1
|
Chen C, Fa Y, Kuo Y, Liu Y, Lin C, Wang X, Lu Y, Chiang Y, Yang C, Wu L, Ho JA. Thiolated Mesoporous Silica Nanoparticles as an Immunoadjuvant to Enhance Efficacy of Intravesical Chemotherapy for Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204643. [PMID: 36638276 PMCID: PMC9982584 DOI: 10.1002/advs.202204643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The characteristics of global prevalence and high recurrence of bladder cancer has led numerous efforts to develop new treatments. The spontaneous voiding and degradation of the chemodrug hamper the efficacy and effectiveness of intravesical chemotherapy following tumor resection. Herein, the externally thiolated hollow mesoporous silica nanoparticles (MSN-SH(E)) is fabricated to serve as a platform for improved bladder intravesical therapy. Enhanced mucoadhesive effect of the thiolated nanovector is confirmed with porcine bladder. The permeation-enhancing effect is also verified, and a fragmented distribution pattern of a tight junction protein, claudin-4, indicates the opening of tight junction. Moreover, MSN-SH(E)-associated reprogramming of M2 macrophages to M1-like phenotype is observed in vitro. The antitumor activity of the mitomycin C (MMC)-loaded nanovector (MMC@MSN-SH(E)) is more effective than that of MMC alone in both in vitro and in vivo. In addition, IHC staining is used to analyze IFN-γ, TGF-β1, and TNF-α. These observations substantiated the significance of MMC@MSN-SH(E) in promoting anticancer activity, holding the great potential for being used in intravesical therapy for non-muscle invasive bladder cancer (NMIBC) due to its mucoadhesivity, enhanced permeation, immunomodulation, and prolonged and very efficient drug exposure.
Collapse
Affiliation(s)
- Cheng‐Che Chen
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
- Department of UrologyTaichung Veterans General Hospital40705TaichungTaiwan
| | - Yu‐Chen Fa
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
| | - Yen‐Yu Kuo
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
| | - Yi‐Chun Liu
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
| | - Chih‐Yu Lin
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
| | - Xin‐Hui Wang
- Instrumentation CenterNational Taiwan University10617TaipeiTaiwan
| | - Yu‐Huan Lu
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
| | - Yu‐Han Chiang
- Department of ChemistryNational Taiwan University10617TaipeiTaiwan
| | - Chia‐Min Yang
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
- Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua University300044HsinchuTaiwan
| | - Li‐Chen Wu
- Department of Applied ChemistryNational Chi Nan UniversityPuliNantou54561Taiwan
| | - Ja‐an Annie Ho
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
- Department of ChemistryNational Taiwan University10617TaipeiTaiwan
- Center for Emerging Materials and Advance DevicesNational Taiwan University10617TaipeiTaiwan
- Center for BiotechnologyNational Taiwan University10617TaipeiTaiwan
| |
Collapse
|
2
|
D-penicillamine and other low molecular weight thiols: review of anticancer effects and related mechanisms. Cancer Lett 2013; 337:8-21. [PMID: 23727371 DOI: 10.1016/j.canlet.2013.05.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 01/13/2023]
Abstract
Low molecular weight thiols (LMWTs) like N-acetyl cysteine, D-penicillamine, captopril, Disulfiram and Amifostine, etc. have been used as chemo-preventive agents. Recent studies have reported cell growth inhibition and cytotoxicity in several different types of cancer cells following treatment with several LMWTs. Cytotoxic and cytostatic effects of LMWTs may involve interaction of the thiol group with cellular lipids, proteins, intermediates or enzymes. Some of the mechanisms that have been proposed include a p53 mediated apoptosis, thiyl radical induced DNA damage, membrane damage through lipid peroxidation, anti-angiogenic effects induced by inhibition of matrix metalloproteinase enzymes and angiostatin generation. LMWTs are strong chelators of transition metals like copper, nickel, zinc, iron and cobalt and may cause metal co-factor depletion resulting in cytotoxicity. Oxidation of thiol group can also generate cytotoxic reactive oxygen species (ROS).
Collapse
|
3
|
Tsai CW, Liu KL, Lin CY, Chen HW, Lii CK. Structure and function relationship study of allium organosulfur compounds on upregulating the pi class of glutathione S-transferase expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:3398-3405. [PMID: 21381664 DOI: 10.1021/jf104254r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Allium organosulfides are potential chemopreventive compounds due to their effectiveness on the induction of phase II detoxification enzyme expression. In this study, we examined the structure and function relationship among various alk(en)yl sulfides on the expression of the pi class of glutathione S-transferase (GSTP) in rat Clone 9 cells, and what mechanism is involved. Cells were treated with 300 μM dipropyl sulfide (DPS), dipropyl disulfide (DPDS), propyl methyl sulfide (PMS), and propyl methyl disulfide (PMDS) for 48 h. DPDS and PMDS displayed more potency on GSTP protein and mRNA induction than that of DPS and PMS. Next, we compared the effectiveness of DPDS, PMDS, and diallyl disulfide (DADS), which have the same number of sulfur atoms but differ in the side alk(en)yl groups. The maximum increases on protein expression, mRNA level, and enzyme activity were noted in cells treated with DADS, followed by DPDS and PMDS. A reporter assay showed that three disulfides increased GSTP enhancer I (GPE I) activity (P < 0.05) in the order DADS > DPDS ≥ PMDS. Electromobility gel shift assays showed that the DNA binding of GPE I to nuclear proteins reached a maximum at 1 to 3 h after alk(en)yl disulfide treatment. Supershift assay revealed that c-jun bound to GPE I. Silencing of extracellular signal-regulated kinase (ERK) 2 expression inhibited c-jun activation and GSTP induction. Results suggest that both the type of alk(en)yl groups and number of sulfur atoms are determining factors of allium organosulfides on inducing GSTP expression, and it is likely related to the ERK-c-Jun-GPE I pathway.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- Department of Nutrition, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan
| | | | | | | | | |
Collapse
|
4
|
Pfohl-Leszkowicz A, Manderville RA. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 2007; 51:61-99. [PMID: 17195275 DOI: 10.1002/mnfr.200600137] [Citation(s) in RCA: 706] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ochratoxin A (OTA) is a ubiquitous mycotoxin produced by fungi of improperly stored food products. OTA is nephrotoxic and is suspected of being the main etiological agent responsible for human Balkan endemic nephropathy (BEN) and associated urinary tract tumours. Striking similarities between OTA-induced porcine nephropathy in pigs and BEN in humans are observed. International Agency for Research on Cancer (IARC) has classified OTA as a possible human carcinogen (group 2B). Currently, the mode of carcinogenic action by OTA is unknown. OTA is genotoxic following oxidative metabolism. This activity is thought to play a central role in OTA-mediated carcinogenesis and may be divided into direct (covalent DNA adduction) and indirect (oxidative DNA damage) mechanisms of action. Evidence for a direct mode of genotoxicity has been derived from the sensitive 32P-postlabelling assay. OTA facilitates guanine-specific DNA adducts in vitro and in rat and pig kidney orally dosed, one adduct comigrates with a synthetic carbon (C)-bonded C8-dG OTA adduct standard. In this paper, our current understanding of OTA toxicity and carcinogenicity are reviewed. The available evidence suggests that OTA is a genotoxic carcinogen by induction of oxidative DNA lesions coupled with direct DNA adducts via quinone formation. This mechanism of action should be used to establish acceptable intake levels of OTA from human food sources.
Collapse
Affiliation(s)
- Annie Pfohl-Leszkowicz
- Laboratoire de Génie Chimique, UMR CNRS/INPT/UPS 5503, INP/ENSA Toulouse, Auzeville-Tolosane, France
| | | |
Collapse
|
5
|
Leitner VM, Guggi D, Krauland AH, Bernkop-Schnürch A. Nasal delivery of human growth hormone: in vitro and in vivo evaluation of a thiomer/glutathione microparticulate delivery system. J Control Release 2005; 100:87-95. [PMID: 15491813 DOI: 10.1016/j.jconrel.2004.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 08/03/2004] [Indexed: 11/20/2022]
Abstract
It was the aim of this study to develop and evaluate a nasal microparticulate delivery system for human growth hormone (hGH) based on the thiomer polycarbophil-cysteine (PCP-Cys) in combination with the permeation mediator glutathione (GSH). Microparticles were prepared by dissolving PCP-Cys/GSH/hGH (7.5:1:1.5), PCP/hGH (8.5:1.5), and mannitol/hGH (8.5:1.5) in demineralized water, followed by lyophilization and micronization. Particles were evaluated with regard to size distribution and swelling behavior using a laser diffraction particle size analyzer. The release of fluorescence-labelled hGH from microparticles was determined in Franz diffusion chambers. In vivo studies in rats were performed comparing the nasal bioavailability achieved by PCP-Cys/GSH/hGH microparticles with that of unmodified PCP/hGH microparticles and mannitol/hGH powder. PCP-Cys/GSH/hGH and PCP/hGH microparticles showed a comparable size distribution (80% in the range of 4.8-23 microm) and swelled to almost fourfold size in phosphate-buffered saline (PBS). Both formulations exhibited almost identical sustained drug release profiles. The intranasal administration of the PCP-Cys/GSH/hGH microparticulate formulation resulted in a relative bioavailability of 8.11+/-2.15%, which represents a 3-fold and 3.3-fold improvement compared to that of PCP/hGH microparticles and mannitol/hGH powder, respectively. The study suggests that the PCP-Cys/GSH/hGH nasal microparticulate formulation might represent a promising novel tool for the systemic delivery of hGH.
Collapse
Affiliation(s)
- Verena M Leitner
- Institute of Pharmaceutical Technology and Biopharmaceutics, Centre of Pharmacy, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
6
|
Leitner VM, Walker GF, Bernkop-Schnürch A. Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins. Eur J Pharm Biopharm 2003; 56:207-14. [PMID: 12957634 DOI: 10.1016/s0939-6411(03)00061-4] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Disulphide bonds between thiolated polymers (thiomers) and cysteine-rich subdomains of mucus glycoproteins are supposed to be responsible for the enhanced mucoadhesive properties of thiomers. This study set out to provide evidence for these covalent interactions using poly(acrylic acid)-cysteine conjugates of 2 and 450 kDa (PAA2-Cys, PAA450-Cys) displaying 402.5-776.0 micromol thiol groups per gram polymer. The effect of the disulphide bond breaker cysteine on thiomer-mucin disulphide bonds was monitored by (1) mucoadhesion studies and (2) rheological studies. Furthermore, (3) diffusion studies and (4) gel filtration studies were performed with thiomer-mucus mixtures. The addition of cysteine significantly (P<0.01) reduced the adhesion of thiomer tablets to porcine mucosa and G'/G" values of thiomer-mucin mixtures, whereas unthiolated controls were not influenced. These results indicate the cleavage of disulphide bonds between thiomer and mucus glycoproteins. Diffusion studies demonstrated that a 12.8-fold higher concentration of the thiomer (PAA2-Cys) remains in the mucin gel than the corresponding unmodified polymer. Gel filtration studies showed that PAA2-Cys was able to form disulphide bonds with mucin glycoproteins resulting in an altered elution profile of the mucin/PAA2-Cys mixture in comparison to mucin alone or mucin/PAA2 mixture. According to these results, the study provides evidence for the formation of covalent bonds between thiomer and mucus glycoproteins.
Collapse
Affiliation(s)
- Verena M Leitner
- Institute of Pharmaceutical Technology and Biopharmaceutics, Centre of Pharmacy, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
7
|
Munday R, Munday JS, Munday CM. Comparative effects of mono-, di-, tri-, and tetrasulfides derived from plants of the Allium family: redox cycling in vitro and hemolytic activity and Phase 2 enzyme induction in vivo. Free Radic Biol Med 2003; 34:1200-11. [PMID: 12706500 DOI: 10.1016/s0891-5849(03)00144-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epidemiological evidence indicates that a high dietary intake of plants of the Allium family, such as garlic and onions, decreases the risk of cancer in humans. It has been suggested that this effect is due to the ability of the aliphatic mono-, di-, tri-, and tetrasulfides derived from these vegetables to increase tissue activities of Phase 2 detoxification enzymes. In contrast, toxic effects have been recorded in domestic and farm animals after the consumption of garlic or onions, involving oxidative damage to erythrocytes and consequent hemolytic anemia. This effect again has been attributed to the aliphatic sulfides. In the present study, the ability of sulfides derived from garlic and onions to generate "active oxygen" species and cause oxidative damage to erythrocytes in vitro has been compared, together with their ability to cause hemolytic anemia and increase the activity of the Phase 2 enzymes quinone reductase (QR) and glutathione S-transferase (GST) in rats. Monosulfides were without significant effect on any parameter. Di-, tri-, and tetrasulfides generated hydrogen peroxide in the presence of GSH and hemoglobin and caused oxidative damage to erythrocytes in vitro. The activity decreased in the order of tetra- > tri- > disulfide, with the allyl compounds being more potent than the propyl. In vivo, both allyl and propyl tri- and tetrasulfides were powerful hemolytic agents. In contrast, only the allyl sulfides increased the activities of QR and GST; the propyl derivatives were completely without effect. Allyl and propyl tri- and tetrasulfides, thus, may contribute to the toxic effects of Allium vegetables, while only the allyl derivatives are effective in increasing tissue activities of cancer-protective enzymes.
Collapse
Affiliation(s)
- Rex Munday
- AgResearch, Ruakura Agricultural Research Center, Hamilton, New Zealand.
| | | | | |
Collapse
|
8
|
Munday R, Munday CM. Relative activities of organosulfur compounds derived from onions and garlic in increasing tissue activities of quinone reductase and glutathione transferase in rat tissues. Nutr Cancer 2002; 40:205-10. [PMID: 11962257 DOI: 10.1207/s15327914nc402_18] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There is evidence that onions and garlic protect against cancer in humans. It has been suggested that this effect is due to the organosulfur compounds in these vegetables and that these substances act through induction of phase II detoxification enzymes. In the present studies, we have compared the ability of diallyl sulfide, dially disulfide, and diallyl trisulfide, compounds that are derived from garlic, to increase the activity of the phase II enzymes quinone reductase and glutathione transferase in a variety of rat tissues. We have also examined the onion-derived substances, dipropyl sulfide, dipropyl disulfide, dipropenyl sulfide, and dipropenyl disulfide, under identical conditions. Diallyl trisulfide and diallyl disulfide were potent inducers of the phase II enzymes. Dipropenyl disulfide was much less active, while little effect on enzyme activity was seen in animals dosed with dipropyl disulfide. Diallyl sulfide and dipropyl sulfide were weak inducers of quinone reductase and glutathione transferase, but dipropenyl sulfide was very active, with an effect similar to that of diallyl disulfide. It is possible that diallyl disulfide and diallyl trisulfide are important in the anticancer action of garlic, while dipropenyl sulfide could be involved in the beneficial action of onions.
Collapse
Affiliation(s)
- R Munday
- Ruakura Agricultural Research Centre, Hamilton, New Zealand.
| | | |
Collapse
|
9
|
Winterbourn CC, Peskin AV, Parsons-Mair HN. Thiol oxidase activity of copper, zinc superoxide dismutase. J Biol Chem 2002; 277:1906-11. [PMID: 11698397 DOI: 10.1074/jbc.m107256200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of copper,zinc superoxide dismutase (Cu,Zn-SOD) to catalyze autoxidation of cysteine and other thiols was investigated by measuring thiol loss and oxygen consumption. The reaction occurred equally well with the bovine and human enzymes and produced hydrogen peroxide and the corresponding disulfide. It did not occur with manganese SOD and is not, therefore, due to the dismutase activity of the enzyme. Cysteine and cysteamine were highly reactive: the K(m) for cysteine was 1.4 mm and V(max) (with 40 microg/ml SOD) 35 microm/min; the equivalent values for cysteamine (with 20 microg/ml SOD) were 1.4 mm and 36 microm/min. With 1 mm thiol and 40 microg/ml SOD, rates of oxidation of other thiols (microm/min) were as follows: GSH, 1.0; dithiothreitol, 2.1; dihydrolipoic acid, 1.7; homocysteine, 1.6; cys-gly, 1.4; penicillamine, 0.6; and N-acetylcysteine, 0.1. SOD-mediated oxidation of cysteine, in the absence of chelating agents, proceeded only after a variable lag phase. The lag was decreased but not eliminated with Chelex-treated reagents and is attributed to interference by submicromolar concentrations of iron and possibly other transition metal ions. SOD-catalyzed oxidation of the other thiols was variably affected by adventitious metal ions and chelating agents. Reactions were all performed in the presence of desferrioxamine to obviate these effects. SOD-catalyzed oxidation of GSH and homocysteine was enhanced by cysteine through a thiol-disulfide exchange mechanism. This study characterizes a novel pro-oxidant thiol oxidase activity of Cu,Zn-SOD. It is a potential source of reactive oxidants and may contribute to the cytotoxicity of reactive thiols such as cysteine and cysteamine.
Collapse
Affiliation(s)
- Christine C Winterbourn
- Department of Pathology, Christchurch School of Medicine and Health Sciences, P. O. Box 4345, Christchurch, New Zealand.
| | | | | |
Collapse
|
10
|
Woodcock JC, Henderson W, Miles CO. Metal complexes of the mycotoxins sporidesmin A and gliotoxin, investigated by electrospray ionisation mass spectrometry. J Inorg Biochem 2001; 85:187-99. [PMID: 11410239 DOI: 10.1016/s0162-0134(01)00193-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mycotoxin sporidesmin A (spdA), responsible for the intoxication of animals, causing facial eczema, has been investigated by electrospray ionisation mass spectrometry. Protonated [spdA+H](+) and deprotonated [spdA-H](-) ions are observed in positive and negative ion modes respectively. Reduced spdA, formed by cleavage of the disulfide bond by Na[BH(4)] gives an ion [spdA+H](-), and forms ions of the type [2spdA+M](2-) with a range of divalent metal ions M(2+)=Zn(2+), Cd(2+), Hg(2+), Sn(2+) and Fe(2+). Sodium-containing analogues [2spdA+M+Na](-) are observed, particularly at high cone voltages, where they are stable towards cone voltage-induced fragmentation, indicating appreciable stability of the (spdA)(2)M system. A competition experiment between Cd(2+) and Zn(2+) demonstrates that reduced spdA has a higher affinity for Cd(2+) ions. The related gliotoxin (gtx) forms analogous [2gtx+M](2-) and [2gtx+M+Na](-) ions. The reduction and metal complexation of spdA can be monitored by (1)H NMR spectroscopy, and results in chemical shift changes for those protons adjacent to the sulfur atoms. The isolation of a polymeric cadmium-spdA complex is also reported.
Collapse
Affiliation(s)
- J C Woodcock
- Department of Chemistry, University of Waikato, Private Bag 3105, Hamilton, New Zealand
| | | | | |
Collapse
|
11
|
Mohamadin AM. Possible role of hydroxyl radicals in the oxidation of dichloroacetonitrile by Fenton-like reaction. J Inorg Biochem 2001; 84:97-105. [PMID: 11330486 DOI: 10.1016/s0162-0134(00)00213-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dichloroacetonitrile (DCAN), is a member of haloacetonitrile group and detected in drinking water supplies as a by-product of chlorination process. The mechanism of DCAN-induced carcinogenesis is believed to be mediated by oxidative bioactivation of DCAN molecules. The present study was designed to investigate if reactive oxygen species (ROS), similar to that generated in biological systems, are capable of oxidative activation of DCAN. A model ROS generation system (Fenton-like reaction; Fe2+ and H2O2) that predominantly produces hydroxyl radical (OH*) was used. DCAN oxidation was monitored by the extent of cyanide (CN-) release. The results indicate that DCAN was markedly oxidized by this system, and the rate of oxidation was dependent on DCAN concentration. Four-fold increase in H2O2 concentration (50-200 mM) resulted in a 35-fold increase in CN- release. The rates of DACN oxidation in presence of various transition metals were in the following order; iron>copper>titanium. DCAN oxidation was enhanced significantly by the addition of vitamin C and sulfhydryl compounds such as glutathione, N-acetyl-L- cysteine, and dithiothreitol (10 mM) to 140, 130, 145 and 136% of control, respectively. Addition of H2O2 scavenger; catalase or iron chelator; desferrioxamine (DFO) resulted in a significant decrease in CN- release 47 and 41% of control, respectively. Addition of various concentrations of the free radical scavengers, DMSO, or mannitol, to the incubation mixtures caused a significant decrease in DCAN oxidation, 32 and 50% of control, respectively. Michaelis-Menten kinetic analysis of the rates of this reaction, with or without inhibitors, indicated that ROS mediated oxidation of DCAN was inhibited by catalase (Ki = 0.01 mM)>DFO (0.02 mM) > mannitol (0.09 mM) > DMSO (0.12 mM). In conclusion, our results indicate that DCAN is oxidized by a ROS-mediated mechanism. This mechanism may have an important role in DCAN bioactivation and DCAN-induced genotoxicity at target organs where multiple forms of ROS generating systems are abundant.
Collapse
Affiliation(s)
- A M Mohamadin
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
12
|
Abstract
Nickel compounds are known human carcinogens, but the exact molecular mechanisms of nickel carcinogenesis are not known. Due to their abundance, histones are likely targets for Ni(II) ions among nuclear macromolecules. This paper reviews our recent studies of peptide and protein models of Ni(II) binding to histones. The results allowed us to propose several mechanisms of Ni(II)-inflicted damage, including nucleobase oxidation and sequence-specific histone hydrolysis. Quantitative estimations of Ni(II) speciation, based on these studies, support the likelihood of Ni(II) binding to histones in vivo, and the protective role of high levels of glutathione. These calculations indicate the importance of histidine in the intracellular Ni(II) speciation.
Collapse
Affiliation(s)
- W Bal
- Faculty of Chemistry, University of Wrocław, Poland.
| | | | | |
Collapse
|
13
|
Misso NL, Peacock CD, Watkins DN, Thompson PJ. Nitrite generation and antioxidant effects during neutrophil apoptosis. Free Radic Biol Med 2000; 28:934-43. [PMID: 10802225 DOI: 10.1016/s0891-5849(00)00177-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neutrophil apoptosis is important for the resolution of airway inflammation in a number of lung diseases. Inflammatory mediators, endogenous reactive oxygen and nitrogen species, and intracellular and extracellular antioxidants may all influence neutrophil apoptosis. This study investigated the involvement of these factors during apoptosis of neutrophils cultured in vitro. Neutrophils undergoing spontaneous apoptosis in culture as assessed by annexin V binding generated significant amounts of nitrite. Incubation with agonistic anti-Fas monoclonal antibody or tumor necrosis factor-alpha (TNF-alpha) enhanced neutrophil apoptosis at 6 h, although it decreased nitrite accumulation. Although granulocyte-macrophage colony-stimulating factor significantly reduced neutrophil apoptosis, this was also associated with decreased nitrite accumulation. In contrast, inhibition of apoptosis at 16 h by dibutyryl cyclic adenosine monophosphate was associated with increased nitrite accumulation. Exogenous glutathione (GSH) or N-acetylcysteine significantly enhanced neutrophil apoptosis at 6 h and stimulated the production of H(2)O(2), which may mediate apoptosis through intracellular hydroxyl radical production. Intracellular GSH concentrations decreased in neutrophils undergoing apoptosis, and this was more marked in neutrophils treated with anti-Fas or TNF-alpha. These results suggest a causal association between reduced endogenous nitric oxide production, reduced intracellular GSH, and Fas- and TNF-alpha-mediated neutrophil apoptosis, whereas enhanced neutrophil survival mediated by dibutyryl cyclic adenosine monophosphate is associated with increased nitrite generation and maintenance of intracellular GSH. The interaction of endogenous reactive oxygen species with extracellular antioxidants such as GSH could also contribute to the complex processes regulating neutrophil apoptosis and hence the resolution of inflammation in the lung.
Collapse
Affiliation(s)
- N L Misso
- Asthma and Allergy Research Institute and Department of Medicine, The University of Western Australia, Sir Charles Gairdner Hospital, Perth, Australia
| | | | | | | |
Collapse
|
14
|
Pinelli E, El Adlouni C, Pipy B, Quartulli F, Pfohl-Leszkowicz A. Roles of cyclooxygenase and lipoxygenases in ochratoxin A genotoxicity in human epithelial lung cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1999; 7:95-107. [PMID: 21781914 DOI: 10.1016/s1382-6689(99)00008-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/1998] [Revised: 01/27/1999] [Accepted: 02/01/1999] [Indexed: 05/31/2023]
Abstract
The roles of constitutive prostaglandin-H-synthetase (PGHS) and lipoxygenases in ochratoxin A (OTA) genotoxicity, as reflected by DNA adduct formation, have been investigated in vitro: (1) in culture of human epithelial cells and (2) by incubation in presence of pig seminal vesicle microsomes. Indomethacin (0.1 μM), which inhibits PGHS and significantly increases leukotriene C(4) production by enhancement of lipoxygenases, enhanced formation of OTA-DNA adducts tenfold. At highest dose of 10 μM, indomethacin inhibited all pathways (PGHS and lipoxygenases) and thus prevented OTA-DNA adduct formation. Nordihydroguaiaretic acid, which inhibits lipoxygenases, suppressed OTA-DNA adduct formation. The OTA metabolites formed were analysed by HPLC. OTα, 4[R]- and 4[S]-hydroxy-OTA and a unidentified derivative were formed in control cells. After pre-incubation with indomethacin (0.1 μM), further unidentified metabolites were obtained. They were similar to those obtained in presence of pig seminal vesicle microsomes. These data demonstrate that OTA is biotransformed into genotoxic metabolites via a lipoxygenase, whereas PGHS decreases OTA genotoxicity.
Collapse
Affiliation(s)
- E Pinelli
- ENSAT, Laboratoire de Toxicologie et Sécurité Alimentaire, Avenue de l'Agrobiopole, BP 107, 31326 Auzeville Tolosane Cedex, France
| | | | | | | | | |
Collapse
|