Medicine, Via Pansini 5, Edificio 10, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hasan KM, Walimuni IS, Abid H, Datta S, Wolinsky JS, Narayana PA. Human brain atlas-based multimodal MRI analysis of volumetry, diffusimetry, relaxometry and lesion distribution in multiple sclerosis patients and healthy adult controls: implications for understanding the pathogenesis of multiple sclerosis and consolidation of quantitative MRI results in MS. J Neurol Sci 2011; 313:99-109. [PMID: 21978603 DOI: 10.1016/j.jns.2011.09.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/31/2011] [Accepted: 09/13/2011] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis (MS) is the most common immune-mediated disabling neurological disease of the central nervous system. The pathogenesis of MS is not fully understood. Histopathology implicates both demyelination and axonal degeneration as the major contributors to the accumulation of disability. The application of several in vivo quantitative magnetic resonance imaging (MRI) methods to both lesioned and normal-appearing brain tissue has not yet provided a solid conclusive support of the hypothesis that MS might be a diffuse disease. In this work, we adopted FreeSurfer to provide standardized macrostructure or volumetry of lesion free normal-appearing brain tissue in combination with multiple quantitative MRI metrics (T(2) relaxation time, diffusion tensor anisotropy and diffusivities) that characterize tissue microstructural integrity. By incorporating a large number of healthy controls, we have attempted to separate the natural age-related change from the disease-induced effects. Our work shows elevation in diffusivity and relaxation times and reduction in volume in a number of normal-appearing white matter and gray matter structures in relapsing-remitting multiple sclerosis patients. These changes were related in part with the spatial distribution of lesions. The whole brain lesion load and age-adjusted expanded disability status score showed strongest correlations in regions such as corpus callosum with qMRI metrics that are believed to be specific markers of axonal dysfunction, consistent with histologic data of others indicating axonal loss that is independent of focal lesions. Our results support that MS at least in part has a neurodegenerative component.
Collapse
Affiliation(s)
- Khader M Hasan
- The University of Texas Health Science Center at Houston, Department of Diagnostic & Interventional Imaging, 6431 Fannin Street, MSB 2.100, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Depicting the salvageable tissue is increasingly used in the clinical setting following stroke. As absolute cerebral blood flow (CBF) is difficult to measure using perfusion magnetic resonance or computed tomography and has limitations as a penumbral marker, time-based variables, particularly the mean transit time (MTT), are routinely used as surrogates. However, a direct validation of MTT as a predictor of the penumbra threshold using gold-standard positron emission tomography (PET) is lacking. Using (15)O-PET data sets obtained from two independent acute stroke samples (N=7 and N=30, respectively), we derived areas under the curve (AUCs), optimal thresholds (OTs), and 90%-specificity thresholds (90%-Ts) from receiver operating characteristic curves for absolute MTT, MTT delay, and MTT ratio to predict three penumbra thresholds ('classic': CBF <20 mL/100 g per min; 'normalized': CBF ratio <0.5; and 'stringent': both CBF <20 mL/100 g per min and oxygen extraction fraction >0.55). In sample 1, AUCs ranged from 0.79 to 0.92, indicating good validity; OTs ranged from 7.8 to 8.3 seconds, 2.8 to 4.7 seconds, and 151% to 267% for absolute MTT, MTT delay, and MTT ratio, respectively, while as expected, 90%-Ts were longer. There was no significant difference between sample 1 and sample 2 for any of the above measurements, save for a single MTT parameter with a single penumbra threshold. These consistent findings from gold-standard PET obtained in two independent cohorts document that MTT is a very good surrogate to CBF for depicting the penumbra threshold.
Collapse
|
24
|
Zhu L, Wintermark M, Saloner D, Fandel M, Pan XM, Rapp JH. The distribution and size of ischemic lesions after carotid artery angioplasty and stenting: evidence for microembolization to terminal arteries. J Vasc Surg 2011; 53:971-5; discussion 975-6. [PMID: 21215560 DOI: 10.1016/j.jvs.2010.10.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 10/14/2010] [Accepted: 10/16/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Much of the brain is perfused by penetrating arteries that are the "single source" of blood to their surrounding tissues. These tissues should be equally vulnerable to ischemia from embolic occlusion, but there are questions about whether emboli have access to the penetrating arteries serving the deep brain tissues. To examine this issue in humans we recorded the number and distribution of new ischemic lesions on diffusion-weighted magnetic resonance imaging (DWMRI) after carotid artery stenting (CAS), a procedure producing showers of numerous small atheroemboli. METHODS Twenty-nine men (aged 62-81) underwent 30 CAS procedures with distal protection in place, and DWMRI 48 hours after the procedure documented new lesions had developed. Thirteen patients were asymptomatic, and 16 had experienced recent symptoms ipsilateral to the treated carotid stenosis. A DWMRI study was done in each patient ≤72 hours before the procedure. All MRI studies were read by the same neuroradiologist. RESULTS One patient sustained a minor stroke, which resolved. DWNRI found 131 new lesions (median, 3; range, 1-17; interquartile range, 2-4). Lesion size was <5 mm in 96.6% and 5 to 10 mm in 3.1%. Lesions were ipsilateral in 83.1% and contralateral in 16.9%. Lesions were in the distribution of the middle cerebral artery (91.6%), posterior cerebral artery (6.1%), and superior cerebellar artery subclavian artery (2.0%). Most lesions were in the cortex but at a depth where they were best described as cortical/subcortical (90.8%). The rest were in the periventricular white matter (6.1%) and deep gray matter (3.0%). CONCLUSIONS The ischemic areas developing after CAS were predominately in the deeper layers of the cortex in the distribution of the middle cerebral artery, but lesions were seen throughout the brain. The distribution of lesions caused by CAS-induced embolization coincided with estimates of blood flow to the respective areas of the brain. These data add to the evidence implicating microemboli in ischemic pathologies throughout the brain.
Collapse
Affiliation(s)
- Lei Zhu
- Vascular Surgery Service, the San Francisco Department of Veterans Affairs Medical Center, the University of California, San Francisco, Calif., USA
| | | | | | | | | | | |
Collapse
|
25
|
Wirestam R, Lindgren E, Van Westen D, Markenroth Bloch K, Ståhlberg F, Knutsson L. Cerebral perfusion information obtained by dynamic contrast‐enhanced phase‐shift magnetic resonance imaging: comparison with model‐free arterial spin labelling. Clin Physiol Funct Imaging 2010; 30:375-379. [DOI: 10.1111/j.1475-097x.2010.00947.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Danielle Van Westen
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund
- Department of Diagnostic Radiology, Lund University
| | | | - Freddy Ståhlberg
- Department of Medical Radiation Physics, Lund University
- Department of Diagnostic Radiology, Lund University
| | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University
| |
Collapse
|
26
|
Abstract
We reviewed the literature on human cerebral circulation and oxygen metabolism, as measured by positron emission tomography (PET), with respect to normal values and of regulation of cerebral circulation. A multicenter study in Japan showed that between-center variations in cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) values were not considerably larger than the corresponding within-center variations. Overall mean +/- SD values in cerebral cortical regions of normal human subjects were as follows: CBF = 44.4 +/- 6.5 ml/100 ml/min; CBV = 3.8 +/- 0.7 ml/100 ml; OEF = 0.44 +/- 0.06; CMRO2 = 3.3 +/- 0.5 ml/100 ml/min (11 PET centers, 70 subjects). Intrinsic regulation of cerebral circulation involves several factors. Autoregulation maintains CBF in response to changes in cerebral perfusion pressure; chemical factors such as PaCO2 affect cerebral vascular tone and alter CBF; changes in neural activity cause changes in cerebral energy metabolism and CBF; neurogenic control of CBF occurs by sympathetic innervation. Regional differences in vascular response to changes in PaCO2 have been reported, indicating regional differences in cerebral vascular tone. Relations between CBF and CBV during changes in PaCO2 and during changes in neural activity were in good agreement with Poiseuille's law. The mechanisms of vascular response to neural activation and deactivation were independent on those of responses to PaCO2 changes. CBV in a brain region is the sum of three components: arterial, capillary and venous blood volumes. It has been reported that the arterial blood volume fraction is approximately 30% in humans and that changes in human CBV during changes in PaCO2 are caused by changes in arterial blood volume without changes in venous blood volume. These findings should be considered in future studies of the pathophysiology of cerebrovascular diseases.
Collapse
Affiliation(s)
- Hiroshi Ito
- Department of Nuclear Medicine and Radiology, Division of Brain Sciences, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | |
Collapse
|
27
|
Ito H, Kanno I, Ibaraki M, Suhara T, Miura S. Relationship between baseline cerebral blood flow and vascular responses to changes in PaCO2 measured by positron emission tomography in humans: implication of inter-individual variations of cerebral vascular tone. Acta Physiol (Oxf) 2008; 193:325-30. [PMID: 18298636 DOI: 10.1111/j.1748-1716.2008.01847.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Inter-individual variations in normal human cerebral blood flow (CBF) at rest condition have been reported. Inter-individual variation of cerebral vascular tone is considered to contribute to this, and several determinants of cerebral vascular tone have been proposed. In the present study, the relationship between CBF and cerebral vascular tone to inter-individual variation at rest condition was investigated using positron emission tomography (PET). METHODS CBF was measured using PET with H(2) (15)O in each of 20 healthy subjects (20-28 years) under three conditions: at rest (baseline), during hypercapnia and during hypocapnia. The vascular response to change in P(a)CO(2) was calculated as the percentage changes in CBF per absolute change in P(a)CO(2) in response to hypercapnia and hypocapnia. RESULTS A significant negative correlation between baseline CBF and the vascular response to hypocapnia was observed in the thalamus, temporal cortex, parietal cortex, occipital cortex and cerebral cortex (P < 0.05). A trend towards negative correlation between baseline CBF and the vascular response to hypocapnia was observed in the cerebellum and putamen (P < 0.1). A significant negative correlation between baseline CBF and the vascular response to hypercapnia was observed in the occipital cortex (P < 0.05). No significant correlation was observed between baseline CBF and haemoglobin concentration, and P(a)CO(2). CONCLUSION These findings support the assumption that cerebral vascular tone might incline towards vasoconstriction and vasodilatation when baseline CBF is low and high between individuals respectively. Although several determinants of cerebral vascular tone have been proposed, the mechanism of such inter-individual differences in cerebral vascular tone is unknown.
Collapse
Affiliation(s)
- H Ito
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | | | | | | | | |
Collapse
|
28
|
van Gelderen P, de Zwart JA, Duyn JH. Pittfalls of MRI measurement of white matter perfusion based on arterial spin labeling. Magn Reson Med 2008; 59:788-95. [PMID: 18383289 DOI: 10.1002/mrm.21515] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although arterial spin labeling (ASL) MRI has been successfully applied to measure gray matter (GM) perfusion in vivo, accurate detection of white matter (WM) perfusion has proven difficult. Reported literature values are not consistent with each other or with perfusion measured with other modalities. In this work, the cause of these inconsistencies is investigated. The results suggest that WM perfusion values are substantially affected by the limited image resolution and by signal losses caused by the long transit times in WM, which significantly affect the label. From gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) bolus-tracking experiments (N=6), it is estimated that the transit time can be several seconds long in deep WM. Furthermore, simulations show that even at a spatial resolution of 7 microl voxel size, contamination by the GM signals can exceed 40% of the actual WM signal. From 10-min long flow-sensitive alternating inversion recovery ASL (FAIR-ASL) measurements at 3T in normal subjects (N=7), using highly sensitive detectors, it is shown that single-voxel (7 mul) deep WM perfusion values have an signal-to-noise ratio (SNR) less than 1. The poor sensitivity and heterogeneous transit time limit the applicability of ASL for measurement of perfusion in WM.
Collapse
Affiliation(s)
- P van Gelderen
- Advanced MRI, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1065, USA.
| | | | | |
Collapse
|
29
|
Kamba M, Sung YW, Ogawa S. Alteration of blood oxygenation level-dependent signaling by local circulatory condition. J Magn Reson Imaging 2008; 26:1506-13. [PMID: 17968895 DOI: 10.1002/jmri.21193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To determine regional differences in the relationship between neuronal activation and blood oxygenation level-dependent (BOLD) signal changes. MATERIALS AND METHODS We performed BOLD and perfusion-based studies on healthy adult volunteers (40 for BOLD and 20 for perfusion-based studies) with visual stimulation of varied extent in the visual field of subjects. RESULTS Regions with a significant negative correlation between the extent of visual stimuli and BOLD and perfusion responses were found bilaterally on the lateral surface of the occipital lobe just anterior to the occipital pole. These regions were located in the border zone between the territories of the middle and posterior cerebral arteries. CONCLUSION Insufficient perfusion pressure in these regions may have led to attenuation of BOLD and perfusion responses to stimulation of a large portion of the visual field, or a condition in which a large extent of the visual areas was activated in the proximal regions of the territories perfused by the middle and posterior cerebral arteries. This finding supports the hypothesis that regional differences in circulatory condition can result in alterations of the relationship between neuronal activation and BOLD signal changes in the normal human brain.
Collapse
Affiliation(s)
- Masayuki Kamba
- Ogawa Laboratories for Brain Function Research, Hamano Life Science Research Foundation, Tokyo, Japan
| | | | | |
Collapse
|
30
|
Bateman GA. Discrepancies in the measurement of cerebral blood flow in idiopathic intracranial hypertension. Acta Neurol Scand 2007; 116:273-4; author reply 275. [PMID: 17824909 DOI: 10.1111/j.1600-0404.2007.00816.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Qiu D, Kwong DLW, Chan GCF, Leung LHT, Khong PL. Diffusion tensor magnetic resonance imaging finding of discrepant fractional anisotropy between the frontal and parietal lobes after whole-brain irradiation in childhood medulloblastoma survivors: reflection of regional white matter radiosensitivity? Int J Radiat Oncol Biol Phys 2007; 69:846-51. [PMID: 17544593 DOI: 10.1016/j.ijrobp.2007.04.041] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/13/2007] [Accepted: 04/13/2007] [Indexed: 11/30/2022]
Abstract
PURPOSE To test the hypothesis that fractional anisotropy (FA) is more severely reduced in white matter of the frontal lobe compared with the parietal lobe after receiving the same whole-brain irradiation dose in a cohort of childhood medulloblastoma survivors. METHODS AND MATERIALS Twenty-two medulloblastoma survivors (15 male, mean [+/- SD] age = 12.1 +/- 4.6 years) and the same number of control subjects (15 male, aged 12.0 +/- 4.2 years) were recruited for diffusion tensor magnetic resonance imaging scans. Using an automated tissue classification method and the Talairach Daemon atlas, FA values of frontal and parietal lobes receiving the same radiation dose, and the ratio between them were quantified and denoted as FFA, PFA, and FA(f/p), respectively. The Mann-Whitney U test was used to test for significant differences of FFA, PFA, and FA(f/p) between medulloblastoma survivors and control subjects. RESULTS Frontal lobe and parietal lobe white matter FA were found to be significantly less in medulloblastoma survivors compared with control subjects (frontal p = 0.001, parietal p = 0.026). Moreover, these differences were found to be discrepant, with the frontal lobe having a significantly larger difference in FA compared with the parietal lobe. The FA(f/p) of control and medulloblastoma survivors was 1.110 and 1.082, respectively (p = 0.029). CONCLUSION Discrepant FA changes after the same irradiation dose suggest radiosensitivity of the frontal lobe white matter compared with the parietal lobe. Special efforts to address the potentially vulnerable frontal lobe after treatment with whole-brain radiation may be needed so as to balance disease control and treatment-related morbidity.
Collapse
Affiliation(s)
- Deqiang Qiu
- Department of Diagnostic Radiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
32
|
Ibaraki M, Ito H, Shimosegawa E, Toyoshima H, Ishigame K, Takahashi K, Kanno I, Miura S. Cerebral vascular mean transit time in healthy humans: a comparative study with PET and dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab 2007; 27:404-13. [PMID: 16736045 DOI: 10.1038/sj.jcbfm.9600337] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral vascular mean transit time (MTT), defined as the ratio of cerebral blood volume to cerebral blood flow (CBV/CBF), is a valuable indicator of the cerebral circulation. Positron emission tomography (PET) and dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) are useful for the quantitative determination of MTT in the clinical setting. The aim of this study was to establish a normal value set of MTT as determined by PET and by DSC-MRI and to identify differences between these methods. Seven healthy volunteers were studied with (15)O-PET (H(2)(15)O and C(15)O) and gradient-echo echo-planar DSC-MRI at 1.5 T. In the DSC-MRI study with bolus injection of contrast agent, deconvolution analysis was performed. Comparison of gray-to-white matter ratios showed fairly good agreement between PET and DSC-MRI for all parameters (relative CBV, relative CBF, and relative MTT), confirming the validity of relative measurements with DSC-MRI. However, quantitative MTT measured by DSC-MRI was significantly shorter than that measured by PET in cerebral cortical regions (2.8 to 3.0 secs for DSC-MRI versus 3.9 to 4.3 secs for PET) and the centrum semiovale (3.5 secs for DSC-MRI versus 4.8 secs for PET). These discrepancies may be because of the differences in the intrinsic sensitivity of each imaging modality to vascular components; whereas PET measurement of CBV is equally sensitive to all vascular components, measurement with DSC-MRI originates from the microvasculature in the vicinity of the brain parenchyma. This underlying difference may influence interpretation of MTT determined by PET or by DSC-MRI for patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Masanobu Ibaraki
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Matsumoto R, Haradahira T, Ito H, Fujimura Y, Seki C, Ikoma Y, Maeda J, Arakawa R, Takano A, Takahashi H, Higuchi M, Suzuki K, Fukui K, Suhara T. Measurement of glycine binding site ofN-methyl-d-asparate receptors in living human brain using 4-acetoxy derivative of L-703,717, 4-acetoxy-7-chloro-3-[3-(4-[11c] methoxybenzyl) phenyl]-2(1H)-quinolone (AcL703) with positron emission tomography. Synapse 2007; 61:795-800. [PMID: 17598152 DOI: 10.1002/syn.20415] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors are of major interest in brain functions and neuropsychiatric disorders. However, at present there are few suitable radioligands for in vivo imaging of NMDA receptors. 7-choloro-4-hydroxy-3-[3-(4-methoxybenzyl) phenyl]-2(1H)-quinolone (L-703,717) is one of the potent ligands for the glycine-binding site of NMDA receptors. 4-Acetoxy derivative of L-703,717 (AcL703) is a candidate, as a positron emission tomography (PET) ligand for NMDA receptors, because of its better permeability at the blood-brain barrier compared with L-703,717. After intravenous injection of 624-851 MBq of [11C]AcL703, dynamic PET scan was performed on six healthy males for 90 min. Regions-of-interest were located on the cerebral cortices, cerebellar cortex, and cerebral white matter. The binding potential (BP) was calculated from the ratio of the area under the curve (AUC) of radioactivities from 40 to 90 min in the target region to that in white matter. Regional radioactivities reached close to equilibrium in all regions after about 40 min postinjection. Regional brain uptake of [11C]AcL703 at 40 min after injection was 0.00028-0.00065% of the injected dose/milliliter. Radioactivity concentration of [11C]AcL703 was highest in the cerebellar cortex and lowest in white matter. AUC in the cerebellar cortex was higher than those of cerebral cortices, thalamus, striatum, and white matter. BP in the cerebellar cortex was twofold higher than in the cerebral cortices (cerebellar cortex: BP=2.20+/-0.72; cerebral cortices: BP=1.05+/-0.45). Despite the low brain uptake of [11C]AcL703, regional distributions were in good agreement with our previous studies of rodents. This indicates the possibility of in vivo evaluation of NMDA receptors using PET with [11C]AcL703 in living human brain.
Collapse
Affiliation(s)
- Ryohei Matsumoto
- Department of Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ghofrani HA, Osterloh IH, Grimminger F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov 2006; 5:689-702. [PMID: 16883306 PMCID: PMC7097805 DOI: 10.1038/nrd2030] [Citation(s) in RCA: 410] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In less than 20 years, the first selective type 5 phosphodiesterase inhibitor, sildenafil, has evolved from a potential anti-angina drug to an on-demand oral treatment for erectile dysfunction (Viagra), and more recently to a new orally active treatment for pulmonary hypertension (Revatio). Here we describe the key milestones in the development of sildenafil for these diverse medical conditions, discuss the advances in science and clinical medicine that have accompanied this journey and consider possible future indications for this versatile drug.
Collapse
Affiliation(s)
- Hossein A Ghofrani
- Medical Clinic II/V, Department of Internal Medicine, University Hospital Giessen and Marburg, GmbH, Klinikstrasse 36, 35392 Giessen, Germany.
| | | | | |
Collapse
|
35
|
Anderson CM, Maas LC, Frederick BD, Bendor JT, Spencer TJ, Livni E, Lukas SE, Fischman AJ, Madras BK, Renshaw PF, Kaufman MJ. Cerebellar vermis involvement in cocaine-related behaviors. Neuropsychopharmacology 2006; 31:1318-26. [PMID: 16237382 DOI: 10.1038/sj.npp.1300937] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the cerebellum is increasingly being viewed as a brain area involved in cognition, it typically is excluded from circuitry considered to mediate stimulant-associated behaviors since it is low in dopamine. Yet, the primate cerebellar vermis (lobules II-III and VIII-IX) has been reported to contain axonal dopamine transporter immunoreactivity (DAT-IR). We hypothesized that DAT-IR-containing vermis areas would be activated in cocaine abusers by cocaine-related cues and, in healthy humans, would accumulate DAT-selective ligands. We used BOLD fMRI to determine whether cocaine-related cues activated DAT-IR-enriched vermis regions in cocaine abusers and positron emission tomography imaging of healthy humans to determine whether the DAT-selective ligand [11C]altropane accumulated in those vermis regions. Cocaine-related cues selectively induced BOLD activation in lobules II-III and VIII-IX in cocaine users, and, at early time points after ligand administration, we found appreciable [11C]altropane accumulation in lobules VIII-IX, possibly indicating DAT presence in this region. These data suggest that parts of cerebellar vermis mediate cocaine's persisting and acute effects. In light of prior findings illustrating vermis connections to midbrain dopamine cell body regions, established roles for the vermis as a locus of sensorimotor integration and motor planning, and findings of increased vermis activation in substance abusers during reward-related and other cognitive tasks, we propose that the vermis be considered one of the structures involved in cocaine- and other incentive-related behaviors.
Collapse
Affiliation(s)
- Carl M Anderson
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rosengarten B, Schermuly RT, Voswinckel R, Kohstall MG, Olschewski H, Weissmann N, Seeger W, Kaps M, Grimminger F, Ghofrani HA. Sildenafil Improves Dynamic Vascular Function in the Brain: Studies in Patients with Pulmonary Hypertension. Cerebrovasc Dis 2006; 21:194-200. [PMID: 16388195 DOI: 10.1159/000090555] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 09/19/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Prostaglandins and nitric oxide play a pivotal role in the regulation of macro- and microcirculatory blood flow distribution. Interference with both mediator systems have been implicated in cerebrovascular dysfunction. Inhaled iloprost (long-acting prostacyclin analogue) and the phosphodiesterase-5 inhibitor sildenafil have recently shown efficacy in the treatment of chronic pulmonary hypertension. We investigated the impact of these agents on cerebral microcirculatory regulation in patients suffering from this disease. METHODS In 11 patients suffering from severe pulmonary hypertension, a functional transcranial Doppler test utilizing a visual stimulation paradigm was undertaken to measure the evoked flow velocity in the posterior cerebral artery. Measurements were performed in parallel to right heart catheterization and pharmacological testing of the pulmonary vasoreactivity. After assessment of baseline measurements, inhaled iloprost and oral sildenafil were given consecutively for testing of cerebral and pulmonary vascular function. The data gained from the Doppler measurements were compared to data from 22 healthy volunteers. RESULTS Both substances provoked a significant reduction of pulmonary arterial pressure and vascular resistance, accompanied by minor changes in systemic vascular resistance. In contrast to these superimposable hemodynamic profiles opposite effects were observed regarding cerebral vascular tone: cerebral microvascular reactivity, as assessed by attenuation and time rate parameters, was significantly improved by sildenafil, but slightly worsened by iloprost. CONCLUSIONS Sildenafil has beneficial effects on cerebral vascular reactivity indicative of an improvement in neurovascular coupling in patients with pulmonary hypertension. These results warrant further investigations of the influence of sildenafil on dynamic vascular function in the brain independent of the underlying disease.
Collapse
Affiliation(s)
- B Rosengarten
- Department of Neurology, University Hospital, Justus Liebig University Giessen, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Qiu D, Leung LHT, Kwong DLW, Chan GCF, Khong PL. Mapping radiation dose distribution on the fractional anisotropy map: applications in the assessment of treatment-induced white matter injury. Neuroimage 2006; 31:109-15. [PMID: 16448821 DOI: 10.1016/j.neuroimage.2005.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 10/25/2005] [Accepted: 12/09/2005] [Indexed: 11/30/2022] Open
Abstract
We describe a method to map whole brain radiation dose distribution on to diffusion tensor MR (DT-MR) fractional anisotropy (FA) images and illustrate its applications for studying dose-effect relationships and regional susceptibility in two childhood medulloblastoma survivors. To determine the FA changes voxel-by-voxel in white matter, the post-treatment follow-up FA maps were coregistered to baseline pre-treatment FA maps and automatic segmentation for white matter was carried out. DeltaFA maps representing relative FA change in white matter were hence generated for visual inspection and quantitative analysis. The radiation dose distribution, calculated from radiotherapy plan and exported as images, was coregistered to baseline FA images. DT-MR imaging and processing noise was small with root mean square value of 1.49% for mean DeltaFA. We evaluated the mean DeltaFA changes of regions-of-interest according to radiation dose regions to provide an estimate of the dose-response and found increasing reduction in mean DeltaFA with increasing radiation dose up to 45 Gy after which there was a reversal in the mean FA trend and mean FA approached baseline value. We also found more severe mean FA reduction in the frontal lobes compared to the parietal lobes despite the same radiation dose, suggesting regional susceptibility in the frontal lobe, and mean FA increase in the brainstem after radiation in both patients. We conclude that the method described may be useful in estimating dose-effect relationships and studying regional susceptibility of the brain to radiation in medulloblastoma survivors.
Collapse
Affiliation(s)
- Deqiang Qiu
- Department of Diagnostic Radiology, Blk. K, Rm 406, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong
| | | | | | | | | |
Collapse
|
38
|
Ibaraki M, Shimosegawa E, Toyoshima H, Ishigame K, Ito H, Takahashi K, Miura S, Kanno I. Effect of Regional Tracer Delay on CBF in Healthy Subjects Measured with Dynamic Susceptibility Contrast-Enhanced MRI: Comparison with 15O-PET. Magn Reson Med Sci 2005; 4:27-34. [PMID: 16127251 DOI: 10.2463/mrms.4.27] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Deconvolution based on truncated singular value decomposition (SVD deconvolution) is a promising method for measuring cerebral blood flow (CBF) with dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI), but it has proved extremely sensitive to tracer delay. The purpose of this study was to investigate the effect of regional tracer delay on CBF determined by SVD deconvolution (SVD-CBF). SVD-CBFs with and without correction for the delay were compared with CBF measured by positron emission tomography (PET-CBF), which is regarded as the gold standard for quantification of CBF. METHODS Perfusion MRI and PET were performed on seven healthy men. In the PET study, the CBF image was obtained with bolus injection of H2(15)O and continuous arterial sampling. In the DSC-MRI study with bolus injection of Gd-based contrast agent, dynamic perfusion data were obtained with a 1.5T scanner at 1-s intervals by means of gradient-echo echo-planar imaging. CBF was determined by the SVD deconvolution method with and without correction for the tracer delay. Region-of-interest measurements were obtained in the gray matter (cerebral cortex in the middle cerebral artery territory) and white matter (centrum semiovale). RESULTS Tracer delay was significantly longer in white matter than in gray matter (1.45+/-0.61 s vs. 0.59+/-0.35 s, P<0.01). Correction for the delay increased SVD-CBF in the white matter and consequently reduced the gray-to-white SVD-CBF ratio. The uncorrected gray-to-white SVD-CBF ratio was significantly larger than that of PET-CBF (3.33+/-0.66 vs. 2.54+/-0.49, P<0.01). However, the gray-to-white delay-corrected SVD-CBF ratio did not differ significantly from that of PET-CBF (2.83+/-0.31 vs. 2.54+/-0.49, P=0.10). CONCLUSION The tracer delay in DSC-MRI causes errors in CBF estimates, even in healthy persons, and therefore should be corrected for when delay-sensitive deconvolution, such as SVD deconvolution, is used.
Collapse
Affiliation(s)
- Masanobu Ibaraki
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, 6-10 Senshu-Kubota Machi, Akita 010-0874, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Riera J, Bosch J, Yamashita O, Kawashima R, Sadato N, Okada T, Ozaki T. fMRI activation maps based on the NN-ARx model. Neuroimage 2004; 23:680-97. [PMID: 15488418 DOI: 10.1016/j.neuroimage.2004.06.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 06/23/2004] [Accepted: 06/25/2004] [Indexed: 11/27/2022] Open
Abstract
The most significant progresses in the understanding of human brain functions have been possible due to the use of functional magnetic resonance imaging (fMRI), which when used in combination with other standard neuroimaging techniques (i.e., EEG) provides researchers with a potential tool to elucidate many biophysical principles, established previously by animal comparative studies. However, to date, most of the methods proposed in the literature seeking fMRI signs have been limited to the use of a top-down data analysis approach, thus ignoring a pool of physiological facts. In spite of the important contributions achieved by applying these methods to actual data, there is a disproportionate gap between theoretical models and data-analysis strategies while trying to focus on several new prospects, like for example fMRI/EEG data fusion, causality/connectivity patterns, and nonlinear BOLD signal dynamics. In this paper, we propose a new approach which will allow many of the abovementioned hot topics to be addressed in the near future with an underlying interpretability based on bottom-up modeling. In particular, the theta-MAP presented in the paper to test brain activation corresponds very well with the standardized t test of the SPM99 toolbox. Additionally, a new Impulse Response Function (IRF) has been formulated, directly related to the well-established concept of the hemodynamics response function (HRF). The model uses not only the information contained in the signal but also that in the structure of the background noise to simultaneously estimate the IRF and the autocorrelation function (ACF) by using an autoregressive (AR) model with a filtered Poisson process driving the dynamics. The short-range contributions of voxels within the near-neighborhood are also included, and the potential drift was characterized by a polynomial series. Since our model originated from an immediate extension of the hemodynamics approach [Friston, K.J., Mechelli, A., Turner, R., Price C.J. (2000a). Nonlinear responses in fMRI: the balloon model, volterra kernels, and other hemodynamics. NeuroImage 12, 466-477.], a natural interpretability of the results is feasible.
Collapse
Affiliation(s)
- J Riera
- Advanced Science and Technology of Materials NICHe, Tohoku University, Aoba 10, Aramaki, Aobaku, Sendai 980-8579, Japan.
| | | | | | | | | | | | | |
Collapse
|