1
|
Ramirez RX, Campbell O, Pradhan AJ, Atilla-Gokcumen GE, Monje-Galvan V. Modeling the molecular fingerprint of protein-lipid interactions of MLKL on complex bilayers. Front Chem 2023; 10:1088058. [PMID: 36712977 PMCID: PMC9877227 DOI: 10.3389/fchem.2022.1088058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Lipids, the structural part of membranes, play important roles in biological functions. However, our understanding of their implication in key cellular processes such as cell division and protein-lipid interaction is just emerging. This is the case for molecular interactions in mechanisms of cell death, where the role of lipids for protein localization and subsequent membrane permeabilization is key. For example, during the last stage of necroptosis, the mixed lineage kinase domain-like (MLKL) protein translocates and, eventually, permeabilizes the plasma membrane (PM). This process results in the leakage of cellular content, inducing an inflammatory response in the microenvironment that is conducive to oncogenesis and metastasis, among other pathologies that exhibit inflammatory activity. This work presents insights from long all-atom molecular dynamics (MD) simulations of complex membrane models for the PM of mammalian cells with an MLKL protein monomer. Our results show that the binding of the protein is initially driven by the electrostatic interactions of positively charged residues. The protein bound conformation modulates lipid recruitment to the binding site, which changes the local lipid environment recruiting PIP lipids and cholesterol, generating a unique fingerprint. These results increase our knowledge of protein-lipid interactions at the membrane interface in the context of molecular mechanisms of the necroptotic pathway, currently under investigation as a potential treatment target in cancer and inflamatory diseases.
Collapse
Affiliation(s)
- Ricardo X. Ramirez
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States
| | - Oluwatoyin Campbell
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States
| | - Apoorva J. Pradhan
- Department of Chemistry, College of Arts and Sciences, University at Buffalo, Buffalo, NY, United States
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, College of Arts and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States,*Correspondence: Viviana Monje-Galvan,
| |
Collapse
|
2
|
Dehghani-Ghahnaviyeh S, Zhao Z, Tajkhorshid E. Lipid-mediated prestin organization in outer hair cell membranes and its implications in sound amplification. Nat Commun 2022; 13:6877. [PMID: 36371434 PMCID: PMC9653410 DOI: 10.1038/s41467-022-34596-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Prestin is a high-density motor protein in the outer hair cells (OHCs), whose conformational response to acoustic signals alters the shape of the cell, thereby playing a major role in sound amplification by the cochlea. Despite recent structures, prestin's intimate interactions with the membrane, which are central to its function remained unresolved. Here, employing a large set (collectively, more than 0.5 ms) of coarse-grained molecular dynamics simulations, we demonstrate the impact of prestin's lipid-protein interactions on its organization at densities relevant to the OHCs and its effectiveness in reshaping OHCs. Prestin causes anisotropic membrane deformation, which mediates a preferential membrane organization of prestin where deformation patterns by neighboring copies are aligned constructively. The resulting reduced membrane rigidity is hypothesized to maximize the impact of prestin on OHC reshaping. These results demonstrate a clear case of protein-protein cooperative communication in membrane, purely mediated by interactions with lipids.
Collapse
Affiliation(s)
- Sepehr Dehghani-Ghahnaviyeh
- grid.35403.310000 0004 1936 9991Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Zhiyu Zhao
- grid.35403.310000 0004 1936 9991Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Emad Tajkhorshid
- grid.35403.310000 0004 1936 9991Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
3
|
Flood E, Boiteux C, Lev B, Vorobyov I, Allen TW. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem Rev 2019; 119:7737-7832. [DOI: 10.1021/acs.chemrev.8b00630] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Céline Boiteux
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Igor Vorobyov
- Department of Physiology & Membrane Biology/Department of Pharmacology, University of California, Davis, 95616, United States
| | - Toby W. Allen
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Kolli HB, de Nicola A, Bore SL, Schäfer K, Diezemann G, Gauss J, Kawakatsu T, Lu ZY, Zhu YL, Milano G, Cascella M. Hybrid Particle-Field Molecular Dynamics Simulations of Charged Amphiphiles in an Aqueous Environment. J Chem Theory Comput 2018; 14:4928-4937. [DOI: 10.1021/acs.jctc.8b00466] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hima Bindu Kolli
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O.
Box 1033, Blindern, 0315 Oslo, Norway
| | - Antonio de Nicola
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan Yonezawa, Yamagata-ken 992-8510, Japan
| | - Sigbjørn Løland Bore
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O.
Box 1033, Blindern, 0315 Oslo, Norway
| | - Ken Schäfer
- Institut für
Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Gregor Diezemann
- Institut für
Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jürgen Gauss
- Institut für
Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Toshihiro Kawakatsu
- Department of Physics, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Giuseppe Milano
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan Yonezawa, Yamagata-ken 992-8510, Japan
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O.
Box 1033, Blindern, 0315 Oslo, Norway
| |
Collapse
|
5
|
Pezeshkian W, Khandelia H, Marsh D. Lipid Configurations from Molecular Dynamics Simulations. Biophys J 2018; 114:1895-1907. [PMID: 29694867 PMCID: PMC5937052 DOI: 10.1016/j.bpj.2018.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/10/2023] Open
Abstract
The extent to which current force fields faithfully reproduce conformational properties of lipids in bilayer membranes, and whether these reflect the structural principles established for phospholipids in bilayer crystals, are central to biomembrane simulations. We determine the distribution of dihedral angles in palmitoyl-oleoyl phosphatidylcholine from molecular dynamics simulations of hydrated fluid bilayer membranes. We compare results from the widely used lipid force field of Berger et al. with those from the most recent C36 release of the CHARMM force field for lipids. Only the CHARMM force field produces the chain inequivalence with sn-1 as leading chain that is characteristic of glycerolipid packing in fluid bilayers. The exposure and high partial charge of the backbone carbonyls in Berger lipids leads to artifactual binding of Na+ ions reported in the literature. Both force fields predict coupled, near-symmetrical distributions of headgroup dihedral angles, which is compatible with models of interconverting mirror-image conformations used originally to interpret NMR order parameters. The Berger force field produces rotamer populations that correspond to the headgroup conformation found in a phosphatidylcholine lipid bilayer crystal, whereas CHARMM36 rotamer populations are closer to the more relaxed crystal conformations of phosphatidylethanolamine and glycerophosphocholine. CHARMM36 alone predicts the correct relative signs of the time-average headgroup order parameters, and reasonably reproduces the full range of NMR data from the phosphate diester to the choline methyls. There is strong motivation to seek further experimental criteria for verifying predicted conformational distributions in the choline headgroup, including the 31P chemical shift anisotropy and 14N and CD3 NMR quadrupole splittings.
Collapse
Affiliation(s)
- Weria Pezeshkian
- MEMPHYS-Centre for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark
| | - Himanshu Khandelia
- MEMPHYS-Centre for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark
| | - Derek Marsh
- MEMPHYS-Centre for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark; Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.
| |
Collapse
|
6
|
Farrotti A, Conflitti P, Srivastava S, Ghosh JK, Palleschi A, Stella L, Bocchinfuso G. Molecular Dynamics Simulations of the Host Defense Peptide Temporin L and Its Q3K Derivative: An Atomic Level View from Aggregation in Water to Bilayer Perturbation. Molecules 2017; 22:molecules22071235. [PMID: 28737669 PMCID: PMC6152314 DOI: 10.3390/molecules22071235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/03/2022] Open
Abstract
Temporin L (TempL) is a 13 residue Host Defense Peptide (HDP) isolated from the skin of frogs. It has a strong affinity for lipopolysaccharides (LPS), which is related to its high activity against Gram-negative bacteria and also to its strong tendency to neutralize the pro-inflammatory response caused by LPS release from inactivated bacteria. A designed analog with the Q3K substitution shows an enhancement in both these activities. In the present paper, Molecular Dynamics (MD) simulations have been used to investigate the origin of these improved properties. To this end, we have studied the behavior of the peptides both in water solution and in the presence of LPS lipid-A bilayers, demonstrating that the main effect through which the Q3K substitution improves the peptide activities is the destabilization of peptide aggregates in water.
Collapse
Affiliation(s)
- Andrea Farrotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome 00133, Italy.
| | - Paolo Conflitti
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome 00133, Italy.
| | - Saurabh Srivastava
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Jimut Kanti Ghosh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Antonio Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome 00133, Italy.
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome 00133, Italy.
| | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome 00133, Italy.
| |
Collapse
|
7
|
Dutagaci B, Sayadi M, Feig M. Heterogeneous dielectric generalized Born model with a van der Waals term provides improved association energetics of membrane-embedded transmembrane helices. J Comput Chem 2017; 38:1308-1320. [PMID: 28160300 DOI: 10.1002/jcc.24691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/18/2016] [Accepted: 11/17/2016] [Indexed: 11/07/2022]
Abstract
The heterogeneous dielectric generalized Born (HDGB) implicit membrane formalism is extended by the addition of a van der Waals dispersion term to better describe the nonpolar components of the free energy of solvation. The new model, termed HDGBvdW, improves the energy estimates in the hydrophobic interior of the membrane, where polar and charged species are rarely found and nonpolar interactions become significant. The implicit van der Waals term for the membrane environment extends the model from Gallicchio et al. (J. Comput. Chem. 2004, 25, 479) by combining separate contributions from each of the membrane components. The HDGBvdW model is validated with a series of test cases ranging from membrane insertion and pair association profiles of amino acid side chain analogs and transmembrane helices. Overall, the HDGBvdW model leads to increased agreement with explicit membrane simulation results and experimental data. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bercem Dutagaci
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824
| | - Maryam Sayadi
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
8
|
Kirubakaran P, Pfeiferová L, Boušová K, Bednarova L, Obšilová V, Vondrášek J. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two-domain constructs: A computational characterization of novel chimeric proteins. Proteins 2016; 84:1358-74. [DOI: 10.1002/prot.25082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Palani Kirubakaran
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Lucie Pfeiferová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Kristýna Boušová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Veronika Obšilová
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| |
Collapse
|
9
|
Milano G, Kawakatsu T, De Nicola A. A hybrid particle–field molecular dynamics approach: a route toward efficient coarse-grained models for biomembranes. Phys Biol 2013; 10:045007. [DOI: 10.1088/1478-3975/10/4/045007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Bocchinfuso G, Bobone S, Mazzuca C, Palleschi A, Stella L. Fluorescence spectroscopy and molecular dynamics simulations in studies on the mechanism of membrane destabilization by antimicrobial peptides. Cell Mol Life Sci 2011; 68:2281-301. [PMID: 21584808 PMCID: PMC11114703 DOI: 10.1007/s00018-011-0719-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
Since their initial discovery, 30 years ago, antimicrobial peptides (AMPs) have been intensely investigated as a possible solution to the increasing problem of drug-resistant bacteria. The interaction of antimicrobial peptides with the cellular membrane of bacteria is the key step of their mechanism of action. Fluorescence spectroscopy can provide several structural details on peptide-membrane systems, such as partition free energy, aggregation state, peptide position and orientation in the bilayer, and the effects of the peptides on the membrane order. However, these "low-resolution" structural data are hardly sufficient to define the structural requirements for the pore formation process. Molecular dynamics simulations, on the other hand, provide atomic-level information on the structure and dynamics of the peptide-membrane system, but they need to be validated experimentally. In this review we summarize the information that can be obtained by both approaches, highlighting their versatility and complementarity, suggesting that their synergistic application could lead to a new level of insight into the mechanism of membrane destabilization by AMPs.
Collapse
Affiliation(s)
- Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sara Bobone
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Claudia Mazzuca
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Antonio Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, IS Italy
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, IS Italy
| |
Collapse
|
11
|
Hung A, Yarovsky I. Gap Junction Hemichannel Interactions with Zwitterionic Lipid, Anionic Lipid, and Cholesterol: Molecular Simulation Studies. Biochemistry 2011; 50:1492-504. [DOI: 10.1021/bi1004156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew Hung
- Health Innovations Research Institute and School of Applied Sciences, RMIT University, GPO Box 2476, Victoria 3001, Australia
| | - Irene Yarovsky
- Health Innovations Research Institute and School of Applied Sciences, RMIT University, GPO Box 2476, Victoria 3001, Australia
| |
Collapse
|
12
|
Fuchs PFJ. Molecular dynamics of membrane peptides and proteins: principles and comparison to experimental data. Methods Mol Biol 2010; 654:403-21. [PMID: 20665278 DOI: 10.1007/978-1-60761-762-4_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Molecular dynamics (MD) simulation is a standard tool used to assess the motion of biomolecules at atomic resolution. It requires a so-called "force field" that allows the evaluation of an empirical energy from the 3D coordinates of the atoms in the system. In this chapter, the application of MD simulations to membrane proteins and peptides is described with a particular emphasis on the comparison of MD results to experimental data. Such a comparison can be used either for (1) validating the results of a simulation, (2) interpreting an experiment at the atomic level, or (3) calibrating the force field. This last step is particularly important for the use of MD as a predictive tool. As an illustration, a comparison of (2)H NMR experiments to MD simulations of a transmembrane peptide is presented and discussed.
Collapse
Affiliation(s)
- Patrick F J Fuchs
- Equipe de Bioinformatique Génomique et Moléculaire, INSERM UMR-S726, Institut National de Transfusion Sanguine, Université Paris Diderot - Paris 7, Paris, France.
| |
Collapse
|
13
|
Gogonea V, Wu Z, Lee X, Pipich V, Li XM, Ioffe AI, Didonato JA, Hazen SL. Congruency between biophysical data from multiple platforms and molecular dynamics simulation of the double-super helix model of nascent high-density lipoprotein. Biochemistry 2010; 49:7323-43. [PMID: 20687589 DOI: 10.1021/bi100588a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The predicted structure and molecular trajectories from >80 ns molecular dynamics simulation of the solvated Double-Super Helix (DSH) model of nascent high-density lipoprotein (HDL) were determined and compared with experimental data on reconstituted nascent HDL obtained from multiple biophysical platforms, including small angle neutron scattering (SANS) with contrast variation, hydrogen-deuterium exchange tandem mass spectrometry (H/D-MS/MS), nuclear magnetic resonance spectroscopy (NMR), cross-linking tandem mass spectrometry (MS/MS), fluorescence resonance energy transfer (FRET), electron spin resonance spectroscopy (ESR), and electron microscopy. In general, biophysical constraints experimentally derived from the multiple platforms agree with the same quantities evaluated using the simulation trajectory. Notably, key structural features postulated for the recent DSH model of nascent HDL are retained during the simulation, including (1) the superhelical conformation of the antiparallel apolipoprotein A1 (apoA1) chains, (2) the lipid micellar-pseudolamellar organization, and (3) the solvent-exposed Solar Flare loops, proposed sites of interaction with LCAT (lecithin cholesteryl acyltransferase). Analysis of salt bridge persistence during simulation provides insights into structural features of apoA1 that forms the backbone of the lipoprotein. The combination of molecular dynamics simulation and experimental data from a broad range of biophysical platforms serves as a powerful approach to studying large macromolecular assemblies such as lipoproteins. This application to nascent HDL validates the DSH model proposed earlier and suggests new structural details of nascent HDL.
Collapse
Affiliation(s)
- Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, USA.
| | | | | | | | | | | | | | | |
Collapse
|