1
|
Nootkatone, a Dietary Fragrant Bioactive Compound, Attenuates Dyslipidemia and Intramyocardial Lipid Accumulation and Favorably Alters Lipid Metabolism in a Rat Model of Myocardial Injury: An In Vivo and In Vitro Study. Molecules 2020; 25:molecules25235656. [PMID: 33266249 PMCID: PMC7730250 DOI: 10.3390/molecules25235656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
In the present study, we assessed whether nootkatone (NKT), a sesquiterpene in edible plants, can provide protection against dyslipidemia, intramyocardial lipid accumulation, and altered lipid metabolism in a rat model of myocardial infarction (MI) induced by subcutaneous injections of isoproterenol (ISO, 85 mg/kg) on days 9 and 10. The rats were pre- and co-treated with NKT (10 mg/kg, p.o.) administered daily for 11 days. A significant reduction in the activities of myocardial creatine kinase and lactate dehydrogenase, as well as non-enzymatic antioxidants, and alterations in lipids and lipoproteins, along with a rise in plasma lipid peroxidation and intramyocardial lipid accumulation, were observed in ISO-treated rats. ISO administration induced alterations in the activities of enzymes/expressions that played a significant role in altering lipid metabolism. However, NKT treatment favorably modulated all biochemical and molecular parameters altered by ISO and showed protective effects against oxidative stress, dyslipidemia, and altered lipid metabolism, attributed to its free-radical-scavenging and antihyperlipidemic activities in rats with ISO-induced MI. Additionally, NKT decreased the accumulation of lipids in the myocardium as evidenced from Oil red O staining. Furthermore, the in vitro observations demonstrate the potent antioxidant property of NKT. The present study findings are suggestive of the protective effects of NKT on dyslipidemia and the underlying mechanisms. Based on our findings, it can be suggested that NKT or plants rich in NKT can be promising for use as a phytopharmaceutical or nutraceutical in protecting the heart and correcting lipid abnormalities and dyslipidemia, which are risk factors for ischemic heart diseases.
Collapse
|
2
|
York M, Scudamore C, Brady S, Chen C, Wilson S, Curtis M, Evans G, Griffiths W, Whayman M, Williams T, Turton J. Characterization of Troponin Responses in Isoproterenol-Induced Cardiac Injury in the Hanover Wistar Rat. Toxicol Pathol 2016; 35:606-17. [PMID: 17654401 DOI: 10.1080/01926230701389316] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The investigations aimed to evaluate the usefulness of cardiac troponins as biomarkers of acute myocardial injury in the rat. Serum from female Hanover Wistar rats treated with a single intraperitoneal (IP) injection of isoproterenol (ISO) was assayed for cardiac troponin I (cTnI) (ACS: 180SE, Bayer), cTnI (Immulite 2000, Diagnostic Products Corporation) and cardiac troponin T (cTnT) (Elecsys 2010, Roche). In a time-course study (50.0 mg/kg ISO), serum cTnI (ACS:180SE) and cTnT increased above control levels at 1 hour postdosing, peaking at 2 hours (cTnI, 4.30 μg/L; cTnT, 1.79 μg/L), and declined to baseline by 48 hours, with histologic cardiac lesions first seen at 4 hours postdosing. The Immulite 2000 assay gave minimal cTnI signals, indicating poor immunoreactivity towards rat cTnI. In a dose-response study (0.25 to 20.0 mg/kg ISO), there was a trend for increasing cTnI (ACS:180SE) values with increasing ISO dose levels at 2 hours postdosing. By 24 hours, cTnI levels returned to baseline although chronic cardiac myodegeneration was present. We conclude that serum cTnI and cTnT levels are sensitive and specific biomarkers for detecting ISO induced myocardial injury in the rat. Serum troponin values reflect the development of histopathologic lesions; however peak troponin levels precede maximal lesion severity.
Collapse
Affiliation(s)
- Malcolm York
- GlaxoSmithKline Research and Development, Ware, Herts, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Garg M, Khanna D. Exploration of pharmacological interventions to prevent isoproterenol-induced myocardial infarction in experimental models. Ther Adv Cardiovasc Dis 2014; 8:155-169. [PMID: 24817146 DOI: 10.1177/1753944714531638] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
High incidences of myocardial infarction associated with high morbidity and mortality, are a major concern and economic burden on industrialized nations. Persistent β-adrenergic receptor stimulation with isoproterenol leads to the development of oxidative stress, myocardial inflammation, thrombosis, platelet aggregation and calcium overload, which ultimately cause myocardial infarction. Therapeutic agents that are presently employed for the prevention and management of myocardial infarction are beta-blockers, antithrombotics, thrombolytics, statins, angiotensin converting enzyme inhibitors, angiotensin II type 1 receptor blockers, calcium channel blockers and nitrovasodilators. In spite of effective available interventions, the mortality rate of myocardial infarction is progressively increasing. Thus, there has been a regular need to develop effective therapies for the prevention and management of this insidious disease. In this review, the authors give an overview of the consequences of isoproterenol in the pathogenesis of cardiac disorders and various therapeutic possibilities to prevent these disorders.
Collapse
Affiliation(s)
- Monika Garg
- Cardiovascular Pharmacology Division Department of Pharmacology Rajendra Institute of Technology and Sciences India
| | - Deepa Khanna
- Department of Pharmacology, Cardiovascular Pharmacology Division, Institute of Pharmacy, Rajendra Institute of Technology and Sciences [RITS], Sirsa-125 055, India
| |
Collapse
|
10
|
Imbernon M, Beiroa D, Vázquez MJ, Morgan DA, Veyrat–Durebex C, Porteiro B, Díaz–Arteaga A, Senra A, Busquets S, Velásquez DA, Al–Massadi O, Varela L, Gándara M, López–Soriano F, Gallego R, Seoane LM, Argiles JM, López M, Davis RJ, Sabio G, Rohner–Jeanrenaud F, Rahmouni K, Dieguez C, Nogueiras R. Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways. Gastroenterology 2013; 144:636-649.e6. [PMID: 23142626 PMCID: PMC3663042 DOI: 10.1053/j.gastro.2012.10.051] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 10/10/2012] [Accepted: 10/31/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin-concentrating hormone (MCH)-deficient mice are hypophagic, lean, and do not develop hepatosteatosis when fed a high-fat diet. Herein, we sought to investigate the role of MCH, an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area, on hepatic and adipocyte metabolism. METHODS Chronic central administration of MCH and adenoviral vectors increasing MCH signaling were performed in rats and mice. Vagal denervation was performed to assess its effect on liver metabolism. The peripheral effects on lipid metabolism were assessed by real-time polymerase chain reaction and Western blot. RESULTS We showed that the activation of MCH receptors promotes nonalcoholic fatty liver disease through the parasympathetic nervous system, whereas it increases fat deposition in white adipose tissue via the suppression of sympathetic traffic. These metabolic actions are independent of parallel changes in food intake and energy expenditure. In the liver, MCH triggers lipid accumulation and lipid uptake, with c-Jun N-terminal kinase being an essential player, whereas in adipocytes MCH induces metabolic pathways that promote lipid storage and decreases lipid mobilization. Genetic activation of MCH receptors or infusion of MCH specifically in the lateral hypothalamic area modulated hepatic lipid metabolism, whereas the specific activation of this receptor in the arcuate nucleus affected adipocyte metabolism. CONCLUSIONS Our findings show that central MCH directly controls hepatic and adipocyte metabolism through different pathways.
Collapse
Affiliation(s)
- Monica Imbernon
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Daniel Beiroa
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - María J. Vázquez
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Donald A. Morgan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Christelle Veyrat–Durebex
- Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Begoña Porteiro
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Adenis Díaz–Arteaga
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Ana Senra
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Silvia Busquets
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Douglas A. Velásquez
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Omar Al–Massadi
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain,Grupo Fisiopatología Endocrina, Complejo Hospitalario Universitario de Santiago-Instituto de Investigación Sanitaria (IDIS/SERGAS) Santiago de Compostela, Spain
| | - Luis Varela
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Marina Gándara
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain
| | | | - Rosalía Gallego
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain
| | - Luisa M. Seoane
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain,Grupo Fisiopatología Endocrina, Complejo Hospitalario Universitario de Santiago-Instituto de Investigación Sanitaria (IDIS/SERGAS) Santiago de Compostela, Spain
| | - Josep M. Argiles
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Roger J. Davis
- Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Guadalupe Sabio
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Françoise Rohner–Jeanrenaud
- Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Carlos Dieguez
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Ruben Nogueiras
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| |
Collapse
|