1
|
Viggars MR, Wen Y, Peterson CA, Jarvis JC. Automated cross-sectional analysis of trained, severely atrophied and recovering rat skeletal muscles using MyoVision 2.0. J Appl Physiol (1985) 2022; 132:593-610. [PMID: 35050795 DOI: 10.1152/japplphysiol.00491.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The number of myonuclei within a muscle fiber is an important factor in muscle growth, but its regulation during muscle adaptation is not well understood. We aimed to elucidate the timecourse of myonuclear dynamics during endurance training, loaded and concentric resistance training, and nerve silencing-induced disuse atrophy with subsequent recovery. We modified tibialis anterior muscle activity in free-living rats with electrical stimulation from implantable pulse generators, or with implantable osmotic pumps delivering tetrodotoxin (TTX) to silence the motor nerve without transection. We used the updated, automated software MyoVision to measure fiber type-specific responses in whole tibialis anterior cross-sections (~8000 fibers each). Seven days of continuous low frequency stimulation (CLFS) reduced muscle mass (-12%), increased slower myosin isoforms and reduced IIX/IIB fibers (-32%) and substantially increased myonuclei especially in IIX/IIB fibers (55.5%). High load resistance training (Spillover), produced greater hypertrophy (~16%) in muscle mass and fiber cross-sectional area (CSA) than low load resistance training (concentric, ~6%) and was associated with myonuclear addition in all fiber types (35-46%). TTX-induced nerve silencing resulted in progressive loss in muscle mass, fiber CSA, and myonuclei per fiber cross-section (-50.7%, -53.7%, -40.7%, respectively at 14 days). Myonuclear loss occurred in a fiber type-independent manner, but subsequent recovery during voluntary habitual activity suggested that type IIX/IIB fibers contained more new myonuclei during recovery from severe atrophy. This study demonstrates the power and accuracy provided by the updated MyoVision software and introduces new models for studying myonuclear dynamics in training, detraining, retraining, repeated disuse, and recovery.
Collapse
Affiliation(s)
- Mark Robert Viggars
- Research Institute for Sport & Exercise Sciences, grid.4425.7Liverpool John Moores University, Liverpool, United Kingdom.,Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, United States.,Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States.,MyoAnalytics, LLC, Lexington, Kentucky, United States
| | - Charlotte A Peterson
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Jonathan C Jarvis
- Research Institute for Sport & Exercise Sciences, grid.4425.7Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|