1
|
Sakai K, Kondo Y, Aoki K, Goto Y. Molecular and Biophysical Perspectives on Dormancy Breaking: Lessons from Yeast Spore. Biomolecules 2025; 15:701. [PMID: 40427594 DOI: 10.3390/biom15050701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Dormancy is a physiological state that enables cells to survive under adverse conditions by halting their proliferation while retaining the capacity to resume growth when conditions become favorable. This remarkable transition between dormant and proliferative states occurs across a wide range of species, including bacteria, fungi, plants, and tardigrades. Among these organisms, yeast cells have emerged as powerful model systems for elucidating the molecular and biophysical principles governing dormancy and dormancy breaking. In this review, we provide a comprehensive summary of current knowledge on the molecular mechanisms underlying cellular dormancy, with particular focus on the two major model yeasts: Saccharomyces cerevisiae and Schizosaccharomyces pombe. Recent advances in multifaceted approaches-such as single-cell RNA-seq, proteomic analysis, and live-cell imaging-have revealed dynamic changes in gene expression, proteome composition, and viability. Furthermore, insights into the biophysical properties of the cytoplasm have offered new understanding of dormant cell regulation through changes in cytoplasmic fluidity. These properties contribute to both the remarkable stability of dormant cells and their capacity to exit dormancy upon environmental cues, deepening our understanding of fundamental cellular survival strategies across diverse species.
Collapse
Affiliation(s)
- Keiichiro Sakai
- Department of Biology, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Yohei Kondo
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kazuhiro Aoki
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Aichi, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Aichi, Japan
| | - Yuhei Goto
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Sogame Y, Saito R, Hakozaki S. Resting Cyst Formation as a Strategy for Environmental Adaptation in Colpodid Ciliates. Zoolog Sci 2025; 42. [PMID: 39932756 DOI: 10.2108/zs240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/04/2024] [Indexed: 05/08/2025]
Abstract
Resting cyst formation is a strategic aspect of the life cycle of some eukaryotes such as protists, and particularly ciliates, that enables adaptation to unfavorable environmental conditions. The formation of resting cysts involves large scale morphological and physiological changes that provide tolerance of extreme environmental stresses. The resting cyst shows suppression of normal features of life such as eating, moving, proliferation, and even mitochondrial metabolic activity, and appears lifeless. This review discusses resting cyst formation in the ciliates Colpoda as a representative model of cyst-forming organisms, and focusses on morphogenesis, molecular events, tolerances, and metabolic activities in resting cysts.
Collapse
Affiliation(s)
- Yoichiro Sogame
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan,
| | - Ryota Saito
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan
| | - Shuntaro Hakozaki
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan
| |
Collapse
|
3
|
Venturoli G, Mamedov MD, Vitukhnovskaya LA, Semenov AY, Francia F. Trehalose Interferes with the Photosynthetic Electron Transfer Chain of Cereibacter (Rhodobacter) sphaeroides Permeating the Bacterial Chromatophore Membrane. Int J Mol Sci 2024; 25:13420. [PMID: 39769184 PMCID: PMC11678701 DOI: 10.3390/ijms252413420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Disaccharide trehalose has been proven in many cases to be particularly effective in preserving the functional and structural integrity of biological macromolecules. In this work, we studied its effect on the electron transfer reactions that occur in the chromatophores of the photosynthetic bacterium Cereibacter sphaeroides. In the presence of a high concentration of trehalose, following the activation of the photochemistry by flashes of light, a slowdown of the electrogenic reactions related to the activity of the photosynthetic reaction center and cytochtome (cyt) bc1 complexes is observable. The kinetics of the third phase of the electrochromic carotenoid shift, due to electrogenic events linked to the reduction in cyt bH heme via the low-potential branch of the cyt bc1 complex and its oxidation by quinone molecule on the Qi site, is about four times slower in the presence of trehalose. In parallel, the reduction in oxidized cyt (c1 + c2) and high-potential cyt bH are strongly slowed down, suggesting that the disaccharide interferes with the electron transfer reactions of the high-potential branch of the bc1 complex. A slowing effect of trehalose on the kinetics of the electrogenic protonation of the secondary quinone acceptor QB in the reaction center complex, measured by direct electrometrical methods, was also found, but was much less pronounced. The direct detection of carbohydrate content indicates that trehalose, at high concentrations, permeates the membrane of chromatophores. The possible mechanisms underlying the observed effect of trehalose on the electron/proton transfer process are discussed in terms of trehalose's propensity to form strong hydrogen bonds with its surroundings.
Collapse
Affiliation(s)
- Giovanni Venturoli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio n.42, 40126 Bologna, Italy;
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), c/o Dipartimento di Fisica e Astronomia (DIFA), Università di Bologna, Via Irnerio 46, 40126 Bologna, Italy
| | - Mahir D. Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow 119991, Russia; (M.D.M.); (L.A.V.); (A.Y.S.)
| | - Liya A. Vitukhnovskaya
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow 119991, Russia; (M.D.M.); (L.A.V.); (A.Y.S.)
| | - Alexey Y. Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow 119991, Russia; (M.D.M.); (L.A.V.); (A.Y.S.)
| | - Francesco Francia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio n.42, 40126 Bologna, Italy;
| |
Collapse
|
4
|
Bains W, Petkowski JJ, Seager S. Alternative Solvents for Life: Framework for Evaluation, Current Status, and Future Research. ASTROBIOLOGY 2024; 24:1231-1256. [PMID: 39623882 DOI: 10.1089/ast.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Life is a complex, dynamic chemical system that requires a dense fluid solvent in which to take place. A common assumption is that the most likely solvent for life is liquid water, and some researchers argue that water is the only plausible solvent. However, a persistent theme in astrobiological research postulates that other liquids might be cosmically common and could be solvents for the chemistry of life. In this article, we present a new framework for the analysis of candidate solvents for life, and we deploy this framework to review substances that have been suggested as solvent candidates. We categorize each solvent candidate through the following four criteria: occurrence, solvation, solute stability, and solvent chemical functionality. Our semiquantitative approach addresses all the requirements for a solvent not only from the point of view of its chemical properties but also from the standpoint of its biochemical function. Only the protonating solvents fulfill all the chemical requirements to be a solvent for life, and of those only water and concentrated sulfuric acid are also likely to be abundant in a rocky planetary context. Among the nonprotonating solvents, liquid CO2 stands out as a planetary solvent, and its potential as a solvent for life should be explored. We conclude with a discussion of whether it is possible for a biochemistry to change solvents as an adaptation to radical changes in a planet's environment. Our analysis provides the basis for prioritizing future experimental work to explore potential complex chemistry on other planets. Key Words: Habitability-Alternative solvents for life-Alternative biochemistry. Astrobiology 24, 1231-1256.
Collapse
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- School of Physics & Astronomy, Cardiff University, Cardiff, UK
| | - Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
- JJ Scientific, Warsaw, Poland
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Maiti A, Erimban S, Daschakraborty S. Extreme makeover: the incredible cell membrane adaptations of extremophiles to harsh environments. Chem Commun (Camb) 2024; 60:10280-10294. [PMID: 39190300 DOI: 10.1039/d4cc03114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The existence of life beyond Earth has long captivated humanity, and the study of extremophiles-organisms surviving and thriving in extreme environments-provides crucial insights into this possibility. Extremophiles overcome severe challenges such as enzyme inactivity, protein denaturation, and damage of the cell membrane by adopting several strategies. This feature article focuses on the molecular strategies extremophiles use to maintain the cell membrane's structure and fluidity under external stress. Key strategies include homeoviscous adaptation (HVA), involving the regulation of lipid composition, and osmolyte-mediated adaptation (OMA), where small organic molecules protect the lipid membrane under stress. Proteins also have direct and indirect roles in protecting the lipid membrane. Examining the survival strategies of extremophiles provides scientists with crucial insights into how life can adapt and persist in harsh conditions, shedding light on the origins of life. This article examines HVA and OMA and their mechanisms in maintaining membrane stability, emphasizing our contributions to this field. It also provides a brief overview of the roles of proteins and concludes with recommendations for future research directions.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | - Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | | |
Collapse
|
6
|
Lemke T. Anticipating and suspending: the chronopolitics of cryopreservation. BIOSOCIETIES 2024; 19:556-573. [PMID: 39552727 PMCID: PMC11564088 DOI: 10.1057/s41292-024-00332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 11/19/2024]
Abstract
The article brings together two disparate and so far largely disconnected bodies of research: the critical analysis of cryopreservation technologies and the debate on modes of anticipation. It starts with a short review of the state of the research on the concept of cryopolitics. In the next part I will suggest two revisions. I will problematize the idea of latent life and the focus on potentialities that have been central to the research on cryopolitics so far, proposing to shift the analytic frame to suspended life on the one hand and to modes of anticipation on the other. I argue that cryopreservation practices are part of contemporary technologies of anticipation. They are linked to a politics of suspension by mobilizing a liminal biological state in which frozen organisms or biological material are neither fully alive nor ultimately dead. This seeks to avert and/or enable distinctive futures by extending temporal horizons and keeping vital processes in limbo.
Collapse
Affiliation(s)
- Thomas Lemke
- Institute of Sociology, Goethe University Frankfurt am Main, Theodor-W.-Adorno-Platz 6, 60323 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Mizutani K, Yoshida Y, Nakanishi E, Miyata Y, Tokumoto S, Fuse H, Gusev O, Kikuta S, Kikawada T. A sodium-dependent trehalose transporter contributes to anhydrobiosis in insect cell line, Pv11. Proc Natl Acad Sci U S A 2024; 121:e2317254121. [PMID: 38551840 PMCID: PMC10998604 DOI: 10.1073/pnas.2317254121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/13/2024] [Indexed: 04/02/2024] Open
Abstract
Pv11 is the only animal cell line that, when preconditioned with a high concentration of trehalose, can be preserved in the dry state at room temperature for more than one year while retaining the ability to resume proliferation. This extreme desiccation tolerance is referred to as anhydrobiosis. Here, we identified a transporter that contributes to the recovery of Pv11 cells from anhydrobiosis. In general, the solute carrier 5 (SLC5)-type secondary active transporters cotransport Na+ and carbohydrates including glucose. The heterologous expression systems showed that the transporter belonging to the SLC5 family, whose expression increases upon rehydration, exhibits Na+-dependent trehalose transport activity. Therefore, we named it STRT1 (sodium-ion trehalose transporter 1). We report an SLC5 family member that transports a naturally occurring disaccharide, such as trehalose. Knockout of the Strt1 gene significantly reduced the viability of Pv11 cells upon rehydration after desiccation. During rehydration, when intracellular trehalose is no longer needed, Strt1-knockout cells released the disaccharide more slowly than the parental cell line. During rehydration, Pv11 cells became roughly spherical due to osmotic pressure changes, but then returned to their original spindle shape after about 30 min. Strt1-knockout cells, however, required about 50 min to adopt their normal morphology. STRT1 probably regulates intracellular osmolality by releasing unwanted intracellular trehalose with Na+, thereby facilitating the recovery of normal cell morphology during rehydration. STRT1 likely improves the viability of dried Pv11 cells by rapidly alleviating the significant physical stresses that arise during rehydration.
Collapse
Affiliation(s)
- Kosuke Mizutani
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba277-8562, Japan
| | - Yuki Yoshida
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki305-8634, Japan
| | - Eita Nakanishi
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba277-8562, Japan
| | - Yugo Miyata
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo113-8510, Japan
| | - Shoko Tokumoto
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki305-8634, Japan
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo113-8421, Japan
| | - Hiroto Fuse
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba277-8562, Japan
| | - Oleg Gusev
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo113-8421, Japan
| | - Shingo Kikuta
- Department of Regional and Comprehensive Agriculture, College of Agriculture, Ibaraki University, Ami, Ibaraki300-0393, Japan
| | - Takahiro Kikawada
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba277-8562, Japan
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki305-8634, Japan
| |
Collapse
|
8
|
McNally DL, Macdougall LJ, Kirkpatrick BE, Maduka CV, Hoffman TE, Fairbanks BD, Bowman CN, Spencer SL, Anseth KS. Reversible Intracellular Gelation of MCF10A Cells Enables Programmable Control Over 3D Spheroid Growth. Adv Healthc Mater 2024; 13:e2302528. [PMID: 38142299 PMCID: PMC10939856 DOI: 10.1002/adhm.202302528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Indexed: 12/25/2023]
Abstract
In nature, some organisms survive extreme environments by inducing a biostatic state wherein cellular contents are effectively vitrified. Recently, a synthetic biostatic state in mammalian cells is achieved via intracellular network formation using bio-orthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) reactions between functionalized poly(ethylene glycol) (PEG) macromers. In this work, the effects of intracellular network formation on a 3D epithelial MCF10A spheroid model are explored. Macromer-transfected cells are encapsulated in Matrigel, and spheroid area is reduced by ≈50% compared to controls. The intracellular hydrogel network increases the quiescent cell population, as indicated by increased p21 expression. Additionally, bioenergetics (ATP/ADP ratio) and functional metabolic rates are reduced. To enable reversibility of the biostasis effect, a photosensitive nitrobenzyl-containing macromer is incorporated into the PEG network, allowing for light-induced degradation. Following light exposure, cell state, and proliferation return to control levels, while SPAAC-treated spheroids without light exposure (i.e., containing intact intracellular networks) remain smaller and less proliferative through this same period. These results demonstrate that photodegradable intracellular hydrogels can induce a reversible slow-growing state in 3D spheroid culture.
Collapse
Affiliation(s)
- Delaney L McNally
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, CO, 80045, USA
| | - Chima V Maduka
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Timothy E Hoffman
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Sabrina L Spencer
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
9
|
Al-Ansari M, Fitzsimons T, Wei W, Goldberg MW, Kunieda T, Quinlan RA. The major inducible small heat shock protein HSP20-3 in the tardigrade Ramazzottius varieornatus forms filament-like structures and is an active chaperone. Cell Stress Chaperones 2024; 29:51-65. [PMID: 38330543 PMCID: PMC10939073 DOI: 10.1016/j.cstres.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 02/10/2024] Open
Abstract
The tardigrade Ramazzottius varieornatus has remarkable resilience to a range of environmental stresses. In this study, we have characterised two members of the small heat shock protein (sHSP) family in R. varieornatus, HSP20-3 and HSP20-6. These are the most highly upregulated sHSPs in response to a 24 h heat shock at 35 0C of adult tardigrades with HSP20-3 being one of the most highly upregulated gene in the whole transcriptome. Both R. varieornatus sHSPs and the human sHSP, CRYAB (HSPB5), were produced recombinantly for comparative structure-function studies. HSP20-3 exhibited a superior chaperone activity than human CRYAB in a heat-induced protein aggregation assay. Both tardigrade sHSPs also formed larger oligomers than CRYAB as assessed by size exclusion chromatography and transmission electron microscopy of negatively stained samples. Whilst both HSP20-3 and HSP20-6 formed particles that were variable in size and larger than the particles formed by CRYAB, only HSP20-3 formed filament-like structures. The particles and filament-like structures formed by HSP20-3 appear inter-related as the filament-like structures often had particles located at their ends. Sequence analyses identified two unique features; an insertion in the middle region of the N-terminal domain (NTD) and preceding the critical-sequence identified in CRYAB, as well as a repeated QNTN-motif located in the C-terminal domain of HSP20-3. The NTD insertion is expected to affect protein-protein interactions and subunit oligomerisation. Removal of the repeated QNTN-motif abolished HSP20-3 chaperone activity and also affected the assembly of the filament-like structures. We discuss the potential contribution of HSP20-3 to protein condensate formation.
Collapse
Affiliation(s)
- Mohammad Al-Ansari
- Department of Biosciences, Upper Mountjoy Science Site, University of Durham, Durham DH1 3LE, UK; Department of Biochemistry, Health Sciences Centre, Kuwait University, Kuwait
| | - Taylor Fitzsimons
- Department of Biosciences, Upper Mountjoy Science Site, University of Durham, Durham DH1 3LE, UK
| | - Wenbin Wei
- Department of Biosciences, Upper Mountjoy Science Site, University of Durham, Durham DH1 3LE, UK.
| | - Martin W Goldberg
- Department of Biosciences, Upper Mountjoy Science Site, University of Durham, Durham DH1 3LE, UK
| | - Takekazu Kunieda
- Department of Biological Sciences, The University of Tokyo, Japan
| | - Roy A Quinlan
- Department of Biosciences, Upper Mountjoy Science Site, University of Durham, Durham DH1 3LE, UK; Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
10
|
Hashimshony T, Levin L, Fröbius AC, Dahan N, Chalifa-Caspi V, Hamo R, Gabai-Almog O, Blais I, Assaraf YG, Lubzens E. A transcriptomic examination of encased rotifer embryos reveals the developmental trajectory leading to long-term dormancy; are they "animal seeds"? BMC Genomics 2024; 25:119. [PMID: 38281016 PMCID: PMC10821554 DOI: 10.1186/s12864-024-09961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Organisms from many distinct evolutionary lineages acquired the capacity to enter a dormant state in response to environmental conditions incompatible with maintaining normal life activities. Most studied organisms exhibit seasonal or annual episodes of dormancy, but numerous less studied organisms enter long-term dormancy, lasting decades or even centuries. Intriguingly, many planktonic animals produce encased embryos known as resting eggs or cysts that, like plant seeds, may remain dormant for decades. Herein, we studied a rotifer Brachionus plicatilis as a model planktonic species that forms encased dormant embryos via sexual reproduction and non-dormant embryos via asexual reproduction and raised the following questions: Which genes are expressed at which time points during embryogenesis? How do temporal transcript abundance profiles differ between the two types of embryos? When does the cell cycle arrest? How do dormant embryos manage energy? RESULTS As the molecular developmental kinetics of encased embryos remain unknown, we employed single embryo RNA sequencing (CEL-seq) of samples collected during dormant and non-dormant embryogenesis. We identified comprehensive and temporal transcript abundance patterns of genes and their associated enriched functional pathways. Striking differences were uncovered between dormant and non-dormant embryos. In early development, the cell cycle-associated pathways were enriched in both embryo types but terminated with fewer nuclei in dormant embryos. As development progressed, the gene transcript abundance profiles became increasingly divergent between dormant and non-dormant embryos. Organogenesis was suspended in dormant embryos, concomitant with low transcript abundance of homeobox genes, and was replaced with an ATP-poor preparatory phase characterized by very high transcript abundance of genes encoding for hallmark dormancy proteins (e.g., LEA proteins, sHSP, and anti-ROS proteins, also found in plant seeds) and proteins involved in dormancy exit. Surprisingly, this period appeared analogous to the late maturation phase of plant seeds. CONCLUSIONS The study highlights novel divergent temporal transcript abundance patterns between dormant and non-dormant embryos. Remarkably, several convergent functional solutions appear during the development of resting eggs and plant seeds, suggesting a similar preparatory phase for long-term dormancy. This study accentuated the broad novel molecular features of long-term dormancy in encased animal embryos that behave like "animal seeds".
Collapse
Affiliation(s)
- Tamar Hashimshony
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Liron Levin
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Andreas C Fröbius
- Molecular Andrology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Gießen, Gießen, Germany.
| | - Nitsan Dahan
- Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Vered Chalifa-Caspi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Reini Hamo
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Oshri Gabai-Almog
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Idit Blais
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and IVF, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Esther Lubzens
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
- (Retired) Israel Oceanographic and Limnological Research, Haifa, Israel.
| |
Collapse
|
11
|
Morita R, Okano S, Furukawa A, Ishii K, Teramoto C, Minami Y. Analysis of the trehalose synthesis pathway of Physarum polycehalum. Biochem Biophys Res Commun 2023; 682:299-307. [PMID: 37832387 DOI: 10.1016/j.bbrc.2023.09.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Desiccation is a severe survival problem for organisms. We have been studying the desiccation tolerance mechanisms in the true slime mold Physarum polycephalum. We measured the trehalose content of P. polycephalum vegetative cells (plasmodia) and drought cells (sclerotia). Surprisingly, we found that the content in sclerotia was about 473-fold greater than in the plasmodia. We then examined trehalose metabolism-related genes via RNAseq, and consequently found that trehalose 6-phosphate phosphorylase (T6pp) expression levels increased following desiccation. Next, we cloned and expressed the genes for T6pp, trehalose 6-phosphate synthase/phosphatase (Tps/Tpp), maltooligosyltrehalose trehalohydrolase (TreZ), and maltooligosyltrehalose synthase (TreY) in E. coli. Incidentally, TreY and TreZ clones have been reported in several prokaryotes, but not in eukaryotes. This report in P. polycephalum is the first evidence of their presence in a eukaryote species. Recombinant T6pp, TreY, and TreZ were purified and confirmed to be active. Our results showed that these enzymes catalyze reactions related to trehalose production, and their reaction kinetics follow the Michaelis-Menten equation. The t6pp mRNA levels of the sclerotia were about 15-fold higher than in the plasmodia. In contrast, the expression levels of TreZ and TreY showed no significant change between the sclerotia and plasmodia. Thus, T6pp is probably related to desiccation tolerance, whereas the contribution of TreY and TreZ is insufficient to account for the considerable accumulation of trehalose in sclerotia.
Collapse
Affiliation(s)
- Rihito Morita
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Shohei Okano
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Atsushi Furukawa
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Kazuo Ishii
- Department of Applied Information Engineering, Faculty of Engineering, Suwa University of Science, 5000-1 Toyohira, Chino-shi, Nagano, 391-0292, Japan
| | - Chise Teramoto
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Yoshiko Minami
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| |
Collapse
|
12
|
Hvidepil LKB, Møbjerg N. New insights into osmobiosis and chemobiosis in tardigrades. Front Physiol 2023; 14:1274522. [PMID: 37929212 PMCID: PMC10620314 DOI: 10.3389/fphys.2023.1274522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Tardigrades are renowned for their ability to enter the extremotolerant state of latent life known as cryptobiosis. While it is widely accepted that cryptobiosis can be induced by freezing (cryobiosis) and by desiccation (anhydrobiosis), the latter involving formation of a so-called tun, the exact mechanisms underlying the state-as well as the significance of other cryptobiosis inducing factors-remain ambiguous. Here, we focus on osmotic and chemical stress tolerance in the marine tidal tardigrade Echiniscoides sigismundi. We show that E. sigismundi enters the tun state following exposure to saturated seawater and upon exposure to locality seawater containing the mitochondrial uncoupler DNP. The latter experiments provide evidence of osmobiosis and chemobiosis, i.e., cryptobiosis induced by high levels of osmolytes and toxicants, respectively. A small decrease in survival was observed following simultaneous exposure to DNP and saturated seawater indicating that the tardigrades may not be entirely ametabolic while in the osmobiotic tun. The tardigrades easily handle exposure to ultrapure water, but hypo-osmotic shock impairs tun formation and when exposed to ultrapure water the tardigrades do not tolerate DNP, indicating that tolerance towards dilute solutions involves energy-consuming processes. We discuss our data in relation to earlier and more contemporary studies on cryptobiosis and we argue that osmobiosis should be defined as a state of cryptobiosis induced by high external osmotic pressure. Our investigation supports the hypothesis that the mechanisms underlying osmobiosis and anhydrobiosis are overlapping and that osmobiosis likely represents the evolutionary forerunner of cryptobiosis forms that involve body water deprivation.
Collapse
Affiliation(s)
| | - Nadja Møbjerg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Hagelbäck P, Jönsson KI. An experimental study on tolerance to hypoxia in tardigrades. Front Physiol 2023; 14:1249773. [PMID: 37731547 PMCID: PMC10507709 DOI: 10.3389/fphys.2023.1249773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction: Tardigrades are small aquatic invertebrates with well documented tolerance to several environmental stresses, including desiccation, low temperature, and radiation, and an ability to survive long periods in a cryptobiotic state under arrested metabolism. Many tardigrade populations live in habitats where temporary exposure to hypoxia is expected, e.g., benthic layers or substrates that regularly undergo desiccation, but tolerance to hypoxia has so far not been thoroughly investigated in tardigrades. Method: We studied the response to exposure for hypoxia (<1 ppm) during 1-24 h in two tardigrade species, Richtersius cf. coronifer and Hypsibius exemplaris. The animals were exposed to hypoxia in their hydrated active state. Results: Survival was high in both species after the shortest exposures to hypoxia but tended to decline with longer exposures, with almost complete failure to recover after 24 h in hypoxia. R. cf. coronifer tended to be more tolerant than H. exemplaris. When oxygen level was gradually reduced from 8 to 1 ppm, behavioral responses in terms of irregular body movements were first observed at 3-4 ppm. Discussion: The study shows that both limno-terrestrial and freshwater tardigrades are able to recover after exposure to severe hypoxia, but only exposure for relatively short periods of time. It also indicates that tardigrade species have different sensitivity and response patterns to exposure to hypoxia. These results will hopefully encourage more studies on how tardigrades are affected by and respond to hypoxic conditions.
Collapse
Affiliation(s)
| | - K. Ingemar Jönsson
- Department of Environmental Science, Kristianstad University, Kristianstad, Sweden
| |
Collapse
|
14
|
Pierce S. Life's Mechanism. Life (Basel) 2023; 13:1750. [PMID: 37629607 PMCID: PMC10455287 DOI: 10.3390/life13081750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The multifarious internal workings of organisms are difficult to reconcile with a single feature defining a state of 'being alive'. Indeed, definitions of life rely on emergent properties (growth, capacity to evolve, agency) only symptomatic of intrinsic functioning. Empirical studies demonstrate that biomolecules including ratcheting or rotating enzymes and ribozymes undergo repetitive conformation state changes driven either directly or indirectly by thermodynamic gradients. They exhibit disparate structures, but govern processes relying on directional physical motion (DNA transcription, translation, cytoskeleton transport) and share the principle of repetitive uniplanar conformation changes driven by thermodynamic gradients, producing dependable unidirectional motion: 'heat engines' exploiting thermodynamic disequilibria to perform work. Recognition that disparate biological molecules demonstrate conformation state changes involving directional motion, working in self-regulating networks, allows a mechanistic definition: life is a self-regulating process whereby matter undergoes cyclic, uniplanar conformation state changes that convert thermodynamic disequilibria into directed motion, performing work that locally reduces entropy. 'Living things' are structures including an autonomous network of units exploiting thermodynamic gradients to drive uniplanar conformation state changes that perform work. These principles are independent of any specific chemical environment, and can be applied to other biospheres.
Collapse
Affiliation(s)
- Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
15
|
Roszkowska M, Gołdyn B, Wojciechowska D, Księżkiewicz Z, Fiałkowska E, Pluskota M, Kmita H, Kaczmarek Ł. How long can tardigrades survive in the anhydrobiotic state? A search for tardigrade anhydrobiosis patterns. PLoS One 2023; 18:e0270386. [PMID: 36630322 PMCID: PMC9833599 DOI: 10.1371/journal.pone.0270386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Anhydrobiosis is a desiccation tolerance that denotes the ability to survive almost complete dehydration without sustaining damage. The knowledge on the survival capacity of various tardigrade species in anhydrobiosis is still very limited. Our research compares anhydrobiotic capacities of four tardigrade species from different genera, i.e. Echiniscus testudo, Paramacrobiotus experimentalis, Pseudohexapodibius degenerans and Macrobiotus pseudohufelandi, whose feeding behavior and occupied habitats are different. Additionally, in the case of Ech. testudo, we analyzed two populations: one urban and one from a natural habitat. The observed tardigrade species displayed clear differences in their anhydrobiotic capacity, which appear to be determined by the habitat rather than nutritional behavior of species sharing the same habitat type. The results also indicate that the longer the state of anhydrobiosis lasts, the more time the animals need to return to activity.
Collapse
Affiliation(s)
- Milena Roszkowska
- Faculty of Biology, Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
- Faculty of Biology, Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Bartłomiej Gołdyn
- Faculty of Biology, Department of General Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Daria Wojciechowska
- Faculty of Physics, Department of Biomedical Physics, Adam Mickiewicz University, Poznań, Poland
| | - Zofia Księżkiewicz
- Faculty of Biology, Department of General Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Edyta Fiałkowska
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Mateusz Pluskota
- Faculty of Biology, Department of General Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Hanna Kmita
- Faculty of Biology, Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Łukasz Kaczmarek
- Faculty of Biology, Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
16
|
Lukashanets DA, Maisak NN. Bdelloid rotifers (Bdelloidea, Rotifera) in shallow freshwater ecosystems of Thala Hills, East Antarctica. Polar Biol 2022. [DOI: 10.1007/s00300-022-03106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractShallow waters, little-studied in Continental Antarctica, among other micrometazoans host bdelloid rotifers, which diversity, ecology, and distributional patterns in turn are poorly known. To address these issues, we analysed plankton samples collected during the 2018/2019 season in the Thala Hills oasis (East Antarctica), in shallow freshwater lakes and temporary ponds that formed during intense snow melting in December–January. Bdelloids were present in more than 90% of the sites with nine species revealed. The most frequent were Antarctic endemics [Philodina gregaria (P. gregaria), Adineta grandis (A. grandis), and Adineta coatsi (A. coatsi)], while some non-abundant bdelloids either provide characteristics of widely distributed taxa or require further taxonomy studies as they can be species new for the science. The abundance of bdelloids varied greatly across studied sites and localities, with a maximum of more than 700,000 ind m−3 and an increasing tendency to be more numerous in rock-basin temporary ponds, compared to larger lakes, with variability for different taxa. The environmental parameters strongly explain the bdelloid distribution (78.4% of the variation), with the most important factors being the type of bottom (9.9%), altitude (8.0%), TDS (6.6%), and salinity (6.5%). The cyanobacterial mats from the bottom didn’t contribute much to bdelloid distributional patterns, despite being known to be a preferred habitat for micrometazoans including rotifers. These results shape a perspective to study the processes of the formation of Antarctic seasonal aquatic habitats settled by organisms, which demonstrate an ecomorphological range from planktonic organisms to crawling ‘scrapers’.
Collapse
|
17
|
Kononova EG, Solonina IA, Rodnikova MN, Shirokova EV. IR spectroscopic study of the hydrogen bond network in the water–3-amino-1-propanol system and its comparison with the spatial network of hydrogen bonds in the water–monoethanolamine system. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Yoshida Y, Tanaka S. Deciphering the Biological Enigma-Genomic Evolution Underlying Anhydrobiosis in the Phylum Tardigrada and the Chironomid Polypedilum vanderplanki. INSECTS 2022; 13:557. [PMID: 35735894 PMCID: PMC9224920 DOI: 10.3390/insects13060557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023]
Abstract
Anhydrobiosis, an ametabolic dehydrated state triggered by water loss, is observed in several invertebrate lineages. Anhydrobiotes revive when rehydrated, and seem not to suffer the ultimately lethal cell damage that results from severe loss of water in other organisms. Here, we review the biochemical and genomic evidence that has revealed the protectant molecules, repair systems, and maintenance pathways associated with anhydrobiosis. We then introduce two lineages in which anhydrobiosis has evolved independently: Tardigrada, where anhydrobiosis characterizes many species within the phylum, and the genus Polypedilum, where anhydrobiosis occurs in only two species. Finally, we discuss the complexity of the evolution of anhydrobiosis within invertebrates based on current knowledge, and propose perspectives to enhance the understanding of anhydrobiosis.
Collapse
Affiliation(s)
- Yuki Yoshida
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Sae Tanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Institute for Advanced Biosciences, Keio University, 341-1 Mizukami, Tsuruoka 997-0052, Japan
| |
Collapse
|
19
|
Giovannini I, Corsetto PA, Altiero T, Montorfano G, Guidetti R, Rizzo AM, Rebecchi L. Antioxidant Response during the Kinetics of Anhydrobiosis in Two Eutardigrade Species. Life (Basel) 2022; 12:817. [PMID: 35743848 PMCID: PMC9225123 DOI: 10.3390/life12060817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Anhydrobiosis, a peculiar adaptive strategy existing in nature, is a reversible capability of organisms to tolerate a severe loss of their body water when their surrounding habitat is drying out. In the anhydrobiotic state, an organism lacks all dynamic features of living beings since an ongoing metabolism is absent. The depletion of water in the anhydrobiotic state increases the ionic concentration and the production of reactive oxygen species (ROS). An imbalance between the increased production of ROS and the limited action of antioxidant defences is a source of biomolecular damage and can lead to oxidative stress. The deleterious effects of oxidative stress were demonstrated in anhydrobiotic unicellular and multicellular organisms, which counteract the effects using efficient antioxidant machinery, mainly represented by ROS scavenger enzymes. To gain insights into the dynamics of antioxidant patterns during the kinetics of the anhydrobiosis of two tardigrade species, Paramacrobiotus spatialis and Acutuncus antarcticus, we investigated the activity of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase) and the amount of non-enzymatic antioxidants (glutathione) in the course of rehydration. In P. spatialis, the activity of catalase increases during dehydration and decreases during rehydration, whereas in A. antarcticus, the activity of superoxide dismutase decreases during desiccation and increases during rehydration. Genomic varieties, different habitats and geographical regions, different diets, and diverse evolutionary lineages may have led to the specialization of antioxidant strategies in the two species.
Collapse
Affiliation(s)
- Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.G.); (R.G.)
| | - Paola Antonia Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milan, Italy; (P.A.C.); (G.M.)
| | - Tiziana Altiero
- Department of Education and Humanities, University of Modena and Reggio Emilia, 42121 Reggio Emilia, Italy;
| | - Gigliola Montorfano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milan, Italy; (P.A.C.); (G.M.)
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.G.); (R.G.)
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milan, Italy; (P.A.C.); (G.M.)
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.G.); (R.G.)
| |
Collapse
|
20
|
Møbjerg A, Kodama M, Ramos-Madrigal J, Neves RC, Jørgensen A, Schiøtt M, Gilbert MTP, Møbjerg N. Extreme freeze-tolerance in cryophilic tardigrades relies on controlled ice formation but does not involve significant change in transcription. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111245. [PMID: 35640792 DOI: 10.1016/j.cbpa.2022.111245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Subzero temperatures are among the most significant factors defining the distribution of organisms, yet, certain taxa have evolved to overcome this barrier. The microscopic tardigrades are among the most freeze-tolerant animals, with selected species reported to survive milli-Kelvin temperatures. Here, we estimate survival of fully hydrated eutardigrades of the species Ramazzottius varieornatus following exposures to -20 °C and -80 °C as well as -196 °C with or without initial cooling to -80 °C. The tardigrades easily survive these temperatures, yet with a significant decrease in viability following rapid cooling by direct exposure to -196 °C. Hence, post-freeze recovery of R. varieornatus seems to rely on cooling rate and thus controlled ice formation. Cryophilic organisms are renowned for having cold-active enzymes that secure appropriate reaction rates at low temperatures. Hence, extreme freeze-tolerance in R. varieornatus could potentially involve syntheses of cryoprotectants and de novo transcription. We therefore generated a reference transcriptome for this cryophilic R. varieornatus population and explored for differential gene expression patterns following cooling to -80 °C as compared to active 5 °C controls. Specifically, we tested for fast transcription potentially occurring within 25 min of cooling from room temperature to a supercooling point of ca. -20 °C, at which the tardigrades presumably freeze and enter into the ametabolic state of cryobiosis. Our analyses revealed no evidence for differential gene expression. We, therefore, conclude that extreme freeze-tolerance in R. varieornatus relies on controlled extracellular freezing with any freeze-tolerance related genes being constitutively expressed.
Collapse
Affiliation(s)
- Ask Møbjerg
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark. https://twitter.com/askmobjerg
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jazmín Ramos-Madrigal
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Aslak Jørgensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Schiøtt
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Nadja Møbjerg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Neves RC, Møbjerg A, Kodama M, Ramos-Madrigal J, Gilbert MTP, Møbjerg N. Differential expression profiling of heat stressed tardigrades reveals major shift in the transcriptome. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111169. [PMID: 35182765 DOI: 10.1016/j.cbpa.2022.111169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Tardigrades are renowned for their extreme stress tolerance, which includes the ability to endure complete desiccation, high levels of radiation and very low sub-zero temperatures. Nevertheless, tardigrades appear to be vulnerable to high temperatures and thus the potential effects of global warming. Here, we provide the first analysis of transcriptome data obtained from heat stressed specimens of the eutardigrade Ramazzottius varieornatus, with the aim of providing new insights into the molecular processes affected by high temperatures. Specifically, we compare RNA-seq datasets obtained from active, heat-exposed (35 °C) tardigrades to that of active controls kept at 5 °C. Our data reveal a surprising shift in transcription, involving 9634 differentially expressed transcripts, corresponding to >35% of the transcriptome. The latter data are in striking contrast to the hitherto observed constitutive expression underlying tardigrade extreme stress tolerance and entrance into the latent state of life, known as cryptobiosis. Thus, when examining the molecular response, heat-stress appears to be more stressful for R. varieornatus than extreme conditions, such as desiccation or freezing. A gene ontology analysis reveals that the heat stress response involves a change in transcription and presumably translation, including an adjustment of metabolism, and, putatively, preparation for encystment and subsequent diapause. Among the differentially expressed transcripts we find heat-shock proteins as well as the eutardigrade specific proteins (CAHS, SAHS, MAHS, RvLEAM, and Dsup). The latter proteins thus seem to contribute to a general stress response, and may not be directly related to cryptobiosis.
Collapse
Affiliation(s)
| | - Ask Møbjerg
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jazmín Ramos-Madrigal
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Nadja Møbjerg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Poprawa I, Bartylak T, Kulpla A, Erdmann W, Roszkowska M, Chajec Ł, Kaczmarek Ł, Karachitos A, Kmita H. Verification of Hypsibius exemplaris Gąsiorek et al., 2018 (Eutardigrada; Hypsibiidae) application in anhydrobiosis research. PLoS One 2022; 17:e0261485. [PMID: 35303010 PMCID: PMC8932574 DOI: 10.1371/journal.pone.0261485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
Anhydrobiosis is considered to be an adaptation of important applicative implications because it enables resistance to the lack of water. The phenomenon is still not well understood at molecular level. Thus, a good model invertebrate species for the research is required. The best known anhydrobiotic invertebrates are tardigrades (Tardigrada), considered to be toughest animals in the world. Hypsibius. exemplaris is one of the best studied tardigrade species, with its name "exemplaris" referring to the widespread use of the species as a laboratory model for various types of research. However, available data suggest that anhydrobiotic capability of the species may be overestimated. Therefore, we determined anhydrobiosis survival by Hys. exemplaris specimens using three different anhydrobiosis protocols. We also checked ultrastructure of storage cells within formed dormant structures (tuns) that has not been studied yet for Hys. exemplaris. These cells are known to support energetic requirements of anhydrobiosis. The obtained results indicate that Hys. exemplaris appears not to be a good model species for anhydrobiosis research.
Collapse
Affiliation(s)
- Izabela Poprawa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa, Katowice, Poland
| | - Tomasz Bartylak
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Adam Kulpla
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego, Poznań, Poland
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Weronika Erdmann
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Milena Roszkowska
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Łukasz Chajec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa, Katowice, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Andonis Karachitos
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| |
Collapse
|
23
|
Di Gioacchino M, Bruni F, Alderman OL, Ricci MA. Interaction of trehalose and glucose with a peptide β-turn in aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Abstract
Tardigrades are ubiquitous meiofauna that are especially renowned for their exceptional extremotolerance to various adverse environments, including pressure, temperature, and even ionizing radiation. This is achieved through a reversible halt of metabolism triggered by desiccation, a phenomenon called anhydrobiosis. Recent establishment of genome resources for two tardigrades, Hypsibius exemplaris and Ramazzottius varieornatus, accelerated research to uncover the molecular mechanisms behind anhydrobiosis, leading to the discovery of many tardigrade-unique proteins. This review focuses on the history, methods, discoveries, and current state and challenges regarding tardigrade genomics, with an emphasis on molecular anhydrobiology. Remaining questions and future perspectives regarding prospective approaches to fully elucidate the molecular machinery of this complex phenomenon are discussed.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Daishouji, Tsuruoka, Yamagata, Japan; .,Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan.,Graduate School of Media and Governance, Systems Biology Program, Keio University, Fujisawa, Kanagawa, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
25
|
Introduction to Bacterial Anhydrobiosis: A General Perspective and the Mechanisms of Desiccation-Associated Damage. Microorganisms 2022; 10:microorganisms10020432. [PMID: 35208886 PMCID: PMC8874559 DOI: 10.3390/microorganisms10020432] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Anhydrobiosis is the ability of selected organisms to lose almost all water and enter a state of reversible ametabolism. Such an organism dries up to a state of equilibrium with dry air. Unless special protective mechanisms exist, desiccation leads to damage, mainly to proteins, nucleic acids, and membrane lipids. A short historical outline of research on extreme dehydration of living organisms and the current state of research are presented. Terminological issues are outlined. The role of water in the cell and the mechanisms of damage occurring in the cell under the desiccation stress are briefly discussed. Particular attention was paid to damage to proteins, nucleic acids, and membrane lipids. Understanding the nature of the changes and damage associated with desiccation is essential for the study of desiccation-tolerance mechanisms and application research. Difficulties related to the definition of life and the limits of life in the scientific discussion, caused by the phenomenon of anhydrobiosis, were also indicated.
Collapse
|
26
|
Giovannini I, Boothby TC, Cesari M, Goldstein B, Guidetti R, Rebecchi L. Production of reactive oxygen species and involvement of bioprotectants during anhydrobiosis in the tardigrade Paramacrobiotus spatialis. Sci Rep 2022; 12:1938. [PMID: 35121798 PMCID: PMC8816950 DOI: 10.1038/s41598-022-05734-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
Water unavailability is an abiotic stress causing unfavourable conditions for life. Nevertheless, some animals evolved anhydrobiosis, a strategy allowing for the reversible organism dehydration and suspension of metabolism as a direct response to habitat desiccation. Anhydrobiotic animals undergo biochemical changes synthesizing bioprotectants to help combat desiccation stresses. One stress is the generation of reactive oxygen species (ROS). In this study, the eutardigrade Paramacrobiotus spatialis was used to investigate the occurrence of ROS associated with the desiccation process. We observed that the production of ROS significantly increases as a function of time spent in anhydrobiosis and represents a direct demonstration of oxidative stress in tardigrades. The degree of involvement of bioprotectants, including those combating ROS, in the P. spatialis was evaluated by perturbing their gene functions using RNA interference and assessing the successful recovery of animals after desiccation/rehydration. Targeting the glutathione peroxidase gene compromised survival during drying and rehydration, providing evidence for the role of the gene in desiccation tolerance. Targeting genes encoding glutathione reductase and catalase indicated that these molecules play roles during rehydration. Our study also confirms the involvement of aquaporins 3 and 10 during rehydration. Therefore, desiccation tolerance depends on the synergistic action of many different molecules working together.
Collapse
Affiliation(s)
- Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy.
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michele Cesari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy
| |
Collapse
|
27
|
A critique on the theory of homeostasis. Physiol Behav 2022; 247:113712. [DOI: 10.1016/j.physbeh.2022.113712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023]
|
28
|
Polozsányi Z, Kaliňák M, Babjak M, Šimkovič M, Varečka Ľ. How to enter the state of dormancy? A suggestion by Trichoderma atroviride conidia. Fungal Biol 2021; 125:934-949. [PMID: 34649680 DOI: 10.1016/j.funbio.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 06/12/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
It is generally accepted that conidia, propagules of filamentous fungi, exist in the state of dormancy. This state is defined mostly phenomenologically, e.g., by germination requirements. Its molecular characteristics are scarce and are concentrated on the water or osmolyte content, and/or respiration. However, a question of whether conidia are metabolic or ametabolic forms of life cannot be answered on the basis of available experimental data. In other words, are mature conidia open thermodynamic systems as are mycelia, or do they become closed upon the transition to the dormant state? In this article, we present observations which may help to define the transition of freshly formed conidia to the putative dormant forms using measurements of selected enzyme activities, 1H- and 13C-NMR and LC-MS-metabolomes, and 14C-bicarbonate or 45Ca2+ inward transport. We have found that Trichoderma atroviride and Aspergillus niger conidia arrest the 45Ca2+ uptake during the development stopping thereby the cyclic (i.e., bidirectional) Ca2+ flow existing in vegetative mycelia and conidia of T. atroviride across the cytoplasmic membrane. Furthermore, we have found that the activity of α-ketoglutarate dehydrogenase was rendered completely inactive after 3 weeks from the conidia formation unlike of other central carbon metabolism enzymes. This may explain the loss of conidial respiration. Finally, we found that conidia take up the H14CO3- and convert it into few stable compounds within 80 d of maturation, with minor quantitative differences in the extent of this process. The uptake of H13CO3- confirmed these observation and demonstrated the incorporation of H13CO3- even in the absence of exogenous substrates. These results suggest that T. atroviride conidia remain metabolically active during first ten weeks of maturation. Under these circumstances, their metabolism displays features similar to those of chemoautotrophic microorganisms. However, the Ca2+ homeostasis changed from the open to the closed thermodynamic state during the early period of conidial maturation. These results may be helpful for studying the conidial ageing and/or maturation, and for defining the conidial dormant state in biochemical terms.
Collapse
Affiliation(s)
- Zoltán Polozsányi
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Michal Kaliňák
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Matej Babjak
- Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Martin Šimkovič
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| | - Ľudovít Varečka
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| |
Collapse
|
29
|
Tardigrada: An Emerging Animal Model to Study the Endoplasmic Reticulum Stress Response to Environmental Extremes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021. [PMID: 34050872 DOI: 10.1007/978-3-030-67696-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Tardigrada (also known as "water bears") are hydrophilous microinvertebrates with a bilaterally symmetrical body and four pairs of legs usually terminating with claws. Water bears are quite complex animals and range from 50 to 1200 μm in length. Their body is divided into a head segment and four trunk segments, each bearing a pair of legs. They inhabit almost all terrestrial and aquatic environments, from the ocean depths to highest mountains ranges. However, one of their best known and unusual features is their capability for cryptobiosis. In this state tardigrades are able to survive extremely low and high temperatures and atmospheric pressures, complete lack of water, high doses of radiation, high concentrations of toxins and even a cosmic vacuum. The cellular mechanisms enabling cryptobiosis are poorly understood, although it appears the synthesis of certain types of molecules (sugars and proteins) enable the prevention of cellular damage at different levels. The endoplasmic reticulum (ER) is a morphologically and functionally diverse organelle able to integrate multiple extracellular and internal signals and generate adaptive cellular responses. However, the ER morphology and activity in the case of tardigrades has been studied rarely and in the context of oogenesis, functioning of the digestive system, and in the role and function of storage cells. Thus, there are no direct studies on the contribution of the ER in the ability of this organism to cope with environmental stress during cryptobiosis. Nevertheless, it is highly probable that the ER has a crucial role in this uncommon process. Since water bears are easy to handle laboratory animals, they may represent an ideal model organism to uncover the important role of the ER in the cell response to extreme environmental stress conditions.
Collapse
|
30
|
GPG-NH2 solutions: A model system for β-turns formation. Possible role of trehalose against drought. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Chebotar' IV, Emelyanova MA, Bocharova JA, Mayansky NA, Kopantseva EE, Mikhailovich VM. The classification of bacterial survival strategies in the presence of antimicrobials. Microb Pathog 2021; 155:104901. [PMID: 33930413 DOI: 10.1016/j.micpath.2021.104901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023]
Abstract
The survival of bacteria under antibiotic therapy varies in nature and is based on the bacterial ability to employ a wide range of fundamentally different resistance mechanisms. This great diversity requires a disambiguation of the term 'resistance' and the development of a more precise classification of bacterial survival strategies during contact with antibiotics. The absence of a unified definition for the terms 'resistance', 'tolerance' and 'persistence' further aggravates the imperfections of the current classification system. This review suggests a number of original classification criteria that will take into account (1) the bacterial ability to replicate in the presence of antimicrobial agents, (2) existing evolutionary stability of a trait within a species, and (3) the presence or absence of specialized genes that determine the ability of a microorganism to decrease its own metabolism or switch it completely off. This review describes potential advantages of the suggested classification system, which include a better understanding of the relationship between bacterial survival in the presence of antibiotics and molecular mechanisms of cellular metabolism suppression, the opportunity to pinpoint targets to identify a true bacterial resistance profile. The true resistance profile in turn, could be used to develop effective diagnostic and antimicrobial therapy methods, while taking into consideration specific bacterial survival mechanisms.
Collapse
Affiliation(s)
- Igor V Chebotar'
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation; Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russian Federation
| | - Marina A Emelyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation
| | - Julia A Bocharova
- Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russian Federation
| | - Nikolay A Mayansky
- Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russian Federation
| | - Elena E Kopantseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation
| | - Vladimir M Mikhailovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation.
| |
Collapse
|
32
|
Anhydrobiosis in yeast: role of cortical endoplasmic reticulum protein Ist2 in Saccharomyces cerevisiae cells during dehydration and subsequent rehydration. Antonie van Leeuwenhoek 2021; 114:1069-1077. [PMID: 33844120 DOI: 10.1007/s10482-021-01578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Two Saccharomyces cerevisiae strains, BY4741 and BY4741-derived strain lacking the IST2 gene (ist2Δ), were used to characterise the possible role of cortical endoplasmic reticulum (ER) protein Ist2 upon cell dehydration and subsequent rehydration. For the first time, we show that not only protein components of the plasma membrane (PM), but also at least one ER membrane protein (Ist2) play an important role in the maintenance of the viability of yeast cells during dehydration and subsequent rehydration. The low viability of the mutant strain ist2∆ upon dehydration-rehydration stress was related to the lack of Ist2 protein in the ER. We revealed that the PM of ist2∆ strain is not able to completely restore its molecular organisation during reactivation from the state of anhydrobiosis. As the result, the permeability of the PM remains high regardless of the type of reactivation (rapid or gradual rehydration). We conclude that ER protein Ist2 plays an important role in ensuring the stability of molecular organisation and functionality of the PM during dehydration-rehydration stress. These results indicate an important role of ER-PM interactions during cells transition into the state of anhydrobiosis and the subsequent restoration of their physiological activities.
Collapse
|
33
|
New insights into survival strategies of tardigrades. Comp Biochem Physiol A Mol Integr Physiol 2021; 254:110890. [DOI: 10.1016/j.cbpa.2020.110890] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
|
34
|
Abstract
The word "hypoxia" has recently come to the attention of the general public on two occasions, the Nobel Prize in Medicine or Physiology in 2019 and the recent COVID-19 pandemic. In the academic environment, hypoxia is a current topic of research in biology, physiology, and medicine: in October 2020, there were more than 150,000 occurrences of "hypoxia" in the PubMed database. However, the first occurrence is dated to 1945, while the interest for the effects of oxygen lack on the living organisms started in the mid-19th century, when scientists explored high altitude regions and mainly used the terms "anoxia" or "anoxemia." I therefore researched online through multiple databases to look for the first appearance of "hypoxia" and related terms "hypoxemia" and "hypoxybiosis" in scientific literature published in English, German, French, Italian, and Spanish. Viault and Jolyet used "Hypohématose" in 1894, but this term has not been used since. Hypoxybiosis first appeared in 1909 in Germany, then hypoxemia in 1923 in Austria, and hypoxia in 1938 in Holland. It was then exported to the United States where it appeared in 1940 in cardiology and anesthesiology. The clinical distinction between anoxia and hypoxia was clearly defined by Carl Wiggers in 1941. Hypoxia (decrease in oxygen), by essence variable in time and in localization in the body, in contrast with anoxia (absence of oxygen), illustrates the concept of homeodynamics that defines a living organism as a complex system in permanent instability, exposed to environmental and internal perturbations.
Collapse
|
35
|
Bippus AC, Rothwell GW, Stockey RA. Cynodontium luthii sp. nov.: a permineralized moss gametophyte from the Late Cretaceous of the North Slope of Alaska. AMERICAN JOURNAL OF BOTANY 2021; 108:495-504. [PMID: 33650114 DOI: 10.1002/ajb2.1617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Mosses are a major component of Arctic vegetation today, with >500 species known to date. However, the origins of the Arctic moss flora are poorly documented in the fossil record, especially prior to the Pliocene. Here, we present the first anatomically preserved pre-Cenozoic Arctic moss and discuss how the unique biology of bryophytes has facilitated their success in polar environments over geologic time. METHODS A permineralized fossil moss gametophyte within a block of Late Cretaceous terrestrial limestone, collected along the Colville River on the North Slope of Alaska, was studied in serial sections prepared using the cellulose acetate peel technique. RESULTS The moss gametophyte is branched and has leaves with a broad base, narrow blade, and excurrent costa. We describe this fossil as Cynodontium luthii sp. nov., an extinct species of a genus that is known from the High Arctic today. Cynodontium luthii is the oldest evidence of the family Rhabdoweisiaceae (by ≥18 Ma) and reveals that genera of haplolepideous mosses known in the extant Arctic flora also lived in high-latitude temperate deciduous forests during the Late Cretaceous. CONCLUSIONS The occurrence of C. luthii in Cretaceous sediments, together with a rich Pliocene-to-Holocene fossil record of extant moss genera in the High Arctic, suggests that some moss lineages have exploited their poikilohydric, cold- and desiccation-tolerant physiology to live in the region when it experienced both temperate and freezing climates.
Collapse
Affiliation(s)
- Alexander C Bippus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Gar W Rothwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| | - Ruth A Stockey
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, USA
| |
Collapse
|
36
|
Zhou H, He G, Sun Y, Wang J, Wu H, Jin P, Zha Z. Cryptobiosis-inspired assembly of "AND" logic gate platform for potential tumor-specific drug delivery. Acta Pharm Sin B 2021; 11:534-543. [PMID: 33643829 PMCID: PMC7893123 DOI: 10.1016/j.apsb.2020.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/02/2020] [Accepted: 07/18/2020] [Indexed: 01/08/2023] Open
Abstract
Developing tumor-specific drug delivery systems with minimized off-target cargo leakage remains an enduring challenge. In this study, inspired from the natural cryptobiosis explored by certain organisms and stimuli-responsive polyphenol‒metal coordination chemistry, doxorubicin (DOX)-conjugated gelatin nanoparticles with protective shells formed by complex of tannic acid and FeIII (DG@TA-FeIII NPs) were successfully developed as an “AND” logic gate platform for tumor-targeted DOX delivery. Moreover, benefiting from the well-reported photothermal conversion ability of TA-FeIII complex, a synergistic tumor inhibition effect was confirmed by treating 4T1 tumor-bearing mice with DG@TA-FeIII NPs and localized near-infrared (NIR) laser irradiation. As a proof of concept study, this work present a simple strategy for developing “AND” logic gate platforms by coating enzyme-degradable drug conjugates with detachable polyphenol‒metal shells.
Collapse
Affiliation(s)
- Hu Zhou
- Shenzhen Maternity and Child Healthcare Hospital, Shandong University, Shenzhen 518028, China
| | - Gang He
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yanbin Sun
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jingguo Wang
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haitao Wu
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ping Jin
- Shenzhen Maternity and Child Healthcare Hospital, Shandong University, Shenzhen 518028, China
- Corresponding authors.
| | - Zhengbao Zha
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- Corresponding authors.
| |
Collapse
|
37
|
Diversity and Regulation of S-Adenosylmethionine Dependent Methyltransferases in the Anhydrobiotic Midge. INSECTS 2020; 11:insects11090634. [PMID: 32947792 PMCID: PMC7565475 DOI: 10.3390/insects11090634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 01/23/2023]
Abstract
Multiple co-localized paralogs of genes in Polypedilum vanderplanki's genome have strong transcriptional response to dehydration and considered to be a part of adaptation machinery at the larvae stage. One group of such genes represented by L-isoaspartate O-methyltransferases (PIMT). In order to highlight specific role of PIMT paralogization in desiccation tolerance of the larvae we annotated and compared S-adenosylmethionine (SAM) dependent methyltransferases of four insect species. From another side we applied co-expression analysis in desiccation/rehydration time course and showed that PIMT coding genes could be separated into five clusters by expression profile. We found that among Polypedilum vanderplanki's PIMTs only PIMT1 and PIMT2 have enzymatic activity in normal physiological conditions. From in silico analysis of the protein structures we found two highly variable regions outside of the active center, but also amino acid substitutions which may affect SAM stabilization. Overall, in this study we demonstrated features of Polypedilum vanderplanki's PIMT coding paralogs related to different roles in desiccation tolerance of the larvae. Our results also suggest a role of different SAM-methyltransferases in the adaptation, including GSMT, JHAMT, and candidates from other classes, which could be considered in future studies.
Collapse
|
38
|
Yoshida K, Ono F, Chouno T, Perocho BR, Ikegami Y, Shirakigawa N, Ijima H. Cryoprotective enhancing effect of very low concentration of trehalose on the functions of primary rat hepatocytes. Regen Ther 2020; 15:173-179. [PMID: 33426216 PMCID: PMC7770350 DOI: 10.1016/j.reth.2020.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 11/12/2022] Open
Abstract
Introduction Cells have various applications in biomedical research. Cryopreservation is a cell-preservation technique that provides cells for such applications. After cryopreservation, sensitive cells, such as primary hepatocytes, suffer from low viability due to the physical damage caused by ice crystals, highlighting the need for better methods of cryopreservation to improve cell viability. Given the importance of effectively suppressing ice crystal formation to protect cellular structure, trehalose has attracted attention as cryoprotectant based on its ability to inhibit ice crystal formation; however, trehalose induces osmotic stress. Therefore, to establish a cell-cryopreservation technique, it is necessary to provide an optimal balance between the protective and damaging effects of trehalose. Methods In this study, we evaluated the effects of osmotic stress and ice crystal formation on the viability and function of primary rat hepatocytes at wide range of trehalose concentration. Results There was no osmotic stress at very low concentrations (2.6 μM) of trehalose, and 2.6 μM trehalose drives the formation of finer ice crystals, which are less damaging to the cell membrane. Furthermore, we found that the number of viable hepatocytes after cryopreservation were 70% higher under the 2.6 μM trehalose-supplemented conditions than under the dimethyl sulfoxide-supplemented conditions. Moreover, non-cryopreserved cells and cells cryopreserved with trehalose showed comparable intracellular dehydrogenase activity. Conclusions We showed that trehalose at very low concentrations (2.6 μM) improved dramatically viability and liver function of hepatocyte after cryopreservation. Very low concentration of trehalose could suppress ice crystal formation and protect cell structure. There was a correlation between osmotic pressure of trehalose and hepatocytes viability. Very low concentration of trehalose improved viability and liver function of hepatocyte after cryopreservation.
Collapse
Affiliation(s)
- Kozue Yoshida
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city, Fukuoka 819-0395, Japan
| | - Fumiyasu Ono
- Global Innovation Center, Kyushu University, Fukuoka Industry-Academia Symphonicity 4-1, Kyudai-Shinmachi, Nishi-ku, Fukuoka-city, Fukuoka 819-0388, Japan
| | - Takehiro Chouno
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city, Fukuoka 819-0395, Japan
| | - Bual Ronald Perocho
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city, Fukuoka 819-0395, Japan.,Department of Chemical Engineering & Technology, College of Engineering, Mindanao State University-Iligan Institute of Technology, A. Bonifacio Avenue, Tibanga, Iligan City 9200 Philippines
| | - Yasuhiro Ikegami
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city, Fukuoka 819-0395, Japan
| | - Nana Shirakigawa
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city, Fukuoka 819-0395, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city, Fukuoka 819-0395, Japan
| |
Collapse
|
39
|
Gorka M, Cherepanov DA, Semenov AY, Golbeck JH. Control of electron transfer by protein dynamics in photosynthetic reaction centers. Crit Rev Biochem Mol Biol 2020; 55:425-468. [PMID: 32883115 DOI: 10.1080/10409238.2020.1810623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from Rhodobacter sphaeroides and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a "tightening" of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
40
|
Kumar A, Cincotti A, Aparicio S. Insights into the interaction between lipid bilayers and trehalose aqueous solutions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Eukaryotic Communities in Bromeliad Phytotelmata: How Do They Respond to Altitudinal Differences? DIVERSITY 2020. [DOI: 10.3390/d12090326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bromeliad phytotelmata are habitats for different organisms and models for ecological studies. Although poorly known, these environments are widely distributed in tropical ecosystems, harboring cosmopolitan and endemic species. Here, we investigated the diversity of the eukaryotic community in bromeliad phytotelmata considering the influence of altitude. We randomly sampled three bromeliad individuals (twice per season over one year) at four altitudinal strata (20 m, 400 m, 910 m, and 915 m) through a mountain range in southern Brazil. Species richness of phytotelmata community was higher at intermediate altitude while community-wide multivariate analyses revealed differences in phytotelmata communities at each height. Winter was the season with highest community richness, but a peak in summer was observed. Diversity partitioning in different spatial components showed that gamma diversity decreased linearly with altitude, whereas alpha diversity peaked at intermediate altitudes, and beta diversity decreased with height. The relative importance of the components of beta diversity showed different patterns according to the altitude: turnover was more important at intermediate and lower levels, while higher altitude communities were more nested. Our results indicate that differences in height affect diversity patterns of bromeliad phytotelmata communities, which were more diverse at lower altitudes in comparison with more homogeneous communities at higher levels.
Collapse
|
42
|
Gade VR, Traikov S, Oertel J, Fahmy K, Kurzchalia TV. C. elegans possess a general program to enter cryptobiosis that allows dauer larvae to survive different kinds of abiotic stress. Sci Rep 2020; 10:13466. [PMID: 32778668 PMCID: PMC7417548 DOI: 10.1038/s41598-020-70311-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/21/2020] [Indexed: 01/27/2023] Open
Abstract
All organisms encounter abiotic stress but only certain organisms are able to cope with extreme conditions and enter into cryptobiosis (hidden life). Previously, we have shown that C. elegans dauer larvae can survive severe desiccation (anhydrobiosis), a specific form of cryptobiosis. Entry into anhydrobiosis is preceded by activation of a set of biochemical pathways by exposure to mild desiccation. This process called preconditioning induces elevation of trehalose, intrinsically disordered proteins, polyamines and some other pathways that allow the preservation of cellular functionality in the absence of water. Here, we demonstrate that another stress factor, high osmolarity, activates similar biochemical pathways. The larvae that acquired resistance to high osmotic pressure can also withstand desiccation. In addition, high osmolarity significantly increases the biosynthesis of glycerol making larva tolerant to freezing. Thus, to survive abiotic stress, C. elegans activates a combination of genetic and biochemical pathways that serve as a general survival program.
Collapse
Affiliation(s)
- Vamshidhar R Gade
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Sofia Traikov
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Jana Oertel
- Institute of Resource Ecology at the Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Karim Fahmy
- Institute of Resource Ecology at the Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Teymuras V Kurzchalia
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.
| |
Collapse
|
43
|
Vizueta J, Escuer P, Frías-López C, Guirao-Rico S, Hering L, Mayer G, Rozas J, Sánchez-Gracia A. Evolutionary History of Major Chemosensory Gene Families across Panarthropoda. Mol Biol Evol 2020; 37:3601-3615. [DOI: 10.1093/molbev/msaa197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Chemosensory perception is a fundamental biological process of particular relevance in basic and applied arthropod research. However, apart from insects, there is little knowledge of specific molecules involved in this system, which is restricted to a few taxa with uneven phylogenetic sampling across lineages. From an evolutionary perspective, onychophorans (velvet worms) and tardigrades (water bears) are of special interest since they represent the closest living relatives of arthropods, altogether comprising the Panarthropoda. To get insights into the evolutionary origin and diversification of the chemosensory gene repertoire in panarthropods, we sequenced the antenna- and head-specific transcriptomes of the velvet worm Euperipatoides rowelli and analyzed members of all major chemosensory families in representative genomes of onychophorans, tardigrades, and arthropods. Our results suggest that the NPC2 gene family was the only family encoding soluble proteins in the panarthropod ancestor and that onychophorans might have lost many arthropod-like chemoreceptors, including the highly conserved IR25a receptor of protostomes. On the other hand, the eutardigrade genomes lack genes encoding the DEG-ENaC and CD36-sensory neuron membrane proteins, the chemosensory members of which have been retained in arthropods; these losses might be related to lineage-specific adaptive strategies of tardigrades to survive extreme environmental conditions. Although the results of this study need to be further substantiated by an increased taxon sampling, our findings shed light on the diversification of chemosensory gene families in Panarthropoda and contribute to a better understanding of the evolution of animal chemical senses.
Collapse
Affiliation(s)
- Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Paula Escuer
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Cristina Frías-López
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Lars Hering
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Chebotar IV, Bocharova YA, Gur'ev AS, Mayansky NA. [Bacteria survival strategies in contact with antibiotics.]. Klin Lab Diagn 2020; 65:116-121. [PMID: 32159310 DOI: 10.18821/0869-2084-2020-65-2-116-121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 01/12/2023]
Abstract
Bacteria survival in the conditions of antimicrobial therapy is the global problem of health care. This review highlights the complexity and diversity of mechanisms used by bacteria to neutralize antibiotics. To analyze the problem, the search was made using PubMed database, Russian scientific electronic library eLIBRARY, search system of World Health Organization and European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Based on the analysis of survival strategies in the conditions of antibiotics action we propose new classification of resistant bacteria. Classification criteria include the ability to divide under antibiotics action, the survival strategies application as a species trait, the presence of specialized genes determining the transition to the state with reduced/stopped metabolism. Two main groups are resistant bacteria and bacteria with reduced/stopped metabolism, which survive but do not divide in the presence of antibiotic. The first group includes two subgroups: bacteria with intrinsic and adaptive resistance. The second group includes (1) bacteria with specialized genes responsible for cell transformation to the state with reduced/stopped metabolism, (2) bacteria transforming to the state with reduced/stopped metabolism without involvement of special genes, and (3) cell forms with special morphology - spores, cysts and cyst-like cells. We described the usefulness of proposed classification including improved understanding of the correlation between bacteria survival in the presence of antibiotics and molecular mechanism of cell metabolism inhibition, presence or absence of targets for using molecular-genetic methods of bacteria resistant variant determination, the possibility for development of rational antimicrobial therapy methods.
Collapse
Affiliation(s)
- I V Chebotar
- Pirogov Russian National Research Medical University, 119571, Moscow
| | - Y A Bocharova
- National Medical Research Center for Children's Health, 119296, Moscow
| | - A S Gur'ev
- M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI), 129110, Moscow.,Medtechnopark Ltd., 117292, Moscow, Russia
| | - N A Mayansky
- Pirogov Russian National Research Medical University, 119571, Moscow
| |
Collapse
|
45
|
Klapshin YP, Solonina IA, Rodnikova MN, Kiselev MR, Khoroshilov AV, Makaev SV. Phase diagram of the water–monoethanolamine system. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Yamada TG, Hiki Y, Hiroi NF, Shagimardanova E, Gusev O, Cornette R, Kikawada T, Funahashi A. Identification of a master transcription factor and a regulatory mechanism for desiccation tolerance in the anhydrobiotic cell line Pv11. PLoS One 2020; 15:e0230218. [PMID: 32191739 PMCID: PMC7082025 DOI: 10.1371/journal.pone.0230218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/24/2020] [Indexed: 01/10/2023] Open
Abstract
Water is essential for living organisms. Terrestrial organisms are incessantly exposed to the stress of losing water, desiccation stress. Avoiding the mortality caused by desiccation stress, many organisms acquired molecular mechanisms to tolerate desiccation. Larvae of the African midge, Polypedilum vanderplanki, and its embryonic cell line Pv11 tolerate desiccation stress by entering an ametabolic state, anhydrobiosis, and return to active life after rehydration. The genes related to desiccation tolerance have been comprehensively analyzed, but transcriptional regulatory mechanisms to induce these genes after desiccation or rehydration remain unclear. Here, we comprehensively analyzed the gene regulatory network in Pv11 cells and compared it with that of Drosophila melanogaster, a desiccation sensitive species. We demonstrated that nuclear transcription factor Y subunit gamma-like, which is important for drought stress tolerance in plants, and its transcriptional regulation of downstream positive feedback loops have a pivotal role in regulating various anhydrobiosis-related genes. This study provides an initial insight into the systemic mechanism of desiccation tolerance.
Collapse
Affiliation(s)
- Takahiro G. Yamada
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Yusuke Hiki
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Noriko F. Hiroi
- Faculty of Pharmaceutical Science, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | | | - Oleg Gusev
- Kazan Federal University, Kazan, Russia
- RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Richard Cornette
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takahiro Kikawada
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- * E-mail: (TK); (AF)
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
- * E-mail: (TK); (AF)
| |
Collapse
|
47
|
Bhatia T, Christ S, Steinkühler J, Dimova R, Lipowsky R. Simple sugars shape giant vesicles into multispheres with many membrane necks. SOFT MATTER 2020; 16:1246-1258. [PMID: 31912078 DOI: 10.1039/c9sm01890e] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Simple sugars such as glucose and sucrose are ubiquitous in all organisms. One remarkable property of these small solutes is their ability to protect biomembranes against dehydration damage. This property, which reflects the underlying sugar-lipid interactions, has been intensely studied for lipid bilayers interacting with a single sugar at low hydration. Here, we use giant vesicles to investigate fully hydrated lipid membranes in contact with two sugars, glucose and sucrose. The vesicles were osmotically balanced, with the same total sugar concentration in the interior and exterior aqueous solutions. However, the two solutions differed in their composition: the interior solution contained only sucrose whereas the exterior one contained primarily glucose. This sugar asymmetry generated a striking variety of multispherical or "multi-balloon" vesicle shapes. Each multisphere involved only a single membrane that formed several spherical segments, which were connected by narrow, hourglass-shaped membrane necks. These morphologies revealed that the sugar-lipid interactions generated a significant spontaneous curvature with a magnitude of about 1 μm-1. Such a spontaneous curvature can be generated both by depletion and by adsorption layers of the sugar molecules arising from effectively repulsive and attractive sugar-lipid interactions. All multispherical shapes are stable over a wide range of parameters, with a substantial overlap between the different stability regimes, reflecting the rugged free energy landscape in shape space. One challenge for future studies is to identify pathways within this landscape that allow us to open and close the membrane necks of these shapes in a controlled and reliable manner. We will then be able to apply these multispheres as metamorphic chambers for chemical reactions and nanoparticle growth.
Collapse
Affiliation(s)
- Tripta Bhatia
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | | | | | | | | |
Collapse
|
48
|
Olgenblum GI, Sapir L, Harries D. Properties of Aqueous Trehalose Mixtures: Glass Transition and Hydrogen Bonding. J Chem Theory Comput 2020; 16:1249-1262. [PMID: 31917927 PMCID: PMC7467637 DOI: 10.1021/acs.jctc.9b01071] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Trehalose is a naturally occurring disaccharide known to remarkably stabilize biomacromolecules in the biologically active state. The stabilizing effect is typically observed over a large concentration range and affects many macromolecules including proteins, lipids, and DNA. Of special interest is the transition from aqueous solution to the dense and highly concentrated glassy state of trehalose that has been implicated in bioadaptation of different organisms toward desiccation stress. Although several mechanisms have been suggested to link the structure of the low water content glass with its action as an exceptional stabilizer, studies are ongoing to resolve which are most pertinent. Specifically, the role that hydrogen bonding plays in the formation of the glass is not well resolved. Here we model aqueous trehalose mixtures over a wide concentration range, using molecular dynamics simulations with two available force fields. Both force fields indicate glass transition temperatures and osmotic pressures that are close to experimental values, particularly at high trehalose contents. We develop and employ a methodology that allows us to analyze the thermodynamics of hydrogen bonds in simulations at different water contents and temperatures. Remarkably, this analysis is able to link the liquid to glass transition with changes in hydrogen bond characteristics. Most notably, the onset of the glassy state can be quantitatively related to the transition from weakly to strongly correlated hydrogen bonds. Our findings should help resolve the properties of the glass and the mechanisms of its formation in the presence of added macromolecules.
Collapse
Affiliation(s)
- Gil I Olgenblum
- Institute of Chemistry, the Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience & Nanotechnology , The Hebrew University , Jerusalem 9190401 , Israel
| | - Liel Sapir
- Department of Mechanical Engineering and Materials Science , Duke University , Durham , North Carolina 27708 , United States
| | - Daniel Harries
- Institute of Chemistry, the Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience & Nanotechnology , The Hebrew University , Jerusalem 9190401 , Israel
| |
Collapse
|
49
|
Saito R, Koizumi R, Sakai T, Shimizu T, Ono T, Sogame Y. Gamma Radiation Tolerance and Protein Carbonylation Caused by Irradiation of Resting Cysts in the Free-living Ciliated Protist Colpoda cucullus. ACTA PROTOZOOL 2020. [DOI: 10.4467/16890027ap.20.006.12674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ciliate Colpoda cucullus forms resting cysts to survive unfavorable environmental stresses. In this study, we have shown that Colpoda resting cysts survived exposure to a gamma radiation dose of 4000 Gy, although vegetative cells were killed by 500 Gy. After 4000 Gy irradiation, more than 90% of resting cysts and approximately 70% of dry cysts could excyst to form vegetative cells. In both cases, the excystment gradually increased after the induction of excystment. In addition, we also showed that protein carbonylation level was increased by gamma irradiation, but decreased by incubation in the cyst state. These results indicated that cell damage was repaired in resting cysts. Colpoda probably developed tolerance to gamma radiation by forming resting cysts as a strategy for growth in terrestrial environments, as part of contending with the stress due to reactive oxygen species caused by desiccation.
Collapse
|
50
|
Rikkinen J, Grimaldi DA, Schmidt AR. Morphological stasis in the first myxomycete from the Mesozoic, and the likely role of cryptobiosis. Sci Rep 2019; 9:19730. [PMID: 31874965 PMCID: PMC6930221 DOI: 10.1038/s41598-019-55622-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/30/2019] [Indexed: 01/03/2023] Open
Abstract
Myxomycetes constitute a group within the Amoebozoa well known for their motile plasmodia and morphologically complex fruiting bodies. One obstacle hindering studies of myxomycete evolution is that their fossils are exceedingly rare, so evolutionary analyses of this supposedly ancient lineage of amoebozoans are restricted to extant taxa. Molecular data have significantly advanced myxomycete systematics, but the evolutionary history of individual lineages and their ecological adaptations remain unknown. Here, we report exquisitely preserved myxomycete sporocarps in amber from Myanmar, ca. 100 million years old, one of the few fossil myxomycetes, and the only definitive Mesozoic one. Six densely-arranged stalked sporocarps were engulfed in tree resin while young, with almost the entire spore mass still inside the sporotheca. All morphological features are indistinguishable from those of the modern, cosmopolitan genus Stemonitis, demonstrating that sporocarp morphology has been static since at least the mid-Cretaceous. The ability of myxomycetes to develop into dormant stages, which can last years, may account for the phenotypic stasis between living Stemonitis species and this fossil one, similar to the situation found in other organisms that have cryptobiosis. We also interpret Stemonitis morphological stasis as evidence of strong environmental selection favouring the maintenance of adaptations that promote wind dispersal.
Collapse
Affiliation(s)
- Jouko Rikkinen
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, 00014, Helsinki, Finland. .,Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00014, Helsinki, Finland.
| | - David A Grimaldi
- Division of Invertebrate Zoology, American Museum of Natural History, New York, 10024-5192, USA
| | - Alexander R Schmidt
- Department of Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077, Göttingen, Germany.
| |
Collapse
|