1
|
Bhaumik S, Lockett J, Cuffe J, Clifton VL. Glucocorticoids and Their Receptor Isoforms: Roles in Female Reproduction, Pregnancy, and Foetal Development. BIOLOGY 2023; 12:1104. [PMID: 37626990 PMCID: PMC10452123 DOI: 10.3390/biology12081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Alterations in the hypothalamic-pituitary-adrenal (HPA) axis and associated changes in circulating levels of glucocorticoids are integral to an organism's response to stressful stimuli. Glucocorticoids acting via glucocorticoid receptors (GRs) play a role in fertility, reproduction, placental function, and foetal development. GRs are ubiquitously expressed throughout the female reproductive system and regulate normal reproductive function. Stress-induced glucocorticoids have been shown to inhibit reproduction and affect female gonadal function by suppressing the hypothalamic-pituitary-gonadal (HPG) axis at each level. Furthermore, during pregnancy, a mother's exposure to prenatal stress or external glucocorticoids can result in long-lasting alterations to the foetal HPA and neuroendocrine function. Several GR isoforms generated via alternative splicing or translation initiation from the GR gene have been identified in the mammalian ovary and uterus. The GR isoforms identified include the splice variants, GRα and GRβ, and GRγ and GR-P. Glucocorticoids can exert both stimulatory and inhibitory effects and both pro- and anti-inflammatory functions in the ovary, in vitro. In the placenta, thirteen GR isoforms have been identified in humans, guinea pigs, sheep, rats, and mice, indicating they are conserved across species and may be important in mediating a differential response to stress. Distinctive responses to glucocorticoids, differential birth outcomes in pregnancy complications, and sex-based variations in the response to stress could all potentially be dependent on a particular GR expression pattern. This comprehensive review provides an overview of the structure and function of the GR in relation to female fertility and reproduction and discusses the changes in the GR and glucocorticoid signalling during pregnancy. To generate this overview, an extensive non-systematic literature search was conducted across multiple databases, including PubMed, Web of Science, and Google Scholar, with a focus on original research articles, meta-analyses, and previous review papers addressing the subject. This review integrates the current understanding of GR variants and their roles in glucocorticoid signalling, reproduction, placental function, and foetal growth.
Collapse
Affiliation(s)
- Sreeparna Bhaumik
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane 4067, Australia; (S.B.); (J.L.)
| | - Jack Lockett
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane 4067, Australia; (S.B.); (J.L.)
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Brisbane 4102, Australia
| | - James Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane 4067, Australia;
| | - Vicki L. Clifton
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane 4067, Australia; (S.B.); (J.L.)
| |
Collapse
|
2
|
Wang W, Chen ZJ, Myatt L, Sun K. 11β-HSD1 in Human Fetal Membranes as a Potential Therapeutic Target for Preterm Birth. Endocr Rev 2018; 39:241-260. [PMID: 29385440 DOI: 10.1210/er.2017-00188] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
Human parturition is a complex process involving interactions between the myometrium and signals derived from the placenta, fetal membranes, and fetus. Signals originating from fetal membranes are crucial components that trigger parturition, which is clearly illustrated by the labor-initiating consequence of membrane rupture. It has been recognized for a long time that among fetal tissues in late gestation the fetal membranes possess the highest capacity for cortisol regeneration by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). However, the exact role of this unique feature remains a mystery. Accumulating evidence indicates that this extra-adrenal source of cortisol may serve as an upstream signal for critical events in human parturition, including enhanced prostaglandin and estrogen synthesis as well as extracellular matrix remodeling. This may explain why such high capacity for cortisol regeneration develops in human fetal membranes at late gestation. Therefore, inhibition of 11β-HSD1 may provide a potential therapeutic target for prevention of preterm birth. This review summarizes the current understanding of the functional role of cortisol regeneration by 11β-HSD1 in human fetal membranes.
Collapse
Affiliation(s)
- Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Whittle WL, Holloway AC, Lye S, Challis JRG, Gibb W. The Pattern of Glucocorticoid and Estrogen Receptors May Explain Differences in Steroid Dependency of Intrauterine Prostaglandin Production at Parturition in Sheep. ACTA ACUST UNITED AC 2016; 13:506-11. [PMID: 16990030 DOI: 10.1016/j.jsgi.2006.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND We have recently described two distinct pathways of intrauterine prostaglandin (PG) synthesis: a cortisol-dependent/estradiol-independent mechanism within trophoblast tissue leading to elevations in fetal plasma PGE2, and an estradiol-dependent mechanism within maternal endometrium that leads to increased maternal plasma PGF2(2alpha). We hypothesized that the differential effects of cortisol and estradiol on intrauterine PGH synthase-II (PGHS-II) expression and PG production may be because of the tissue specific expression of the glucocorticoid and estradiol receptors (GR and ER, respectively) within the intrauterine tissues. In addition, we suggest that these two pathways of PG production are linked through the expression of P450(C17hydroxylase) (P450(C17)) and subsequent increase in placental estradiol synthesis. METHODS To test the hypotheses, we infused singleton, chronically catheterized fetal sheep beginning at day 125 of gestation (term 147 to 150 days) with (1) cortisol (0.45 mg/mL; n = 5); (2) cortisol and 4-hydroxyandrostenedione, a P450(aromatase) inhibitor (4-OHA: 1.44 mg/h; n = 5); (3) saline (n = 5); or (4) saline and 4-OHA (n = 5). PGHS-II, ER alpha, ER beta, and GR alpha were localized using immunohistochemistry. ER alpha, ER beta, P450(C17), and GR alpha protein expressions were determined by Western blot analysis. Data were analyzed by analysis of variance (ANOVA) (P < or =.05). RESULTS Fetal cortisol infusion in the presence or absence of a rise in placental estrogen synthesis increased placental expression of GR alpha; both PGHS-II and GR alpha localized to the uninucleate trophoblast cells of the placentome and were excluded from the maternal stroma and binucleate cells. Both forms of ER were excluded from the trophoblast tissue of the placentome. ER alpha, ER beta, and PGHS-II showed a similar pattern of distribution within the luminal epithelium of the endometrium; there were no alterations in the level of the ER in the presence of cortisol +/- 4-OHA. Placental P450(C17) protein expression was increased in the presence of a rise in fetal cortisol independent of changes in placental estrogen synthesis. CONCLUSIONS We concluded that the differential effects of cortisol and estradiol on intrauterine PGHS-II expression and PG production may be due to the tissue-specific expression of the GR and ER within the intrauterine tissues. Glucocorticoid effects on trophoblast PG production may be mediated in a positive feed-forward manner. We further suggest that either cortisol or a cortisol-stimulated intermediate, like PGE2, increased P450(C17) expression, leading to a rise in placental estradiol synthesis and triggering maternal intrauterine tissue PG production.
Collapse
Affiliation(s)
- W L Whittle
- Canadian Institutes of Health Research Group in Fetal and Neonatal Health and Development, Canada
| | | | | | | | | |
Collapse
|
4
|
Shang H, Meng W, Sloboda DM, Li S, Ehrlich L, Plagemann A, Dudenhausen JW, Henrich W, Newnham JP, Challis JRG, Braun T. Effects of maternal dexamethasone treatment early in pregnancy on glucocorticoid receptors in the ovine placenta. Reprod Sci 2014; 22:534-44. [PMID: 25332218 DOI: 10.1177/1933719114553452] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of endogenous cortisol on binucleate cells (BNCs), which promote fetal growth, may be mediated by glucocorticoid receptors (GRs), and exposure to dexamethasone (DEX) in early pregnancy stages of placental development might modify this response. In this article, we have investigated the expression of GR as a determinant of these responses. Pregnant ewes carrying singleton fetuses (n = 119) were randomized to control (2 mL saline/ewe) or DEX-treated groups (intramuscular injections of 0.14 mg/kg ewe weight per 12 hours) at 40 to 41 days of gestation (dG). Placental tissue was collected at 50, 100, 125, and 140 dG. Total glucocorticoid receptor protein (GRt) was increased significantly by DEX at 50 and 125 dG in females only, but decreased in males at 125 dG as compared to controls. Glucocorticoid receptor α (GRα) protein was not changed after DEX treatment. Three BNC phenotypes were detected regarding GRα expression (++, +-, --), DEX increased the proportion of (++) and decreased (--) BNC at 140 dG. Effects were sex- and cell type dependent, modifying the responsiveness of the placenta to endogenous cortisol. We speculate that 3 maturational stages of BNCs exist and that the overall activity of BNCs is determined by the distribution of these 3 cell types, which may become altered through early pregnancy exposure to elevated glucocorticoids.
Collapse
Affiliation(s)
- H Shang
- Departments of Obstetrics and Division of Experimental Obstetrics, Study Group in Perinatal Programming, Charité Campus Virchow, Berlin, Germany Department of Obstetrics and Gynecology, Hangzhou First People's Hospital, Hangzhou, China
| | - W Meng
- Departments of Obstetrics and Division of Experimental Obstetrics, Study Group in Perinatal Programming, Charité Campus Virchow, Berlin, Germany Department of Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - D M Sloboda
- Departments of Biochemistry and Biomedical Sciences, Obstetrics & Gynecology and Pediatrics, McMaster University, Hamilton, Canada
| | - S Li
- School of Women's and Infants' Health, King Edward Memorial Hospital, The University of Western Australia, Crawley, Australia
| | - L Ehrlich
- Departments of Obstetrics and Division of Experimental Obstetrics, Study Group in Perinatal Programming, Charité Campus Virchow, Berlin, Germany
| | - A Plagemann
- Departments of Obstetrics and Division of Experimental Obstetrics, Study Group in Perinatal Programming, Charité Campus Virchow, Berlin, Germany
| | - J W Dudenhausen
- Departments of Obstetrics and Division of Experimental Obstetrics, Study Group in Perinatal Programming, Charité Campus Virchow, Berlin, Germany
| | - W Henrich
- Departments of Obstetrics and Division of Experimental Obstetrics, Study Group in Perinatal Programming, Charité Campus Virchow, Berlin, Germany
| | - J P Newnham
- School of Women's and Infants' Health, King Edward Memorial Hospital, The University of Western Australia, Crawley, Australia
| | - J R G Challis
- School of Women's and Infants' Health, King Edward Memorial Hospital, The University of Western Australia, Crawley, Australia Department of Physiology, Obstetrics and Gynecology, University of Toronto, Ontario and Faculty of Health Sciences, Simon Fraser University, Vancouver, Canada
| | - T Braun
- Departments of Obstetrics and Division of Experimental Obstetrics, Study Group in Perinatal Programming, Charité Campus Virchow, Berlin, Germany
| |
Collapse
|
5
|
Duong HT, Piotrowska-Tomala KK, Acosta TJ, Bah MM, Sinderewicz E, Majewska M, Jankowska K, Okuda K, Skarzynski DJ. Effects of cortisol on pregnancy rate and corpus luteum function in heifers: an in vivo study. J Reprod Dev 2011; 58:223-30. [PMID: 22156379 DOI: 10.1262/jrd.11-122t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether glucocorticoids affect the function of the bovine corpus luteum (CL) during the estrous cycle and early pregnancy, we examined the effects of exogenous cortisol or reduced endogenous cortisol on the secretion of progesterone (P4) and on pregnancy rate. In preliminary experiments, doses of cortisol and metyrapone (an inhibitor of cortisol synthesis) were established (n=33). Cortisol in effective doses of 10 mg blocked tumor necrosis factor-induced prostaglandin F(2α) secretion as measured by its metabolite (PGFM) concentrations in the blood. Metyrapone in effective doses of 500 mg increased the P4 concentration. Thus, both reagents were then intravaginally applied in the chosen doses daily from Day 15 to 18 after estrus (Day 0) in noninseminated heifers (n=18) or after artificial insemination (n=36). Pregnancy was confirmed by transrectal ultrasonography between Days 28-30 after insemination. Plasma concentrations of P4 were lower in cortisol-treated heifers than in control heifers on Days 17 and 18 of the estrous cycle (P<0.05). However, the interestrus intervals were not different between control and cortisol-treated animals (P>0.05). Moreover, metyrapone increased P4 and prolonged the CL lifespan in comparison to control animals (P<0.05). Interestingly, in inseminated heifers, cortisol increased the pregnancy rate (75%) compared with control animals (58%), whereas metyrapone reduced the pregnancy rate to 16.7% (P<0.05). The overall results suggest that cortisol, depending on the physiological status of heifers (pregnant vs. nonpregnant), modulates CL function by influencing P4 secretion. Cortisol may have a positive influence on CL function during early pregnancy, leading to support of embryo implantation and resulting in higher rates of pregnancy in heifers.
Collapse
Affiliation(s)
- Hai Thanh Duong
- Laboratory of Reproductive Physiology, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Johnson RF, Rennie N, Murphy V, Zakar T, Clifton V, Smith R. Expression of glucocorticoid receptor messenger ribonucleic acid transcripts in the human placenta at term. J Clin Endocrinol Metab 2008; 93:4887-93. [PMID: 18728163 DOI: 10.1210/jc.2008-1077] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Differential promoter use and alternative splicing generate a variety of glucocorticoid receptor (GR) mRNA transcripts, potentially altering the cortisol responsiveness of gestational tissues during pregnancy and labor. OBJECTIVE We examined GR mRNA transcript expression in term placentae before and after labor, in association with fetal sex and after glucocorticoid treatment. DESIGN RNA from 34 placentae and from eight placental explants incubated with glucocorticoids were analyzed for the GR mRNA variants GR-alpha, GR-beta, GR-P, and GR-gamma and the untranslated exon one variants 1A1, 1A2, 1A3, 1B, and 1C by quantitative RT-PCR. MAIN OUTCOME MEASURE mRNA expression was assessed. RESULTS All GR mRNA variants examined were detected in the human placenta, with GR-alpha and GR-1C mRNA having the highest expression of GR splice variants and exon 1 variants, respectively. GR-P mRNA abundance decreased with spontaneous labor (P < 0.01). GR-1A3 mRNA abundance changed with fetal sex, with a higher level in placentae of male fetuses (P < 0.05). GR-1C was the preferential promoter for GR-alpha, GR-gamma, and GR-P mRNA. GR-beta mRNA was preferentially associated with GR-1A1. GR-P mRNA transcription switched to the GR-1A1 promoter after labor and to the GR-1A3 promoter in placentae from male fetuses. Glucocorticoid treatment significantly reduced transcription from promoters GR-1B and -1C and decreased GR-alpha and GR-P mRNA abundance. CONCLUSIONS The human placenta expresses a variety of GR mRNA transcripts. GR-alpha mRNA transcribed from the 1C promoter generates the majority of placental GR. However, alterations in promoter use and alternative splicing may modulate responses to cortisol during stressful events.
Collapse
Affiliation(s)
- Renée F Johnson
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, 2305 Australia.
| | | | | | | | | | | |
Collapse
|
7
|
Root B, Abrassart J, Myers DA, Monau T, Ducsay CA. Expression and distribution of glucocorticoid receptors in the ovine fetal adrenal cortex: effect of long-term hypoxia. Reprod Sci 2008; 15:517-28. [PMID: 18579860 DOI: 10.1177/1933719107311782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study was designed to determine if long-term hypoxia (LTH) alters adrenal glucocorticoid receptor (GR) expression in the ovine fetal adrenal cortex. Ewes were maintained at 3820 m from approximately 30 to 138 to 140 days' gestation, and fetal adrenals were collected. Western analysis revealed two approximately 94-kDa GR-alpha isoforms and a lower molecular weight (45 kDa) form. A decreasing trend in the ratio of 94-kDa/45-kDa bands following LTH suggested an increase in GR turnover. Immunohistochemistry demonstrated dense GR staining in the zona glomerulosa with minimal staining in the zona fasciculata in the control group, while dense staining was observed throughout the cortex in LTH. Western analysis and reverse transcription polymerase chain reaction confirmed that the GR- beta isoform is not present or expressed at extremely low levels in the fetal adrenal, hypothalamus, pituitary, and placenta. These data indicate that LTH alters GR-alpha function in the fetal adrenal cortex and suggest that GR-beta is not expressed in sheep.
Collapse
Affiliation(s)
- Brandon Root
- University of Redlands, Redlands, California, USA
| | | | | | | | | |
Collapse
|