1
|
Mela AP, Glass NL. Permissiveness and competition within and between Neurospora crassa syncytia. Genetics 2023; 224:iyad112. [PMID: 37313736 PMCID: PMC10411585 DOI: 10.1093/genetics/iyad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
A multinucleate syncytium is a common growth form in filamentous fungi. Comprehensive functions of the syncytial state remain unknown, but it likely allows for a wide range of adaptations to enable filamentous fungi to coordinate growth, reproduction, responses to the environment, and to distribute nuclear and cytoplasmic elements across a colony. Indeed, the underlying mechanistic details of how syncytia regulate cellular and molecular processes spatiotemporally across a colony are largely unexplored. Here, we implemented a strategy to analyze the relative fitness of different nuclear populations in syncytia of Neurospora crassa, including nuclei with loss-of-function mutations in essential genes, based on production of multinucleate asexual spores using flow cytometry of pairings between strains with differentially fluorescently tagged nuclear histones. The distribution of homokaryotic and heterokaryotic asexual spores in pairings was assessed between different auxotrophic and morphological mutants, as well as with strains that were defective in somatic cell fusion or were heterokaryon incompatible. Mutant nuclei were compartmentalized into both homokaryotic and heterokaryotic asexual spores, a type of bet hedging for maintenance and evolution of mutational events, despite disadvantages to the syncytium. However, in pairings between strains that were blocked in somatic cell fusion or were heterokaryon incompatible, we observed a "winner-takes-all" phenotype, where asexual spores originating from paired strains were predominantly one genotype. These data indicate that syncytial fungal cells are permissive and tolerate a wide array of nuclear functionality, but that cells/colonies that are unable to cooperate via syncytia formation actively compete for resources.
Collapse
Affiliation(s)
- Alexander P Mela
- The Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA 94720, USA
| | - N Louise Glass
- The Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA 94720, USA
- The Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Elserafy M, El-Shiekh I, Fleifel D, Atteya R, AlOkda A, Abdrabbou MM, Nasr M, El-Khamisy SF. A role for Rad5 in ribonucleoside monophosphate (rNMP) tolerance. Life Sci Alliance 2021; 4:4/10/e202000966. [PMID: 34407997 PMCID: PMC8380674 DOI: 10.26508/lsa.202000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/24/2021] [Accepted: 07/03/2021] [Indexed: 11/29/2022] Open
Abstract
Ribonucleoside incorporation in genomic DNA poses a significant threat to genomic integrity. Here, we describe how cells tolerate this threat and discuss implications for cancer therapeutics. Ribonucleoside monophosphate (rNMP) incorporation in genomic DNA poses a significant threat to genomic integrity. In addition to repair, DNA damage tolerance mechanisms ensure replication progression upon encountering unrepaired lesions. One player in the tolerance mechanism is Rad5, which is an E3 ubiquitin ligase and helicase. Here, we report a new role for yeast Rad5 in tolerating rNMP incorporation, in the absence of the bona fide ribonucleotide excision repair pathway via RNase H2. This role of Rad5 is further highlighted after replication stress induced by hydroxyurea or by increasing rNMP genomic burden using a mutant DNA polymerase (Pol ε - Pol2-M644G). We further demonstrate the importance of the ATPase and ubiquitin ligase domains of Rad5 in rNMP tolerance. These findings suggest a similar role for the human Rad5 homologues helicase-like transcription factor (HLTF) and SNF2 Histone Linker PHD RING Helicase (SHPRH) in rNMP tolerance, which may impact the response of cancer cells to replication stress-inducing therapeutics.
Collapse
Affiliation(s)
- Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Iman El-Shiekh
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Dalia Fleifel
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Reham Atteya
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Abdelrahman AlOkda
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed M Abdrabbou
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mostafa Nasr
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Sherif F El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt .,The Healthy Lifespan Institute and Institute of Neuroscience, School of Bioscience, University of Sheffield, South Yorkshire, UK.,The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, UK.,Center for Genomics, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
3
|
Communal living: the role of polyploidy and syncytia in tissue biology. Chromosome Res 2021; 29:245-260. [PMID: 34075512 PMCID: PMC8169410 DOI: 10.1007/s10577-021-09664-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 01/22/2023]
Abstract
Multicellular organisms are composed of tissues with diverse cell sizes. Whether a tissue primarily consists of numerous, small cells as opposed to fewer, large cells can impact tissue development and function. The addition of nuclear genome copies within a common cytoplasm is a recurring strategy to manipulate cellular size within a tissue. Cells with more than two genomes can exist transiently, such as in developing germlines or embryos, or can be part of mature somatic tissues. Such nuclear collectives span multiple levels of organization, from mononuclear or binuclear polyploid cells to highly multinucleate structures known as syncytia. Here, we review the diversity of polyploid and syncytial tissues found throughout nature. We summarize current literature concerning tissue construction through syncytia and/or polyploidy and speculate why one or both strategies are advantageous.
Collapse
|
4
|
Geisinger JM, Stearns T. CRISPR/Cas9 treatment causes extended TP53-dependent cell cycle arrest in human cells. Nucleic Acids Res 2020; 48:9067-9081. [PMID: 32687165 PMCID: PMC7498335 DOI: 10.1093/nar/gkaa603] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/30/2022] Open
Abstract
While the mechanism of CRISPR/Cas9 cleavage is understood, the basis for the large variation in mutant recovery for a given target sequence between cell lines is much less clear. We hypothesized that this variation may be due to differences in how the DNA damage response affects cell cycle progression. We used incorporation of EdU as a marker of cell cycle progression to analyze the response of several human cell lines to CRISPR/Cas9 treatment with a single guide directed to a unique locus. Cell lines with functionally wild-type TP53 exhibited higher levels of cell cycle arrest compared to lines without. Chemical inhibition of TP53 protein combined with TP53 and RB1 transcript silencing alleviated induced arrest in TP53+/+ cells. Using dCas9, we determined this arrest is driven in part by Cas9 binding to DNA. Additionally, wild-type Cas9 induced fewer 53BP1 foci in TP53+/+ cells compared to TP53−/− cells and DD-Cas9, suggesting that differences in break sensing are responsible for cell cycle arrest variation. We conclude that CRISPR/Cas9 treatment induces a cell cycle arrest dependent on functional TP53 as well as Cas9 DNA binding and cleavage. Our findings suggest that transient inhibition of TP53 may increase genome editing recovery in primary and TP53+/+ cell lines.
Collapse
Affiliation(s)
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305, USA.,Department of Genetics, Stanford University Medical School, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Gemble S, Basto R. CHRONOCRISIS: When Cell Cycle Asynchrony Generates DNA Damage in Polyploid Cells. Bioessays 2020; 42:e2000105. [PMID: 32885500 DOI: 10.1002/bies.202000105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/19/2020] [Indexed: 12/16/2022]
Abstract
Polyploid cells contain multiple copies of all chromosomes. Polyploidization can be developmentally programmed to sustain tissue barrier function or to increase metabolic potential and cell size. Programmed polyploidy is normally associated with terminal differentiation and poor proliferation capacity. Conversely, non-programmed polyploidy can give rise to cells that retain the ability to proliferate. This can fuel rapid genome rearrangements and lead to diseases like cancer. Here, the mechanisms that generate polyploidy are reviewed and the possible challenges upon polyploid cell division are discussed. The discussion is framed around a recent study showing that asynchronous cell cycle progression (an event that is named "chronocrisis") of different nuclei from a polyploid cell can generate DNA damage at mitotic entry. The potential mechanisms explaining how mitosis in non-programmed polyploid cells can generate abnormal karyotypes and genetic instability are highlighted.
Collapse
Affiliation(s)
- Simon Gemble
- Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, Paris, 75005, France
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, Paris, 75005, France
| |
Collapse
|
6
|
Tartakoff AM, Dulce D, Landis E. Delayed Encounter of Parental Genomes Can Lead to Aneuploidy in Saccharomyces cerevisiae. Genetics 2018; 208:139-151. [PMID: 29150427 PMCID: PMC5753854 DOI: 10.1534/genetics.117.300289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022] Open
Abstract
We have investigated an extreme deviation from the norm of genome unification that occurs during mating in the yeast, Saccharomyces cerevisiae This deviation is encountered when yeast that carry a mutation of the spindle pole body protein, Kar1, are mated with wildtype cells. In this case, nuclear fusion is delayed and the genotypes of a fraction of zygotic progeny suggest that chromosomes have "transferred" between the parental nuclei in zygotes. This classic, yet bizarre, occurrence is routinely used to generate aneuploid (disomic) yeast. [kar1 × wt] zygotes, like [wt × wt] zygotes, initially have a single spindle pole body per nucleus. Unlike [wt × wt] zygotes, in [kar1 × wt] zygotes, the number of spindle pole bodies per nucleus then can increase before nuclear fusion. When such nuclei fuse, the spindle pole bodies do not coalesce efficiently, and subsets of spindle pole bodies and centromeres can enter buds. The genotypes of corresponding biparental progeny show evidence of extensive haplotype-biased chromosome loss, and can also include heterotypic chromosomal markers. They thus allow rationalization of chromosome "transfer" as being due to an unanticipated yet plausible mechanism. Perturbation of the unification of genomes likely contributes to infertility in other organisms.
Collapse
Affiliation(s)
- Alan Michael Tartakoff
- Pathology Department and Cell Biology Program, Case Western Reserve University, Cleveland, Ohio 44106
| | - David Dulce
- Pathology Department and Cell Biology Program, Case Western Reserve University, Cleveland, Ohio 44106
| | - Elizabeth Landis
- Pathology Department and Cell Biology Program, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
7
|
DNA Damage Response Checkpoint Activation Drives KP1019 Dependent Pre-Anaphase Cell Cycle Delay in S. cerevisiae. PLoS One 2015; 10:e0138085. [PMID: 26375390 PMCID: PMC4572706 DOI: 10.1371/journal.pone.0138085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
Careful regulation of the cell cycle is required for proper replication, cell division, and DNA repair. DNA damage–including that induced by many anticancer drugs–results in cell cycle delay or arrest, which can allow time for repair of DNA lesions. Although its molecular mechanism of action remains a matter of debate, the anticancer ruthenium complex KP1019 has been shown to bind DNA in biophysical assays and to damage DNA of colorectal and ovarian cancer cells in vitro. KP1019 has also been shown to induce mutations and induce cell cycle arrest in Saccharomyces cerevisiae, suggesting that budding yeast can serve as an appropriate model for characterizing the cellular response to the drug. Here we use a transcriptomic approach to verify that KP1019 induces the DNA damage response (DDR) and find that KP1019 dependent expression of HUG1 requires the Dun1 checkpoint; both consistent with KP1019 DDR in budding yeast. We observe a robust KP1019 dependent delay in cell cycle progression as measured by increase in large budded cells, 2C DNA content, and accumulation of Pds1 which functions to inhibit anaphase. Importantly, we also find that deletion of RAD9, a gene required for the DDR, blocks drug-dependent changes in cell cycle progression, thereby establishing a causal link between the DDR and phenotypes induced by KP1019. Interestingly, yeast treated with KP1019 not only delay in G2/M, but also exhibit abnormal nuclear position, wherein the nucleus spans the bud neck. This morphology correlates with short, misaligned spindles and is dependent on the dynein heavy chain gene DYN1. We find that KP1019 creates an environment where cells respond to DNA damage through nuclear (transcriptional changes) and cytoplasmic (motor protein activity) events.
Collapse
|
8
|
Roberts SE, Gladfelter AS. Nuclear autonomy in multinucleate fungi. Curr Opin Microbiol 2015; 28:60-5. [PMID: 26379197 DOI: 10.1016/j.mib.2015.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 11/30/2022]
Abstract
Within many fungal syncytia, nuclei behave independently despite sharing a common cytoplasm. Creation of independent nuclear zones of control in one cell is paradoxical considering random protein synthesis sites, predicted rapid diffusion rates, and well-mixed cytosol. In studying the surprising fungal nuclear autonomy, new principles of cellular organization are emerging. We discuss the current understanding of nuclear autonomy, focusing on asynchronous cell cycle progression where most work has been directed. Mechanisms underlying nuclear autonomy are diverse including mRNA localization, ploidy variability, and nuclear spacing control. With the challenges fungal syncytia face due to cytoplasmic size and shape, they serve as powerful models for uncovering new subcellular organization modes, variability sources among isogenic uninucleate cells, and the evolution of multicellularity.
Collapse
Affiliation(s)
- Samantha E Roberts
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States
| | - Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States.
| |
Collapse
|
9
|
Life as a moving fluid: fate of cytoplasmic macromolecules in dynamic fungal syncytia. Curr Opin Microbiol 2015; 26:116-22. [PMID: 26226449 DOI: 10.1016/j.mib.2015.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/06/2015] [Indexed: 02/01/2023]
Abstract
In fungal syncytia dozens, or even millions of nuclei may coexist in a single connected cytoplasm. Recent discoveries have exposed some of the adaptations that enable fungi to marshall these nuclei to produce complex coordinated behaviors, including cell growth, nuclear division, secretion and communication. In addition to shedding light on the principles by which syncytia (including embryos and osteoplasts) are organized, fungal adaptations for dealing with internal genetic diversity and physically dynamic cytoplasm may provide mechanistic insights into how cells generally are carved into different functional compartments. In this review we focus on enumerating the physical constraints associated with maintaining macromolecular distributions within a fluctuating and often flowing cytoplasmic interior.
Collapse
|
10
|
Neurospora Heterokaryons with Complementary Duplications and Deficiencies in Their Constituent Nuclei Provide an Approach to Identify Nucleus-Limited Genes. G3-GENES GENOMES GENETICS 2015; 5:1263-72. [PMID: 25897010 PMCID: PMC4478554 DOI: 10.1534/g3.115.017616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Introgression is the transfer of genes or genomic regions from one species into another via hybridization and back-crosses. We have introgressed four translocations (EB4, IBj5, UK14-1, and B362i) from Neurospora crassa into N. tetrasperma. This enabled us to construct two general types of heterokaryons with mat-A and mat-a nuclei of different genotypes: one type is [T + N] (with one translocation nucleus and one normal sequence nucleus), and the other is [Dp + Df] (with one nucleus carrying a duplication of the translocation region and the other being deleted for the translocation region). Self-crossing these heterokaryons again produced [T + N] and [Dp + Df] progeny. From conidia (vegetative spores) produced by the heterokaryotic mycelia, we obtained self-fertile (heterokaryotic) and self-sterile (homokaryotic) derivative strains. [T + N] heterokaryons produced homokaryotic conidial derivatives of both mating types, but [Dp + Df] heterokaryons produced viable conidial homokaryons of only the mating type of the Dp nucleus. All four [T + N] heterokaryons and three [Dp + Df] heterokaryons produced both self-sterile and self-fertile conidial derivatives, but the [Dp(B362i) + Df(B362i)] heterokaryons produced only self-sterile ones. Conceivably, the Df(B362i) nuclei may be deleted for a nucleus-limited gene required for efficient mitosis or nuclear division, and whose deficit is not complemented by the neighboring Dp(B362i) nuclei. A cross involving Dp(EB4) showed repeat-induced point mutation (RIP). Because RIP can occur in self-crosses of [Dp + Df] but not [T + N] heterokaryons, RIP alteration of a translocated segment would depend on the relative numbers of [Dp + Df] vs. [T + N] ancestors.
Collapse
|
11
|
Anderson CA, Roberts S, Zhang H, Kelly CM, Kendall A, Lee C, Gerstenberger J, Koenig AB, Kabeche R, Gladfelter AS. Ploidy variation in multinucleate cells changes under stress. Mol Biol Cell 2015; 26:1129-40. [PMID: 25631818 PMCID: PMC4357512 DOI: 10.1091/mbc.e14-09-1375] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aneuploidy and polyploidy can be beneficial or deleterious, depending on the context. In multinucleate fungal cells, mixed polyploidies can coexist in a common cytoplasm, but stress favors a return to haploid nuclei. Very low levels of aneuploidy are present, suggesting that there is limited buffering of ploidy variation despite a common cytosol. Ploidy variation is found in contexts as diverse as solid tumors, drug resistance in fungal infection, and normal development. Altering chromosome or genome copy number supports adaptation to fluctuating environments but is also associated with fitness defects attributed to protein imbalances. Both aneuploidy and polyploidy can arise from multinucleate states after failed cytokinesis or cell fusion. The consequences of ploidy variation in syncytia are difficult to predict because protein imbalances are theoretically buffered by a common cytoplasm. We examined ploidy in a naturally multinucleate fungus, Ashbya gossypii. Using integrated lac operator arrays, we found that chromosome number varies substantially among nuclei sharing a common cytoplasm. Populations of nuclei range from 1N to >4N, with different polyploidies in the same cell and low levels of aneuploidy. The degree of ploidy variation increases as cells age. In response to cellular stress, polyploid nuclei diminish and haploid nuclei predominate. These data suggest that mixed ploidy is tolerated in these syncytia; however, there may be costs associated with variation as stress homogenizes the genome content of nuclei. Furthermore, the results suggest that sharing of gene products is limited, and thus there is incomplete buffering of ploidy variation despite a common cytosol.
Collapse
Affiliation(s)
- Cori A Anderson
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Samantha Roberts
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Huaiying Zhang
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Courtney M Kelly
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Alexxy Kendall
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - ChangHwan Lee
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | | | - Aaron B Koenig
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Ruth Kabeche
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
12
|
|
13
|
DNA damage checkpoint triggers autophagy to regulate the initiation of anaphase. Proc Natl Acad Sci U S A 2012; 110:E41-9. [PMID: 23169651 DOI: 10.1073/pnas.1218065109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Budding yeast cells suffering a single unrepaired double-strand break (DSB) trigger the Mec1 (ATR)-dependent DNA damage response that causes them to arrest before anaphase for 12-15 h. Here we find that hyperactivation of the cytoplasm-to-vacuole (CVT) autophagy pathway causes the permanent G2/M arrest of cells with a single DSB that is reflected in the nuclear exclusion of both Esp1 and Pds1. Transient relocalization of Pds1 is also seen in wild-type cells lacking vacuolar protease activity after induction of a DSB. Arrest persists even as the DNA damage-dependent phosphorylation of Rad53 diminishes. Permanent arrest can be overcome by blocking autophagy, by deleting the vacuolar protease Prb1, or by driving Esp1 into the nucleus with a SV40 nuclear localization signal. Autophagy in response to DNA damage can be induced in three different ways: by deleting the Golgi-associated retrograde protein complex (GARP), by adding rapamycin, or by overexpression of a dominant ATG13-8SA mutation.
Collapse
|
14
|
Heterogeneity in mitochondrial morphology and membrane potential is independent of the nuclear division cycle in multinucleate fungal cells. EUKARYOTIC CELL 2012; 11:353-67. [PMID: 22267774 DOI: 10.1128/ec.05257-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the multinucleate filamentous fungus Ashbya gossypii, nuclei divide asynchronously in a common cytoplasm. We hypothesize that the division cycle machinery has a limited zone of influence in the cytoplasm to promote nuclear autonomy. Mitochondria in cultured mammalian cells undergo cell cycle-specific changes in morphology and membrane potential and therefore can serve as a reporter of the cell cycle state of the cytoplasm. To evaluate if the cell cycle state of nuclei in A. gossypii can influence the adjacent cytoplasm, we tested whether local mitochondrial morphology and membrane potential in A. gossypii are associated with the division state of a nearby nucleus. We found that mitochondria exhibit substantial heterogeneity in both morphology and membrane potential within a single multinucleated cell. Notably, differences in mitochondrial morphology or potential are not associated with a specific nuclear division state. Heterokaryon mutants with a mixture of nuclei with deletions of and wild type for the mitochondrial fusion/fission genes DNM1 and FZO1 exhibit altered mitochondrial morphology and severe growth and sporulation defects. This dominant effect suggests that the gene products may be required locally near their expression site rather than diffusing widely in the cell. Our results demonstrate that mitochondrial dynamics are essential in these large syncytial cells, yet morphology and membrane potential are independent of nuclear cycle state.
Collapse
|
15
|
Nair DR, D'Ausilio CA, Occhipinti P, Borsuk ME, Gladfelter AS. A conserved G₁ regulatory circuit promotes asynchronous behavior of nuclei sharing a common cytoplasm. Cell Cycle 2010; 9:3771-9. [PMID: 20930528 DOI: 10.4161/cc.9.18.12999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Synthesis and accumulation of conserved cell cycle regulators such as cyclins are thought to promote G₁/S and G₂/M transitions in most eukaryotes. When cells at different stages of the cell cycle are fused to form heterokaryons, the shared complement of regulators in the cytoplasm induces the nuclei to become synchronized. However, multinucleate fungi often display asynchronous nuclear division cycles, even though the nuclei inhabit a shared cytoplasm. Similarly, checkpoints can induce nuclear asynchrony in multinucleate cells by arresting only the nucleus that receives damage. The cell biological basis for nuclear autonomy in a common cytoplasm is not known. Here we show that in the filamentous fungus Ashbya gossypii, sister nuclei born from one mitosis immediately lose synchrony in the subsequent G₁ interval. A conserved G₁ transcriptional regulatory circuit involving the Rb-analogue Whi5p promotes the asynchronous behavior yet Whi5 protein is uniformly distributed among nuclei throughout the cell cycle. The homologous Whi5p circuit in S. cerevisiae employs positive feedback to promote robust and coherent entry into the cell cycle. We propose that positive feedback in this same circuit generates timing variability in a multinucleate cell. These unexpected findings indicate that a regulatory program whose products (mRNA transcripts) are translated in a common cytoplasm can nevertheless promote variability in the individual behavior of sister nuclei.
Collapse
|
16
|
Herring M, Davenport N, Stephan K, Campbell S, White R, Kark J, Wolkow TD. Fission yeast Rad26ATRIP delays spindle-pole-body separation following interphase microtubule damage. J Cell Sci 2010; 123:1537-45. [PMID: 20375067 DOI: 10.1242/jcs.049478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conserved fission yeast protein Rad26(ATRIP) preserves genomic stability by occupying central positions within DNA-structure checkpoint pathways. It is also required for proper cellular morphology, chromosome stability and following treatment with microtubule poisons. Here, we report that mutation of a putative nuclear export sequence in Rad26(ATRIP) disrupted its cytoplasmic localization in untreated cells and conferred abnormal cellular morphology, minichromosome instability and sensitivity to microtubule poisons without affecting DNA-structure checkpoint signaling. This mutation also disrupted a delay to spindle-pole-body separation that occurred following microtubule damage in G(2). Together, these results demonstrate that Rad26(ATRIP) participates in two genetically defined checkpoint pathways--one that responds to genomic damage and the other to microtubule damage. This response to microtubule damage delays spindle-pole-body separation and, in doing so, might preserve both cellular morphology and chromosome stability.
Collapse
Affiliation(s)
- Matthew Herring
- Department of Biology, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Putnam CD, Jaehnig EJ, Kolodner RD. Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair (Amst) 2009; 8:974-82. [PMID: 19477695 DOI: 10.1016/j.dnarep.2009.04.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The DNA damage and replication checkpoints are believed to primarily slow the progression of the cell cycle to allow DNA repair to occur. Here we summarize known aspects of the Saccharomyces cerevisiae checkpoints including how these responses are integrated into downstream effects on the cell cycle, chromatin, DNA repair, and cytoplasmic targets. Analysis of the transcriptional response demonstrates that it is far more complex and less relevant to the repair of DNA damage than the bacterial SOS response. We also address more speculative questions regarding potential roles of the checkpoint during the normal S-phase and how current evidence hints at a checkpoint activation mechanism mediated by positive feedback that amplifies initial damage signals above a minimum threshold.
Collapse
Affiliation(s)
- Christopher D Putnam
- Ludwig Institute for Cancer Research, Department of Medicine and Cancer Center, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669, United States.
| | | | | |
Collapse
|
18
|
Royou A, McCusker D, Kellogg DR, Sullivan W. Grapes(Chk1) prevents nuclear CDK1 activation by delaying cyclin B nuclear accumulation. ACTA ACUST UNITED AC 2008; 183:63-75. [PMID: 18824564 PMCID: PMC2557043 DOI: 10.1083/jcb.200801153] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Entry into mitosis is characterized by a dramatic remodeling of nuclear and cytoplasmic compartments. These changes are driven by cyclin-dependent kinase 1 (CDK1) activity, yet how cytoplasmic and nuclear CDK1 activities are coordinated is unclear. We injected cyclin B (CycB) into Drosophila melanogaster embryos during interphase of syncytial cycles and monitored effects on cytoplasmic and nuclear mitotic events. In untreated embryos or embryos arrested in interphase with a protein synthesis inhibitor, injection of CycB accelerates nuclear envelope breakdown and mitotic remodeling of the cytoskeleton. Upon activation of the Grapes(checkpoint kinase 1) (Grp(Chk1))-dependent S-phase checkpoint, increased levels of CycB drives cytoplasmic but not nuclear mitotic events. Grp(Chk1) prevents nuclear CDK1 activation by delaying CycB nuclear accumulation through Wee1-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Anne Royou
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | | | | | | |
Collapse
|
19
|
Dotiwala F, Haase J, Arbel-Eden A, Bloom K, Haber JE. The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage. Proc Natl Acad Sci U S A 2007; 104:11358-63. [PMID: 17586685 PMCID: PMC1896138 DOI: 10.1073/pnas.0609636104] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A single HO endonuclease-induced double-strand break (DSB) is sufficient to activate the DNA damage checkpoint and cause Saccharomyces cells to arrest at G(2)/M for 12-14 h, after which cells adapt to the presence of the DSB and resume cell cycle progression. The checkpoint signal leading to G(2)/M arrest was previously shown to be nuclear-limited. Cells lacking ATR-like Mec1 exhibit no DSB-induced cell cycle delay; however, cells lacking Mec1's downstream protein kinase targets, Rad53 or Chk1, still have substantial G(2)/M delay, as do cells lacking securin, Pds1. This delay is eliminated only in the triple mutant chk1Delta rad53Delta pds1Delta, suggesting that Rad53 and Chk1 control targets other than the stability of securin in enforcing checkpoint-mediated cell cycle arrest. The G(2)/M arrest in rad53Delta and chk1Delta revealed a unique cytoplasmic phenotype in which there are frequent dynein-dependent excursions of the nucleus through the bud neck, without entering anaphase. Such excursions are infrequent in wild-type arrested cells, but have been observed in cells defective in mitotic exit, including the semidominant cdc5-ad mutation. We suggest that Mec1-dependent checkpoint signaling through Rad53 and Chk1 includes the repression of nuclear movements that are normally associated with the execution of anaphase.
Collapse
Affiliation(s)
- Farokh Dotiwala
- *Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02454-9110; and
| | - Julian Haase
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280
| | - Ayelet Arbel-Eden
- *Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02454-9110; and
| | - Kerry Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280
- To whom correspondence may be addressed. E-mail:
| | - James E. Haber
- *Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02454-9110; and
- To whom correspondence may be addressed. E-mail:
| |
Collapse
|
20
|
Abstract
In order for haploid gametes to fuse during fertilization, microtubules (MTs) must generate forces that are sufficient to move the nuclei together. Nuclear movements during fertilization rely on microtubule-associated proteins (MAPs), many of which have been characterized extensively during mitosis. A useful model system to study MT-dependent forces before nuclear fusion, or karyogamy, is the mating pathway of budding yeast. Dynamic MTs are guided to the mating projection (shmoo tip) when plus-end-binding proteins interact with polarized actin microfilaments. If two shmoo tips are in proximity they may fuse, dissolving the MT-cortical interactions. Subsequently, oppositely oriented MT plus ends interact and draw the nuclei together. The plus-end-binding proteins in the yeast mating pathway are conserved in metazoan cells and may play a role in higher eukaryotic fertilizaton. Thus, understanding the mechanism of plus end orientation and karyogamy in budding yeast will reveal mechanisms of MT-dependent force generation conserved throughout evolution.
Collapse
Affiliation(s)
- Jeffrey N Molk
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
21
|
Gladfelter AS, Hungerbuehler AK, Philippsen P. Asynchronous nuclear division cycles in multinucleated cells. ACTA ACUST UNITED AC 2006; 172:347-62. [PMID: 16449188 PMCID: PMC2063645 DOI: 10.1083/jcb.200507003] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synchronous mitosis is common in multinucleated cells. We analyzed a unique asynchronous nuclear division cycle in a multinucleated filamentous fungus, Ashbya gossypii. Nuclear pedigree analysis and observation of GFP-labeled spindle pole bodies demonstrated that neighboring nuclei in A. gossypii cells are in different cell cycle stages despite close physical proximity. Neighboring nuclei did not differ significantly in their patterns of cyclin protein localization such that both G1 and mitotic cyclins were present regardless of cell cycle stage, suggesting that the complete destruction of cyclins is not occurring in this system. Indeed, the expression of mitotic cyclin lacking NH2-terminal destruction box sequences did not block cell cycle progression. Cells lacking AgSic1p, a predicted cyclin-dependent kinase (CDK) inhibitor, however, showed aberrant multipolar spindles and fragmented nuclei that are indicative of flawed mitoses. We hypothesize that the continuous cytoplasm in these cells promoted the evolution of a nuclear division cycle in which CDK inhibitors primarily control CDK activity rather than oscillating mitotic cyclin proteins.
Collapse
Affiliation(s)
- Amy S Gladfelter
- Department of Molecular Microbiology, Biozentrum University of Basel, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
22
|
Haghnazari E, Heyer WD. The Hog1 MAP kinase pathway and the Mec1 DNA damage checkpoint pathway independently control the cellular responses to hydrogen peroxide. DNA Repair (Amst) 2004; 3:769-76. [PMID: 15177185 DOI: 10.1016/j.dnarep.2004.03.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2004] [Indexed: 11/24/2022]
Abstract
The DNA damage checkpoint pathway and the MAP kinase pathway respond to various forms of environmental as well as endogenous stresses through signal transduction mechanisms involving protein kinases. Both pathways are intertwined in mammalian cells, but potential crosstalk between these two pathways in budding yeast has not been examined yet. We show that the Rad53 checkpoint kinase and the Hog1 MAP kinase of Saccharomyces cerevisiae become phosphorylated upon exposure to hydrogen peroxide, indicative of activation of the DNA damage checkpoint and MAP kinase pathways in response to oxidative stress. Rad53 kinase is equally activated in wild type and in hog1-Delta cells. Likewise, the activation of Hog1 MAP kinase is not dependent on Mec1 kinase, the central checkpoint kinase in budding yeast. Mutants in either pathway are sensitive to hydrogen peroxide and the double mutants exhibit a near perfectly additive phenotype. These data demonstrate that the DNA damage checkpoint pathway and the MAP kinase pathway respond to oxidative stress independently of each other and suggest that these two stress signaling pathways are activated by different types of insults induced by hydrogen peroxide.
Collapse
Affiliation(s)
- Edwin Haghnazari
- Division of Biological Sciences, Section of Microbiology and Section of Molecular and Cellular Biology and Center for Genetics and Development, University of California, Davis, CA 95616-8665, USA
| | | |
Collapse
|
23
|
Abstract
The mitotic spindle segregates chromosomes to opposite ends of the cell in preparation for cell division. Chromosome attachment to the spindle is monitored by the spindle assembly checkpoint, and at least in yeast cells, penetration of one spindle pole into the bud is monitored by the spindle position checkpoint. We review the historical origins of these checkpoints and recent progress in understanding their surveillance pathways. We also highlight fascinating but as yet unresolved questions, and examine crosstalk between the checkpoints.
Collapse
Affiliation(s)
- Daniel J Lew
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
24
|
Lee SE, Pellicioli A, Demeter J, Vaze MP, Gasch AP, Malkova A, Brown PO, Botstein D, Stearns T, Foiani M, Haber JE. Arrest, adaptation, and recovery following a chromosome double-strand break in Saccharomyces cerevisiae. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:303-14. [PMID: 12760044 DOI: 10.1101/sqb.2000.65.303] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- S E Lee
- Rosenstiel Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The mechanisms used by fungal cells to repair DNA damage have been subjects of intensive investigation for almost 50 years. As a result, the model yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae have led the way in yielding critical insights into the nature of the DNA damage response. At the same time, largely through the efforts of Etta Kafer, Hirokazu Inoue, and colleagues, a substantial collection of Aspergillus nidulans and Neurospora crassa DNA repair mutants has been identified and characterized in detail. As the analysis of these mutants continues and increasing amounts of annotated genome sequence become available, it is becoming readily apparent that the DNA damage response of filamentous fungi possesses several features that distinguish it from the model yeasts. These features are emphasized in this review, which describes the genes, regulatory networks, and processes that compose the fungal DNA damage response. Further characterization of this response will likely yield general insights that are applicable to animals and plants. Moreover, it may also become evident that the DNA damage response can be manipulated to control fungal growth.
Collapse
Affiliation(s)
- Gustavo H Goldman
- Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
26
|
Shimura T, Inoue M, Taga M, Shiraishi K, Uematsu N, Takei N, Yuan ZM, Shinohara T, Niwa O. p53-dependent S-phase damage checkpoint and pronuclear cross talk in mouse zygotes with X-irradiated sperm. Mol Cell Biol 2002; 22:2220-8. [PMID: 11884608 PMCID: PMC133678 DOI: 10.1128/mcb.22.7.2220-2228.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One difficulty in analyzing the damage response is that the effect of damage itself and that of cellular response are hard to distinguish in irradiated cells. In mouse zygotes, damage can be introduced by irradiated sperm, while damage response can be studied in the unirradiated maternal pronucleus. We have analyzed the p53-dependent damage responses in irradiated-sperm mouse zygotes and found that a p53-responsive reporter was efficiently activated in the female pronucleus. [(3)H]thymidine labeling experiments indicated that irradiated-sperm zygotes were devoid of G(1)/S arrest, but pronuclear DNA synthesis was suppressed equally in male and female pronuclei. p53(-/-) zygotes lacked this suppression, which was corrected by microinjection of glutathione S-transferase-p53 fusion protein. In contrast, p21(-/-) zygotes exhibited the same level of suppression upon fertilization by irradiated sperm. About a half of the 6-Gy-irradiated-sperm zygotes managed to synthesize a full DNA content by prolonging S phase, while the other half failed to do so. Regardless of the DNA content, all the zygotes cleaved to become two-cell-stage embryos. These results revealed the presence of p53-dependent pronuclear cross talk and a novel function of p53 in the S-phase DNA damage checkpoint of mouse zygotes.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Late Effect Studies, Radiation Biology Center, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim YC, Koh JT, Shin BA, Ahn KY, Choi BK, Kim CG, Kim KK. An antisense construct of full-length human RAD50 cDNA confers sensitivity to ionizing radiation and alkylating agents on human cell lines. Radiat Res 2002; 157:19-25. [PMID: 11754637 DOI: 10.1667/0033-7587(2002)157[0019:aacofl]2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In Saccharomyces cerevisiae, Rad50 is reported to participate in the repair of double-stranded DNA breaks, and most rad50 mutants are unable to repair gamma-ray-induced DNA damage. In this study, we examined whether human RAD50 is involved in the repair of DNA damage induced by gamma radiation, radiomimetic alkylating agents, or UVB radiation in cultured human cells. Because homozygous null RAD50 mutant cells could not be isolated, human 293 embryonic kidney cells and A431 epithelial tumor cells were transfected with antisense RAD50 cDNA to obtain viable cell lines which expressed reduced RAD50. Selected individual clones were subjected to PCR-Southern and Western blot analyses to confirm the integrity of the antisense RAD50 construct and the reduced RAD50 expression levels. The cells engineered to express reduced RAD50 levels showed significantly increased sensitivity to gamma radiation, mitomycin C and methylmethane sulfonate compared with control cells that were transfected with the vector alone. However, there were no differences in viability of cells with reduced RAD50 levels and control cells treated with UVB radiation. These results indicate that human RAD50 is involved in the repair of DNA damage induced by gamma radiation and alkylating agents in mammalian cells and suggest the possible application of antisense RAD50 cDNA transfection as a radiation sensitizer in radiation oncology.
Collapse
Affiliation(s)
- Young Chul Kim
- Department of Diagnostic Radiology, Chosun University Hospital, Kwangju 501-759, South Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Kondo T, Wakayama T, Naiki T, Matsumoto K, Sugimoto K. Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science 2001; 294:867-70. [PMID: 11679674 DOI: 10.1126/science.1063827] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In response to DNA damage, eukaryotic cells activate checkpoint pathways that arrest cell cycle progression and induce the expression of genes required for DNA repair. In budding yeast, the homothallic switching (HO) endonuclease creates a site-specific double-strand break at the mating type (MAT) locus. Continuous HO expression results in the phosphorylation of Rad53, which is dependent on products of the ataxia telangiectasia mutated-related MEC1 gene and other checkpoint genes, including DDC1, RAD9, and RAD24. Chromatin immunoprecipitation experiments revealed that the Ddc1 protein associates with a region near the MAT locus after HO expression. Ddc1 association required Rad24 but not Mec1 or Rad9. Mec1 also associated with a region near the cleavage site after HO expression, but this association is independent of Ddc1, Rad9, and Rad24. Thus, Mec1 and Ddc1 are recruited independently to sites of DNA damage, suggesting the existence of two separate mechanisms involved in recognition of DNA damage.
Collapse
Affiliation(s)
- T Kondo
- Division of Biological Science, Graduate School of Science, Nagoya University, CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya 464-0814, Japan
| | | | | | | | | |
Collapse
|
29
|
|