1
|
Sun Y, Bock R, Li Z. A hidden intrinsic ability of bicistronic expression based on a novel translation reinitiation mechanism in yeast. Nucleic Acids Res 2025; 53:gkaf220. [PMID: 40156854 PMCID: PMC11952965 DOI: 10.1093/nar/gkaf220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Gene organization in operons and co-expression as polycistronic transcripts is characteristic of prokaryotes. With the evolution of the eukaryotic translation machinery, operon structure and expression of polycistrons were largely abandoned. Whether eukaryotes still possess the ability to express polycistrons, and how they functionally activate bacterial operons acquired by horizontal DNA transfer is unknown. Here, we demonstrate that a polycistron can be rapidly activated in yeast by induction of bicistronic expression under selection. We show that induced translation of the downstream cistron in a bicistronic transcript is based on a novel type of reinitiation mediated by the 80S ribosome and triggered by inefficient stop codon recognition, and that induced bicistronic expression is stable and independent of cis-elements. These results provide key insights into the epigenetic mechanism of the pathway of activation. We also developed a yeast strain that efficiently expresses bicistronic constructs, but does not carry any genomic DNA sequence change, and utilized this strain to synthesize a high-value metabolite from a bicistronic expression construct. Together, our results reveal the capacity of yeast to express bicistrons in a previously unrecognized pathway. While this capacity is normally hidden, it can be rapidly induced by selection to improve fitness.
Collapse
Affiliation(s)
- Yiwen Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Zhichao Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
2
|
Liu Y, Lv Z, Wei J, Liu P, Pan M, Ma H, Lin T. Comparative Physiological, Proteomic, and Metabolomic Insights into a Promising Low-Pruning Mulberry Cultivar for Silkworm Rearing. Int J Mol Sci 2024; 25:13483. [PMID: 39769246 PMCID: PMC11678587 DOI: 10.3390/ijms252413483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Mulberry (Morus spp.) is an economically significant plant in the production of silk through feeding leaves to silkworm larvae. Traditional silkworm rearing is heavily labor-intensive, particularly in leaf collection, which leads to low efficiency and impedes the development of sericulture. Here, to assess the feasibility and effectiveness of a novel low-pruning mulberry cultivar, ZJ1, in the silkworm rearing industry, a comprehensive investigation integrating physiological, proteomic, and metabolomic analyses was conducted in comparison with the traditionally high-pruning cultivar, N14. The low-pruning mulberry variety ZJ1 exhibited a notable increase in annual leaf yield of 43.94%, along with a significant enrichment of serine and isoleucine contents, in contrast to those of the high-pruning variety N14. Through iTRAQ proteomics and LC-MS/MS metabolomics analyses, a total of 561 reduced and 803 increased differentially expressed proteins (DEPs), as well as 332 differential expressed metabolites (DEMs) in positive ions and 192 DEMs in negative ions, were identified in the ZJ1 group relative to the N14 group, respectively. The observed features in amino acid profiles and the enrichment of the sucrose-related metabolic pathway provided interesting insights for future endeavors in mulberry variety improvement and the optimization of silkworm diet formulations. Collectively, the low-pruning cultivar ZJ1, characterized by its rapid growth, high leaf productivity, and suitability for mechanized operations, is expected to be an efficient substitute in improving the future sericultural industry, especially in urbanized and industrialized regions.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.L.); (J.W.); (P.L.)
| | - Zhiqiang Lv
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.L.); (J.W.); (P.L.)
| | - Jia Wei
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.L.); (J.W.); (P.L.)
| | - Peigang Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.L.); (J.W.); (P.L.)
| | - Meiliang Pan
- Department of Agriculture and Rural Affairs, Zhejiang Provincial Center for Agricultural Technology Extension, Hangzhou 310020, China; (M.P.); (H.M.)
| | - Huanyan Ma
- Department of Agriculture and Rural Affairs, Zhejiang Provincial Center for Agricultural Technology Extension, Hangzhou 310020, China; (M.P.); (H.M.)
| | - Tianbao Lin
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.L.); (J.W.); (P.L.)
| |
Collapse
|
3
|
Archaea/eukaryote-specific ribosomal proteins - guardians of a complex structure. Comput Struct Biotechnol J 2023; 21:1249-1261. [PMID: 36817958 PMCID: PMC9932298 DOI: 10.1016/j.csbj.2023.01.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023] Open
Abstract
In three domains of life, proteins are synthesized by large ribonucleoprotein particles called ribosomes. All ribosomes are composed of ribosomal RNAs (rRNA) and numerous ribosomal proteins (r-protein). The three-dimensional shape of ribosomes is mainly defined by a tertiary structure of rRNAs. In addition, rRNAs have a major role in decoding the information carried by messenger RNAs and catalyzing the peptide bond formation. R-proteins are essential for shaping the network of interactions that contribute to a various aspects of the protein synthesis machinery, including assembly of ribosomes and interaction of ribosomal subunits. Structural studies have revealed that many key components of ribosomes are conserved in all life domains. Besides the core structure, ribosomes contain domain-specific structural features that include additional r-proteins and extensions of rRNA and r-proteins. This review focuses specifically on those r-proteins that are found only in archaeal and eukaryotic ribosomes. The role of these archaea/eukaryote specific r-proteins in stabilizing the ribosome structure is discussed. Several examples illustrate their functions in the formation of the internal network of ribosomal subunits and interactions between the ribosomal subunits. In addition, the significance of these r-proteins in ribosome biogenesis and protein synthesis is highlighted.
Collapse
|
4
|
Wei M, Wu J, Sun H, Zhang B, Hu X, Wang Q, Li B, Xu L, Ma T, Gao J, Li F, Ling D. An Enzymatic Antibiotic Adjuvant Modulates the Infectious Microenvironment to Overcome Antimicrobial Resistance of Pathogens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205471. [PMID: 36399641 DOI: 10.1002/smll.202205471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The emergence and evolution of antimicrobial resistance (AMR) pose a significant challenge to the current arsenal to fight infection. Antibiotic adjuvants represent an appealing tactic for tackling the AMR of pathogens, however, their practical applications are greatly constrained by the harsh infectious microenvironment. Herein, it is found that silver nanoclusters (Ag NCs) can possess tunable enzymatic activities to modulate infectious microenvironments. Based on this finding, an enzymatic nanoadjuvant (EnzNA) self-assembled from Ag NCs, which is inert under neutral physiological conditions but can readily disassemble into isolated Ag NCs exhibiting biofilm destructive oxidase-mimetic activity in the acidic biofilm microenvironment, is developed. Once internalized into the neutral cytoplasm of bacteria, Ag NCs switch to reveal the thiol oxidase-mimetic activity to suppress ribosomal biogenesis for AMR reversal and evolution inhibition of pathogens. Consequently, EnzNAs revitalize various existing antibiotics against methicillin-resistant Staphylococcus aureus, and potentiate the antibiotic efficacy against biofilm-mediated skin infection and lethal lung infection in mice. These findings highlight the capability of enzyme-mimetic nanomaterials to modulate the infectious microenvironment and potentiate antibiotics, providing a paradigm shift for anti-infection therapy.
Collapse
Affiliation(s)
- Min Wei
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiahe Wu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Heng Sun
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- WLA Laboratories, Shanghai, 201203, China
| | - Xi Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lilan Xu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Teng Ma
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, 310058, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- WLA Laboratories, Shanghai, 201203, China
| |
Collapse
|
5
|
High-throughput functional characterization of protein phosphorylation sites in yeast. Nat Biotechnol 2022; 40:382-390. [PMID: 34663920 PMCID: PMC7612524 DOI: 10.1038/s41587-021-01051-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Phosphorylation is a critical post-translational modification involved in the regulation of almost all cellular processes. However, fewer than 5% of thousands of recently discovered phosphosites have been functionally annotated. In this study, we devised a chemical genetic approach to study the functional relevance of phosphosites in Saccharomyces cerevisiae. We generated 474 yeast strains with mutations in specific phosphosites that were screened for fitness in 102 conditions, along with a gene deletion library. Of these phosphosites, 42% exhibited growth phenotypes, suggesting that these are more likely functional. We inferred their function based on the similarity of their growth profiles with that of gene deletions and validated a subset by thermal proteome profiling and lipidomics. A high fraction exhibited phenotypes not seen in the corresponding gene deletion, suggestive of a gain-of-function effect. For phosphosites conserved in humans, the severity of the yeast phenotypes is indicative of their human functional relevance. This high-throughput approach allows for functionally characterizing individual phosphosites at scale.
Collapse
|
6
|
Jüttner M, Ferreira-Cerca S. A Comparative Perspective on Ribosome Biogenesis: Unity and Diversity Across the Tree of Life. Methods Mol Biol 2022; 2533:3-22. [PMID: 35796979 PMCID: PMC9761495 DOI: 10.1007/978-1-0716-2501-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Ribosomes are universally conserved ribonucleoprotein complexes involved in the decoding of the genetic information contained in messenger RNAs into proteins. Accordingly, ribosome biogenesis is a fundamental cellular process required for functional ribosome homeostasis and to preserve satisfactory gene expression capability.Although the ribosome is universally conserved, its biogenesis shows an intriguing degree of variability across the tree of life . These differences also raise yet unresolved questions. Among them are (a) what are, if existing, the remaining ancestral common principles of ribosome biogenesis ; (b) what are the molecular impacts of the evolution history and how did they contribute to (re)shape the ribosome biogenesis pathway across the tree of life ; (c) what is the extent of functional divergence and/or convergence (functional mimicry), and in the latter case (if existing) what is the molecular basis; (d) considering the universal ribosome conservation, what is the capability of functional plasticity and cellular adaptation of the ribosome biogenesis pathway?In this review, we provide a brief overview of ribosome biogenesis across the tree of life and try to illustrate some potential and/or emerging answers to these unresolved questions.
Collapse
Affiliation(s)
- Michael Jüttner
- Biochemistry III-Regensburg Center for Biochemistry-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Biochemistry III-Regensburg Center for Biochemistry-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
7
|
Rössler I, Weigl S, Fernández-Fernández J, Martín-Villanueva S, Strauss D, Hurt E, de la Cruz J, Pertschy B. The C-terminal tail of ribosomal protein Rps15 is engaged in cytoplasmic pre-40S maturation. RNA Biol 2021; 19:560-574. [PMID: 35438042 PMCID: PMC9037480 DOI: 10.1080/15476286.2022.2064073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
The small ribosomal subunit protein Rps15/uS19 is involved in early nucleolar ribosome biogenesis and subsequent nuclear export of pre-40S particles to the cytoplasm. In addition, the C-terminal tail of Rps15 was suggested to play a role in mature ribosomes, namely during translation elongation. Here, we show that Rps15 not only functions in nucleolar ribosome assembly but also in cytoplasmic pre-40S maturation, which is indicated by a strong genetic interaction between Rps15 and the 40S assembly factor Ltv1. Specifically, mutations either in the globular or C-terminal domain of Rps15 when combined with the non-essential ltv1 null allele are lethal or display a strong growth defect. However, not only rps15 ltv1 double mutants but also single rps15 C-terminal deletion mutants exhibit an accumulation of the 20S pre-rRNA in the cytoplasm, indicative of a cytoplasmic pre-40S maturation defect. Since in pre-40S particles, the C-terminal tail of Rps15 is positioned between assembly factors Rio2 and Tsr1, we further tested whether Tsr1 is genetically linked to Rps15, which indeed could be demonstrated. Thus, the integrity of the Rps15 C-terminal tail plays an important role during late pre-40S maturation, perhaps in a quality control step to ensure that only 40S ribosomal subunits with functional Rps15 C-terminal tail can efficiently enter translation. As mutations in the C-terminal tail of human RPS15 have been observed in connection with chronic lymphocytic leukaemia, it is possible that apart from defects in translation, an impaired late pre-40S maturation step in the cytoplasm could also be a reason for this disease.
Collapse
Affiliation(s)
- Ingrid Rössler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sarah Weigl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Daniela Strauss
- Biochemistry Center BZH, Heidelberg University, Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center BZH, Heidelberg University, Heidelberg, Germany
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
8
|
Rodríguez-Galán O, García-Gómez JJ, Rosado IV, Wei W, Méndez-Godoy A, Pillet B, Alekseenko A, Steinmetz L, Pelechano V, Kressler D, de la Cruz J. A functional connection between translation elongation and protein folding at the ribosome exit tunnel in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:206-220. [PMID: 33330942 PMCID: PMC7797049 DOI: 10.1093/nar/gkaa1200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 12/03/2022] Open
Abstract
Proteostasis needs to be tightly controlled to meet the cellular demand for correctly de novo folded proteins and to avoid protein aggregation. While a coupling between translation rate and co-translational folding, likely involving an interplay between the ribosome and its associated chaperones, clearly appears to exist, the underlying mechanisms and the contribution of ribosomal proteins remain to be explored. The ribosomal protein uL3 contains a long internal loop whose tip region is in close proximity to the ribosomal peptidyl transferase center. Intriguingly, the rpl3[W255C] allele, in which the residue making the closest contact to this catalytic site is mutated, affects diverse aspects of ribosome biogenesis and function. Here, we have uncovered, by performing a synthetic lethal screen with this allele, an unexpected link between translation and the folding of nascent proteins by the ribosome-associated Ssb-RAC chaperone system. Our results reveal that uL3 and Ssb-RAC cooperate to prevent 80S ribosomes from piling up within the 5' region of mRNAs early on during translation elongation. Together, our study provides compelling in vivo evidence for a functional connection between peptide bond formation at the peptidyl transferase center and chaperone-assisted de novo folding of nascent polypeptides at the solvent-side of the peptide exit tunnel.
Collapse
Affiliation(s)
- Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Juan J García-Gómez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Iván V Rosado
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Wu Wei
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alfonso Méndez-Godoy
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alisa Alekseenko
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Department of Genetics, School of Medicine, Stanford, CA, USA
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
9
|
Reza AMMT, Yuan YG. microRNAs Mediated Regulation of the Ribosomal Proteins and its Consequences on the Global Translation of Proteins. Cells 2021; 10:110. [PMID: 33435549 PMCID: PMC7827472 DOI: 10.3390/cells10010110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins (RPs) are mostly derived from the energy-consuming enzyme families such as ATP-dependent RNA helicases, AAA-ATPases, GTPases and kinases, and are important structural components of the ribosome, which is a supramolecular ribonucleoprotein complex, composed of Ribosomal RNA (rRNA) and RPs, coordinates the translation and synthesis of proteins with the help of transfer RNA (tRNA) and other factors. Not all RPs are indispensable; in other words, the ribosome could be functional and could continue the translation of proteins instead of lacking in some of the RPs. However, the lack of many RPs could result in severe defects in the biogenesis of ribosomes, which could directly influence the overall translation processes and global expression of the proteins leading to the emergence of different diseases including cancer. While microRNAs (miRNAs) are small non-coding RNAs and one of the potent regulators of the post-transcriptional gene expression, miRNAs regulate gene expression by targeting the 3' untranslated region and/or coding region of the messenger RNAs (mRNAs), and by interacting with the 5' untranslated region, and eventually finetune the expression of approximately one-third of all mammalian genes. Herein, we highlighted the significance of miRNAs mediated regulation of RPs coding mRNAs in the global protein translation.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Yu-Guo Yuan
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Salih KJ, Duncan O, Li L, O'Leary B, Fenske R, Trösch J, Millar AH. Impact of oxidative stress on the function, abundance, and turnover of the Arabidopsis 80S cytosolic ribosome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:128-139. [PMID: 32027433 DOI: 10.1111/tpj.14713] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/05/2020] [Accepted: 01/23/2020] [Indexed: 05/22/2023]
Abstract
Abiotic stress in plants causes accumulation of reactive oxygen species (ROS) leading to the need for new protein synthesis to defend against ROS and to replace existing proteins that are damaged by oxidation. Functional plant ribosomes are critical for these activities, however we know little about the impact of oxidative stress on plant ribosome abundance, turnover, and function. Using Arabidopsis cell culture as a model system, we induced oxidative stress using 1 µm of H2 O2 or 5 µm menadione to more than halve cell growth rate and limit total protein content. We show that ribosome content on a total cell protein basis decreased in oxidatively stressed cells. However, overall protein synthesis rates on a ribosome abundance basis showed the resident ribosomes retained their function in oxidatively stressed cells. 15 N progressive labelling was used to calculate the rate of ribosome synthesis and degradation to track the fate of 62 r-proteins. The degradation rates and the synthesis rates of most r-proteins slowed following oxidative stress leading to an ageing population of ribosomes in stressed cells. However, there were exceptions to this trend; r-protein RPS14C doubled its degradation rate in both oxidative treatments. Overall, we show that ribosome abundance decreases and their age increases with oxidative stress in line with loss of cell growth rate and total cellular protein amount, but ribosome function of the ageing ribosomes appeared to be maintained concomittently with differences in the turnover rate and abundance of specific ribosomal proteins. Data are available via ProteomeXchange with identifier PXD012840.
Collapse
Affiliation(s)
- Karzan J Salih
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
- Pharmaceutical Chemistry Department, Medical and Applied Science College, Charmo University, 46023, Chamchamal-Sulaimani, Kurdistan Region, Iraq
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Lei Li
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
- College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Brendan O'Leary
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Josua Trösch
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| |
Collapse
|
11
|
Martín-Villanueva S, Fernández-Fernández J, Rodríguez-Galán O, Fernández-Boraita J, Villalobo E, de La Cruz J. Role of the 40S beak ribosomal protein eS12 in ribosome biogenesis and function in Saccharomyces cerevisiae. RNA Biol 2020; 17:1261-1276. [PMID: 32408794 DOI: 10.1080/15476286.2020.1767951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In eukaryotes, the beak structure of 40S subunits is formed by the protrusion of the 18S rRNA helix 33 and three ribosomal proteins: eS10, eS12 and eS31. The exact role of these proteins in ribosome biogenesis is not well understood. While eS10 is an essential protein encoded by two paralogous genes in Saccharomyces cerevisiae, eS12 and eS31 are not essential proteins encoded by the single-copy genes RPS12 and UBI3, respectively. Here, we have analysed the contribution of yeast eS12 to ribosome biogenesis and compared it with that of eS31. Polysome analysis reveals that deletion of either RPS12 or UBI3 results in equivalent 40S deficits. Analysis of pre-rRNA processing indicates that eS12, akin to eS31, is required for efficient processing of 20S pre-rRNA to mature 18S rRNA. Moreover, we show that the 20S pre-rRNA accumulates within cytoplasmic pre-40S particles, as deduced from FISH experiments and the lack of nuclear retention of 40S subunit reporter proteins, in rps12∆ and ubi3∆ cells. However, these particles containing 20S pre-rRNA are not efficiently incorporated into polyribosomes. We also provide evidence for a genetic interaction between eS12 or eS31 and the late-acting 40S assembly factors Enp1 and Ltv1, which appears not to be linked to the dynamics of their association with or release from pre-40S particles in the absence of either eS12 or eS31. Finally, we show that eS12- and eS31-deficient ribosomes exhibit increased levels of translational misreading. Altogether, our data highlight distinct important roles of the beak region during ribosome assembly and function.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - José Fernández-Fernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - Olga Rodríguez-Galán
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - Julia Fernández-Boraita
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla , Seville, Spain
| | - Jesús de La Cruz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| |
Collapse
|
12
|
Jenkins K, Mateeva T, Szabó I, Melnik A, Picotti P, Csikász-Nagy A, Rosta E. Combining data integration and molecular dynamics for target identification in α-Synuclein-aggregating neurodegenerative diseases: Structural insights on Synaptojanin-1 (Synj1). Comput Struct Biotechnol J 2020; 18:1032-1042. [PMID: 32419904 PMCID: PMC7215115 DOI: 10.1016/j.csbj.2020.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD), Alzheimer’s disease (AD) and Amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases hallmarked by the formation of toxic protein aggregates. However, targeting these aggregates therapeutically have thus far shown no success. The treatment of AD has remained particularly problematic since no new drugs have been approved in the last 15 years. Therefore, novel therapeutic targets need to be identified and explored. Here, through the integration of genomic and proteomic data, a set of proteins with strong links to α-synuclein-aggregating neurodegenerative diseases was identified. We propose 17 protein targets that are likely implicated in neurodegeneration and could serve as potential targets. The human phosphatidylinositol 5-phosphatase synaptojanin-1, which has already been independently confirmed to be implicated in Parkinson’s and Alzheimer’s disease, was among those identified. Despite its involvement in PD and AD, structural aspects are currently missing at the molecular level. We present the first atomistic model of the 5-phosphatase domain of synaptojanin-1 and its binding to its substrate phosphatidylinositol 4,5-bisphosphate (PIP2). We determine structural information on the active site including membrane-embedded molecular dynamics simulations. Deficiency of charge within the active site of the protein is observed, which suggests that a second divalent cation is required to complete dephosphorylation of the substrate. The findings in this work shed light on the protein’s binding to phosphatidylinositol 4,5-bisphosphate (PIP2) and give additional insight for future targeting of the protein active site, which might be of interest in neurodegenerative diseases where synaptojanin-1 is overexpressed.
Collapse
Affiliation(s)
- Kirsten Jenkins
- Randall Division of Cell and Molecular Biophysics, Institute for Mathematical and Molecular Biomedicine, King's College London, London SE1 1UL, UK
| | - Teodora Mateeva
- Department of Chemistry, King's College London, London SE1 1DB, UK
| | - István Szabó
- Department of Chemistry, King's College London, London SE1 1DB, UK
| | - Andre Melnik
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Attila Csikász-Nagy
- Randall Division of Cell and Molecular Biophysics, Institute for Mathematical and Molecular Biomedicine, King's College London, London SE1 1UL, UK.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Edina Rosta
- Department of Chemistry, King's College London, London SE1 1DB, UK
| |
Collapse
|
13
|
Conserved phosphorylation hotspots in eukaryotic protein domain families. Nat Commun 2019; 10:1977. [PMID: 31036831 PMCID: PMC6488607 DOI: 10.1038/s41467-019-09952-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Protein phosphorylation is the best characterized post-translational modification that regulates almost all cellular processes through diverse mechanisms such as changing protein conformations, interactions, and localization. While the inventory for phosphorylation sites across different species has rapidly expanded, their functional role remains poorly investigated. Here, we combine 537,321 phosphosites from 40 eukaryotic species to identify highly conserved phosphorylation hotspot regions within domain families. Mapping these regions onto structural data reveals that they are often found at interfaces, near catalytic residues and tend to harbor functionally important phosphosites. Notably, functional studies of a phospho-deficient mutant in the C-terminal hotspot region within the ribosomal S11 domain in the yeast ribosomal protein uS11 shows impaired growth and defective cytoplasmic 20S pre-rRNA processing at 16 °C and 20 °C. Altogether, our study identifies phosphorylation hotspots for 162 protein domains suggestive of an ancient role for the control of diverse eukaryotic domain families. Protein phosphorylation has various regulatory functions. Here, the authors map 241 phosphorylation hotspot regions across 40 eukaryotic species, showing that they are enriched at interfaces and near catalytic residues, and enable the discovery of functionally important phospho-sites.
Collapse
|
14
|
|
15
|
Ishikawa H, Yoshikawa H, Izumikawa K, Miura Y, Taoka M, Nobe Y, Yamauchi Y, Nakayama H, Simpson RJ, Isobe T, Takahashi N. Poly(A)-specific ribonuclease regulates the processing of small-subunit rRNAs in human cells. Nucleic Acids Res 2017; 45:3437-3447. [PMID: 27899605 PMCID: PMC5389690 DOI: 10.1093/nar/gkw1047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/24/2016] [Indexed: 11/14/2022] Open
Abstract
Ribosome biogenesis occurs successively in the nucleolus, nucleoplasm, and cytoplasm. Maturation of the ribosomal small subunit is completed in the cytoplasm by incorporation of a particular class of ribosomal proteins and final cleavage of 18S-E pre-rRNA (18S-E). Here, we show that poly(A)-specific ribonuclease (PARN) participates in steps leading to 18S-E maturation in human cells. We found PARN as a novel component of the pre-40S particle pulled down with the pre-ribosome factor LTV1 or Bystin. Reverse pull-down analysis revealed that PARN is a constitutive component of the Bystin-associated pre-40S particle. Knockdown of PARN or exogenous expression of an enzyme-dead PARN mutant (D28A) accumulated 18S-E in both the cytoplasm and nucleus. Moreover, expression of D28A accumulated 18S-E in Bystin-associated pre-40S particles, suggesting that the enzymatic activity of PARN is necessary for the release of 18S-E from Bystin-associated pre-40S particles. Finally, RNase H-based fragmentation analysis and 3΄-sequence analysis of 18S-E species present in cells expressing wild-type PARN or D28A suggested that PARN degrades the extended regions encompassing nucleotides 5-44 at the 3΄ end of mature 18S rRNA. Our results reveal a novel role for PARN in ribosome biogenesis in human cells.
Collapse
Affiliation(s)
- Hideaki Ishikawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Harunori Yoshikawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Keiichi Izumikawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Yutaka Miura
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Hiroshi Nakayama
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Richard J Simpson
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,La Trobe Institute for Molecular Science (LIMS), LIMS Building 1, Room 412 La Trobe University, Bundoora, Victoria 3086, Australia
| | - Toshiaki Isobe
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Nobuhiro Takahashi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
16
|
Espinar-Marchena FJ, Babiano R, Cruz J. Placeholder factors in ribosome biogenesis: please, pave my way. MICROBIAL CELL 2017; 4:144-168. [PMID: 28685141 PMCID: PMC5425277 DOI: 10.15698/mic2017.05.572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of trans-acting factors and some ribosomal proteins to form pre-ribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of trans-acting factors known as "placeholders". Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway.
Collapse
Affiliation(s)
- Francisco J Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Jesús Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| |
Collapse
|
17
|
Peña C, Schütz S, Fischer U, Chang Y, Panse VG. Prefabrication of a ribosomal protein subcomplex essential for eukaryotic ribosome formation. eLife 2016; 5. [PMID: 27929371 PMCID: PMC5148605 DOI: 10.7554/elife.21755] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/29/2016] [Indexed: 01/21/2023] Open
Abstract
Spatial clustering of ribosomal proteins (r-proteins) through tertiary interactions is a striking structural feature of the eukaryotic ribosome. However, the functional importance of these intricate inter-connections, and how they are established is currently unclear. Here, we reveal that a conserved ATPase, Fap7, organizes interactions between neighboring r-proteins uS11 and eS26 prior to their delivery to the earliest ribosome precursor, the 90S. In vitro, uS11 only when bound to Fap7 becomes competent to recruit eS26 through tertiary contacts found between these r-proteins on the mature ribosome. Subsequently, Fap7 ATPase activity unloads the uS11:eS26 subcomplex onto its rRNA binding site, and therefore ensures stoichiometric integration of these r-proteins into the 90S. Fap7-depletion in vivo renders uS11 susceptible to proteolysis, and precludes eS26 incorporation into the 90S. Thus, prefabrication of a native-like r-protein subcomplex drives efficient and accurate construction of the eukaryotic ribosome. DOI:http://dx.doi.org/10.7554/eLife.21755.001
Collapse
Affiliation(s)
- Cohue Peña
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sabina Schütz
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Ute Fischer
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Yiming Chang
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Vikram G Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Tutuncuoglu B, Jakovljevic J, Wu S, Gao N, Woolford JL. The N-terminal extension of yeast ribosomal protein L8 is involved in two major remodeling events during late nuclear stages of 60S ribosomal subunit assembly. RNA (NEW YORK, N.Y.) 2016; 22:1386-1399. [PMID: 27390266 PMCID: PMC4986894 DOI: 10.1261/rna.055798.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/24/2016] [Indexed: 06/01/2023]
Abstract
Assaying effects on pre-rRNA processing and ribosome assembly upon depleting individual ribosomal proteins (r-proteins) provided an initial paradigm for assembly of eukaryotic ribosomes in vivo-that each structural domain of ribosomal subunits assembles in a hierarchical fashion. However, two features suggest that a more complex pathway may exist: (i) Some r-proteins contain extensions that reach long distances across ribosomes to interact with multiple rRNA domains as well as with other r-proteins. (ii) Individual r-proteins may assemble in a stepwise fashion. For example, the globular domain of an r-protein might assemble separately from its extensions. Thus, these extensions might play roles in assembly that could not be revealed by depleting the entire protein. Here, we show that deleting or mutating extensions of r-proteins L7 (uL30) and L35 (uL29) from yeast reveal important roles in early and middle steps during 60S ribosomal subunit biogenesis. Detailed analysis of the N-terminal terminal extension of L8 (eL8) showed that it is necessary for late nuclear stages of 60S subunit assembly involving two major remodeling events: removal of the ITS2 spacer; and reorganization of the central protuberance (CP) containing 5S rRNA and r-proteins L5 (uL18) and L11 (uL5). Mutations in the L8 extension block processing of 7S pre-rRNA, prevent release of assembly factors Rpf2 and Rrs1 from pre-ribosomes, which is required for rotation of the CP, and block association of Sda1, the Rix1 complex, and the Rea1 ATPase involved in late steps of remodeling.
Collapse
Affiliation(s)
- Beril Tutuncuoglu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jelena Jakovljevic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Shan Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ning Gao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
19
|
Bai D, Zhang J, Li T, Hang R, Liu Y, Tian Y, Huang D, Qu L, Cao X, Ji J, Zheng X. The ATPase hCINAP regulates 18S rRNA processing and is essential for embryogenesis and tumour growth. Nat Commun 2016; 7:12310. [PMID: 27477389 PMCID: PMC4974663 DOI: 10.1038/ncomms12310] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/20/2016] [Indexed: 12/29/2022] Open
Abstract
Dysfunctions in ribosome biogenesis cause developmental defects and increased cancer susceptibility; however, the connection between ribosome assembly and tumorigenesis remains unestablished. Here we show that hCINAP (also named AK6) is required for human 18S rRNA processing and 40S subunit assembly. Homozygous CINAP−/− mice show embryonic lethality. The heterozygotes are viable and show defects in 18S rRNA processing, whereas no delayed cell growth is observed. However, during rapid growth, CINAP haploinsufficiency impairs protein synthesis. Consistently, hCINAP depletion in fast-growing cancer cells inhibits ribosome assembly and abolishes tumorigenesis. These data demonstrate that hCINAP reduction is a specific rate-limiting controller during rapid growth. Notably, hCINAP is highly expressed in cancers and correlated with a worse prognosis. Genome-wide polysome profiling shows that hCINAP selectively modulates cancer-associated translatome to promote malignancy. Our results connect the role of hCINAP in ribosome assembly with tumorigenesis. Modulation of hCINAP expression may be a promising target for cancer therapy. Perturbations in ribosome biogenesis affect development and increase cancer susceptibility. Here, the authors show that hCINAP is required for 18S rRNA processing, is highly expressed in cancers, and promotes cancer cell growth by upregulating the translation of cancer-associated genes.
Collapse
Affiliation(s)
- Dongmei Bai
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Yiheyuan Road No. 5, Beijing 100871, China
| | - Jinfang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Yiheyuan Road No. 5, Beijing 100871, China
| | - Tingting Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Yiheyuan Road No. 5, Beijing 100871, China
| | - Runlai Hang
- State key Laboratory of Plant Genetics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Yiheyuan Road No. 5, Beijing 100871, China
| | - Yonglu Tian
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Yiheyuan Road No. 5, Beijing 100871, China
| | - Dadu Huang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Yiheyuan Road No. 5, Beijing 100871, China
| | - Linglong Qu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Yiheyuan Road No. 5, Beijing 100871, China
| | - Xiaofeng Cao
- State key Laboratory of Plant Genetics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Surgery, Peking University Caner Hospital and Institute, Beijing 100142, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Yiheyuan Road No. 5, Beijing 100871, China
| |
Collapse
|
20
|
Fernández-Pevida A, Martín-Villanueva S, Murat G, Lacombe T, Kressler D, de la Cruz J. The eukaryote-specific N-terminal extension of ribosomal protein S31 contributes to the assembly and function of 40S ribosomal subunits. Nucleic Acids Res 2016; 44:7777-91. [PMID: 27422873 PMCID: PMC5027506 DOI: 10.1093/nar/gkw641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/07/2016] [Indexed: 11/12/2022] Open
Abstract
The archaea-/eukaryote-specific 40S-ribosomal-subunit protein S31 is expressed as an ubiquitin fusion protein in eukaryotes and consists of a conserved body and a eukaryote-specific N-terminal extension. In yeast, S31 is a practically essential protein, which is required for cytoplasmic 20S pre-rRNA maturation. Here, we have studied the role of the N-terminal extension of the yeast S31 protein. We show that deletion of this extension partially impairs cell growth and 40S subunit biogenesis and confers hypersensitivity to aminoglycoside antibiotics. Moreover, the extension harbours a nuclear localization signal that promotes active nuclear import of S31, which associates with pre-ribosomal particles in the nucleus. In the absence of the extension, truncated S31 inefficiently assembles into pre-40S particles and two subpopulations of mature small subunits, one lacking and another one containing truncated S31, can be identified. Plasmid-driven overexpression of truncated S31 partially suppresses the growth and ribosome biogenesis defects but, conversely, slightly enhances the hypersensitivity to aminoglycosides. Altogether, these results indicate that the N-terminal extension facilitates the assembly of S31 into pre-40S particles and contributes to the optimal translational activity of mature 40S subunits but has only a minor role in cytoplasmic cleavage of 20S pre-rRNA at site D.
Collapse
Affiliation(s)
- Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Thierry Lacombe
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
21
|
Rodríguez-Galán O, García-Gómez JJ, Kressler D, de la Cruz J. Immature large ribosomal subunits containing the 7S pre-rRNA can engage in translation in Saccharomyces cerevisiae. RNA Biol 2016; 12:838-46. [PMID: 26151772 DOI: 10.1080/15476286.2015.1058477] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Evolution has provided eukaryotes with mechanisms that impede immature and/or aberrant ribosomes to engage in translation. These mechanisms basically either prevent the nucleo-cytoplasmic export of these particles or, once in the cytoplasm, the release of associated assembly factors, which interfere with the binding of translation initiation factors and/or the ribosomal subunit joining. We have previously shown that aberrant yeast 40S ribosomal subunits containing the 20S pre-rRNA can engage in translation. In this study, we describe that cells harbouring the dob1-1 allele, encoding a mutated version of the exosome-assisting RNA helicase Mtr4, accumulate otherwise nuclear pre-60S ribosomal particles containing the 7S pre-rRNA in the cytoplasm. Polysome fractionation analyses revealed that these particles are competent for translation and do not induce elongation stalls. This phenomenon is rather specific since most mutations in other exosome components or co-factors, impairing the 3' end processing of the mature 5.8S rRNA, accumulate 7S pre-rRNAs in the nucleus. In addition, we confirm that pre-60S ribosomal particles containing either 5.8S + 30 or 5.8S + 5 pre-rRNAs also engage in translation elongation. We propose that 7S pre-rRNA processing is not strictly required for pre-60S r-particle export and that, upon arrival in the cytoplasm, there is no specific mechanism to prevent translation by premature pre-60S r-particles containing 3' extended forms of mature 5.8S rRNA.
Collapse
Affiliation(s)
- Olga Rodríguez-Galán
- a Instituto de Biomedicina de Sevilla ; Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla ; Seville , Spain
| | | | | | | |
Collapse
|
22
|
Abstract
The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79-80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type-specific disorders that often transition from hypoproliferative to hyperproliferative growth.
Collapse
Affiliation(s)
- Jesus de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
- Departamento de Genetica, Universidad de Sevilla, E-41013 Sevilla, Spain
| | - Katrin Karbstein
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
23
|
Nerurkar P, Altvater M, Gerhardy S, Schütz S, Fischer U, Weirich C, Panse VG. Eukaryotic Ribosome Assembly and Nuclear Export. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:107-40. [DOI: 10.1016/bs.ircmb.2015.07.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Gamalinda M, Woolford JL. Deletion of L4 domains reveals insights into the importance of ribosomal protein extensions in eukaryotic ribosome assembly. RNA (NEW YORK, N.Y.) 2014; 20:1725-31. [PMID: 25246649 PMCID: PMC4201825 DOI: 10.1261/rna.046649.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Numerous ribosomal proteins have a striking bipartite architecture: a globular body positioned on the ribosomal exterior and an internal loop buried deep into the rRNA core. In eukaryotes, a significant number of conserved r-proteins have evolved extra amino- or carboxy-terminal tail sequences, which thread across the solvent-exposed surface. The biological importance of these extended domains remains to be established. In this study, we have investigated the universally conserved internal loop and the eukaryote-specific extensions of yeast L4. We show that in contrast to findings with bacterial L4, deleting the internal loop of yeast L4 causes severely impaired growth and reduced levels of large ribosomal subunits. We further report that while depleting the entire L4 protein blocks early assembly steps in yeast, deletion of only its extended internal loop affects later steps in assembly, revealing a second role for L4 during ribosome biogenesis. Surprisingly, deletion of the entire eukaryote-specific carboxy-terminal tail of L4 has no effect on viability, production of 60S subunits, or translation. These unexpected observations provide impetus to further investigate the functions of ribosomal protein extensions, especially eukaryote-specific examples, in ribosome assembly and function.
Collapse
Affiliation(s)
- Michael Gamalinda
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
25
|
Schütz S, Fischer U, Altvater M, Nerurkar P, Peña C, Gerber M, Chang Y, Caesar S, Schubert OT, Schlenstedt G, Panse VG. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly. eLife 2014; 3:e03473. [PMID: 25144938 PMCID: PMC4161973 DOI: 10.7554/elife.03473] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Within a single generation time a growing yeast cell imports ∼14 million ribosomal proteins (r-proteins) into the nucleus for ribosome production. After import, it is unclear how these intrinsically unstable and aggregation-prone proteins are targeted to the ribosome assembly site in the nucleolus. Here, we report the discovery of a conserved nuclear carrier Tsr2 that coordinates transfer of the r-protein eS26 to the earliest assembling pre-ribosome, the 90S. In vitro studies revealed that Tsr2 efficiently dissociates importin:eS26 complexes via an atypical RanGTP-independent mechanism that terminates the import process. Subsequently, Tsr2 binds the released eS26, shields it from proteolysis, and ensures its safe delivery to the 90S pre-ribosome. We anticipate similar carriers—termed here escortins—to securely connect the nuclear import machinery with pathways that deposit r-proteins onto developing pre-ribosomal particles. DOI:http://dx.doi.org/10.7554/eLife.03473.001 The production of a protein in a cell starts with a region of DNA being transcribed to produce a molecule of messenger RNA. A large molecular machine called ribosome then reads the information in the messenger RNA molecule to produce a protein. Ribosomes themselves are made of RNA and several different proteins called r-proteins. The construction of a ribosome starts with the assembly of a pre-ribosome inside the cell nucleus, and the ribosome is completed in the cytosol of the cell. A yeast cell will divide about 30 times during its lifetime, and before each division event a single yeast cell needs to import about 14 million r-proteins into its nucleus in order to make about 200,000 ribosomes. However, many details of this process are mysterious. In particular, many r-proteins are known to be unstable: meaning that, left to their own devices, r-proteins are highly likely to aggregate, which would prevent them becoming part of a ribosome. Now, Schütz et al. have figured out how a carrier protein called Tsr2 makes sure that an r-protein called eS26 does indeed become part of a ribosome. The human disorder known as Diamond-Blackfan anemia is caused by a mutation in the gene for eS26. The eS26 proteins are ferried to the cell nucleus on specialized transport vehicles. Schütz et al. have now shown that the Tsr2 carrier protein unloads the r-protein from the transport vehicle in the nucleus, and then binds it. This means that the r-protein does not form an aggregate. Finally, the Tsr2 carrier protein transfers the r-protein to the pre-ribosome. This is the first time that a carrier protein that unloads an r-protein cargo from its transport vehicle, to ensure safe delivery to the pre-ribosome, has been identified. DOI:http://dx.doi.org/10.7554/eLife.03473.002
Collapse
Affiliation(s)
- Sabina Schütz
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland Molecular Life Science Graduate School, University of Zurich, Zurich, Switzerland
| | - Ute Fischer
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Martin Altvater
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland Molecular Life Science Graduate School, University of Zurich, Zurich, Switzerland
| | - Purnima Nerurkar
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland Molecular Life Science Graduate School, University of Zurich, Zurich, Switzerland
| | - Cohue Peña
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Michaela Gerber
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Yiming Chang
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Stefanie Caesar
- Institute of Medical Biochemistry and Molecular Biology, Universität des Saarlandes, Homburg, Germany
| | - Olga T Schubert
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland Systems Biology Graduate School, Zurich, Zurich, Switzerland
| | - Gabriel Schlenstedt
- Institute of Medical Biochemistry and Molecular Biology, Universität des Saarlandes, Homburg, Germany
| | - Vikram G Panse
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
RNA mimicry by the fap7 adenylate kinase in ribosome biogenesis. PLoS Biol 2014; 12:e1001860. [PMID: 24823650 PMCID: PMC4019466 DOI: 10.1371/journal.pbio.1001860] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 04/04/2014] [Indexed: 11/22/2022] Open
Abstract
The structure of a ribosome assembly factor in complex bound to a ribosomal protein uncovers a chaperoning function that uses RNA mimicry and is regulated by ATP hydrolysis. During biogenesis of the 40S and 60S ribosomal subunits, the pre-40S particles are exported to the cytoplasm prior to final cleavage of the 20S pre-rRNA to mature 18S rRNA. Amongst the factors involved in this maturation step, Fap7 is unusual, as it both interacts with ribosomal protein Rps14 and harbors adenylate kinase activity, a function not usually associated with ribonucleoprotein assembly. Human hFap7 also regulates Cajal body assembly and cell cycle progression via the p53–MDM2 pathway. This work presents the functional and structural characterization of the Fap7–Rps14 complex. We report that Fap7 association blocks the RNA binding surface of Rps14 and, conversely, Rps14 binding inhibits adenylate kinase activity of Fap7. In addition, the affinity of Fap7 for Rps14 is higher with bound ADP, whereas ATP hydrolysis dissociates the complex. These results suggest that Fap7 chaperones Rps14 assembly into pre-40S particles via RNA mimicry in an ATP-dependent manner. Incorporation of Rps14 by Fap7 leads to a structural rearrangement of the platform domain necessary for the pre-rRNA to acquire a cleavage competent conformation. Ribosomes are the cellular machines responsible for all protein synthesis. In eukaryotes, the assembly of ribosomes from their protein and RNA components is extremely complicated and involves more than 200 nonribosomal factors—three times the number of proteins in the mature complex. Among these factors, the Fap7 protein is particularly intriguing because it interacts with the small subunit ribosomal protein Rps14 and it exhibits adenylate kinase activity—a molecular function more commonly associated with regulating ATP/ADP levels than assembling protein–RNA complexes. Combining structural and biochemical analysis of the Rps14–Fap7 complex, we show that Fap7 uses protein side chains to mimic RNA contacts, rendering the interaction of Rps14 with ribosomal RNA or with Fap7 competitive and mutually exclusive. Once bound, Rps14 blocks the substrate-binding cavity of Fap7, and ATP hydrolysis will then break the Fap7–Rps14 complex apart. At the same time, the ribosome structure at the location where Rps14 binds is disrupted when the Fap7/Rps14 complex is formed, and this process is regulated by ATP binding and hydrolysis. Our model is thus that Fap7 temporarily removes Rps14 from the ribosome to enable a conformational change of the ribosomal RNA that is needed for the final maturation step of the small ribosomal subunit.
Collapse
|
27
|
Assembly and nuclear export of pre-ribosomal particles in budding yeast. Chromosoma 2014; 123:327-44. [PMID: 24817020 DOI: 10.1007/s00412-014-0463-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/18/2014] [Accepted: 04/07/2014] [Indexed: 11/27/2022]
Abstract
The ribosome is responsible for the final step of decoding genetic information into proteins. Therefore, correct assembly of ribosomes is a fundamental task for all living cells. In eukaryotes, the construction of the ribosome which begins in the nucleolus requires coordinated efforts of >350 specialized factors that associate with pre-ribosomal particles at distinct stages to perform specific assembly steps. On their way through the nucleus, diverse energy-consuming enzymes are thought to release assembly factors from maturing pre-ribosomal particles after accomplishing their task(s). Subsequently, recruitment of export factors prepares pre-ribosomal particles for transport through nuclear pore complexes. Pre-ribosomes are exported into the cytoplasm in a functionally inactive state, where they undergo final maturation before initiating translation. Accumulating evidence indicates a tight coupling between nuclear export, cytoplasmic maturation, and final proofreading of the ribosome. In this review, we summarize our current understanding of nuclear export of pre-ribosomal subunits and cytoplasmic maturation steps that render pre-ribosomal subunits translation-competent.
Collapse
|
28
|
García-Gómez JJ, Fernández-Pevida A, Lebaron S, Rosado IV, Tollervey D, Kressler D, de la Cruz J. Final pre-40S maturation depends on the functional integrity of the 60S subunit ribosomal protein L3. PLoS Genet 2014; 10:e1004205. [PMID: 24603549 PMCID: PMC3945201 DOI: 10.1371/journal.pgen.1004205] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 01/13/2014] [Indexed: 01/21/2023] Open
Abstract
Ribosomal protein L3 is an evolutionarily conserved protein that participates in the assembly of early pre-60S particles. We report that the rpl3[W255C] allele, which affects the affinity and function of translation elongation factors, impairs cytoplasmic maturation of 20S pre-rRNA. This was not seen for other mutations in or depletion of L3 or other 60S ribosomal proteins. Surprisingly, pre-40S particles containing 20S pre-rRNA form translation-competent 80S ribosomes, and translation inhibition partially suppresses 20S pre-rRNA accumulation. The GTP-dependent translation initiation factor Fun12 (yeast eIF5B) shows similar in vivo binding to ribosomal particles from wild-type and rpl3[W255C] cells. However, the GTPase activity of eIF5B failed to stimulate processing of 20S pre-rRNA when assayed with ribosomal particles purified from rpl3[W255C] cells. We conclude that L3 plays an important role in the function of eIF5B in stimulating 3′ end processing of 18S rRNA in the context of 80S ribosomes that have not yet engaged in translation. These findings indicate that the correct conformation of the GTPase activation region is assessed in a quality control step during maturation of cytoplasmic pre-ribosomal particles. Recent progress has provided us with detailed knowledge of the structure and function of eukaryotic ribosomes. However, our understanding of the intricate processes of pre-ribosome assembly and the transition to translation-competent ribosomal subunits remains incomplete. The early and intermediate steps of ribosome assembly occur successively in the nucleolus and nucleoplasm. The pre-ribosomal subunits are then exported to the cytoplasm where final maturation steps, notably including D site cleavage of the 20S pre-rRNA to mature 18S rRNA, confer subunit joining and translation competence. Recent evidence indicates that pre-40S subunits are subject to a quality control step involving the GTP-dependent translation initiation factor eIF5B/Fun12, in the context of 80S-like ribosomes. Here, we demonstrate the involvement of 60S subunits in promoting 20S pre-rRNA cleavage. In particular, we show that a specific point mutation in the 60S subunit ribosomal protein L3 (rpl3[W255C]) leads to the accumulation of pre-40S particles that contain the 20S pre-rRNA but are translation-competent. Notably, this mutation prevents the stimulation of the GTPase activity of eIF5B/Fun12, which is also required for site D cleavage. We conclude that L3 plays an important role in regulating the function of eIF5B/Fun12 during 3′ end processing of 18S rRNA at site D, in the context of 80S ribosomes that have not yet engaged in translation.
Collapse
MESH Headings
- Alleles
- Cytoplasm/genetics
- Cytoplasm/metabolism
- Eukaryotic Initiation Factors/genetics
- Mutation
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Protein Binding
- RNA Precursors/genetics
- RNA, Ribosomal, 18S/genetics
- Ribosomal Protein L3
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- Juan J. García-Gómez
- Departamento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio Fernández-Pevida
- Departamento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Simon Lebaron
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Iván V. Rosado
- Departamento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jesús de la Cruz
- Departamento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- * E-mail:
| |
Collapse
|
29
|
Calidas D, Lyon H, Culver GM. The N-terminal extension of S12 influences small ribosomal subunit assembly in Escherichia coli. RNA (NEW YORK, N.Y.) 2014; 20:321-30. [PMID: 24442609 PMCID: PMC3923127 DOI: 10.1261/rna.042432.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The small subunit (SSU) of the ribosome of E. coli consists of a core of ribosomal RNA (rRNA) surrounded peripherally by ribosomal proteins (r-proteins). Ten of the 15 universally conserved SSU r-proteins possess nonglobular regions called extensions. The N-terminal noncanonically structured extension of S12 traverses from the solvent to intersubunit surface of the SSU and is followed by a more C-terminal globular region that is adjacent to the decoding center of the SSU. The role of the globular region in maintaining translational fidelity is well characterized, but a role for the S12 extension in SSU structure and function is unknown. We examined the effect of stepwise truncation of the extension of S12 in SSU assembly and function in vitro and in vivo. Examination of in vitro assembly in the presence of sequential N-terminal truncated variants of S12 reveals that N-terminal deletions of greater than nine amino acids exhibit decreased tRNA-binding activity and altered 16S rRNA architecture particularly in the platform of the SSU. While wild-type S12 expressed from a plasmid can rescue a genomic deletion of the essential gene for S12, rpsl; N-terminal deletions of S12 exhibit deleterious phenotypic consequences. Partial N-terminal deletions of S12 are slow growing and cold sensitive. Strains bearing these truncations as the sole copy of S12 have increased levels of free SSUs and immature 16S rRNA as compared with the wild-type S12. These differences are hallmarks of SSU biogenesis defects, indicating that the extension of S12 plays an important role in SSU assembly.
Collapse
Affiliation(s)
- Deepika Calidas
- Department of Biology, Center for RNA Biology: From Genome to Therapeutics, University of Rochester Medical Center, Rochester, New York 14627, USA
| | - Hiram Lyon
- Department of Biology, Center for RNA Biology: From Genome to Therapeutics, University of Rochester Medical Center, Rochester, New York 14627, USA
| | - Gloria M. Culver
- Department of Biology, Center for RNA Biology: From Genome to Therapeutics, University of Rochester Medical Center, Rochester, New York 14627, USA
- Corresponding authorE-mail
| |
Collapse
|
30
|
Abstract
Construction of the eukaryotic ribosome begins in the nucleolus and requires >300 evolutionarily conserved nonribosomal trans-acting factors, which transiently associate with preribosomal subunits at distinct assembly stages. A subset of trans-acting and transport factors passage assembled preribosomal subunits in a functionally inactive state through the nuclear pore complexes (NPC) into the cytoplasm, where they undergo final maturation before initiating translation. Here, we summarize the repertoire of tools developed in the model organism budding yeast that are spearheading the functional analyses of trans-acting factors involved in the assembly and intracellular transport of preribosomal subunits. We elaborate on different GFP-tagged ribosomal protein reporters and a pre-rRNA reporter that reliably monitors the movement of preribosomal particles from the nucleolus to cytoplasm. We discuss the powerful yeast heterokaryon assay, which can be employed to uncover shuttling trans-acting factors that need to accompany preribosomal subunits to the cytoplasm to be released prior to initiating translation. Moreover, we present two biochemical approaches, namely sucrose gradient analyses and tandem affinity purification, that are rapidly facilitating the uncovering of regulatory processes that control the compositional dynamics of trans-acting factors on maturing preribosomal particles. Altogether, these approaches when combined with traditional analytical biochemistry, targeted proteomics and structural methodologies, will contribute to the dissection of the assembly and intracellular transport of preribosomal subunits, as well as other macromolecular assemblies that influence diverse biological pathways.
Collapse
MESH Headings
- Biological Transport/genetics
- Green Fluorescent Proteins/genetics
- In Situ Hybridization, Fluorescence/methods
- Karyopherins/genetics
- Mass Spectrometry/methods
- Microscopy, Fluorescence/methods
- Nuclear Pore/genetics
- Nuclear Pore/metabolism
- Nucleolus Organizer Region/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Ultracentrifugation/methods
- Exportin 1 Protein
Collapse
Affiliation(s)
- Martin Altvater
- Institute of Biochemistry (IBC), ETH Zürich, Otto-Stern-Weg 3, Zurich, Switzerland; MLS Program, Life Science Zurich Graduate School, Winterthurerstrasse 190, Zurich, Switzerland
| | - Sabina Schütz
- Institute of Biochemistry (IBC), ETH Zürich, Otto-Stern-Weg 3, Zurich, Switzerland; MLS Program, Life Science Zurich Graduate School, Winterthurerstrasse 190, Zurich, Switzerland
| | - Yiming Chang
- Institute of Biochemistry (IBC), ETH Zürich, Otto-Stern-Weg 3, Zurich, Switzerland
| | - Vikram Govind Panse
- Institute of Biochemistry (IBC), ETH Zürich, Otto-Stern-Weg 3, Zurich, Switzerland
| |
Collapse
|
31
|
Woolford JL, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013; 195:643-81. [PMID: 24190922 PMCID: PMC3813855 DOI: 10.1534/genetics.113.153197] [Citation(s) in RCA: 588] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.
Collapse
Affiliation(s)
- John L. Woolford
- Department of Biological Sciences, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Susan J. Baserga
- Molecular Biophysics and Biochemistry, Genetics and Therapeutic Radiology, Yale University, New Haven, Connecticut 06520-8024
| |
Collapse
|
32
|
Hellmich UA, Wöhnert J. Backbone resonance assignments for a homolog of the essential ribosome biogenesis factor Fap7 from P. horikoshii in its nucleotide-free and -bound forms. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:261-265. [PMID: 23054934 DOI: 10.1007/s12104-012-9423-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 09/07/2012] [Indexed: 06/01/2023]
Abstract
The protein "factor activating Pos9 (Skn7)", Fap7, is an essential protein in yeast and plays an important role in the biogenesis of the small ribosomal subunit. In eukaryotes, the final processing step of the small ribosomal subunit RNA is the endonucleolytic cleavage of 20S pre-rRNA at cleavage site D yielding mature 18S rRNA. Depletion of Fap7 in yeast leads to a dramatic accumulation of 20S pre-rRNA and a concomitant decrease in 18S rRNA in the cytoplasm. In addition, these cells contain higher levels of 60S, but decreased numbers of 40S ribosomal subunits. Fap7 contains a P-loop like motif placing it in a class with NTPases and kinases and a role for it as an adenylate kinase has been suggested. Up to now both the structure of Fap7 and its detailed function during ribosome biogenesis remain elusive. Here, we present the backbone NMR assignments of a Fap7 homolog from the thermophilic archaeon Pyrococcus horikoshii in its nucleotide free form and bound to the adenylate kinase inhibitor AP5A.
Collapse
Affiliation(s)
- Ute A Hellmich
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität Frankfurt/M., Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | |
Collapse
|
33
|
Essential ribosome assembly factor Fap7 regulates a hierarchy of RNA-protein interactions during small ribosomal subunit biogenesis. Proc Natl Acad Sci U S A 2013; 110:15253-8. [PMID: 24003121 DOI: 10.1073/pnas.1306389110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Factor activating Pos9 (Fap7) is an essential ribosome biogenesis factor important for the assembly of the small ribosomal subunit with an uncommon dual ATPase and adenylate kinase activity. Depletion of Fap7 or mutations in its ATPase motifs lead to defects in small ribosomal subunit rRNA maturation, the absence of ribosomal protein Rps14 from the assembled subunit, and retention of the nascent small subunit in a quality control complex with the large ribosomal subunit. The molecular basis for the role of Fap7 in ribosome biogenesis is, however, not yet understood. Here we show that Fap7 regulates multiple interactions between the precursor rRNA, ribosomal proteins, and ribosome assembly factors in a hierarchical manner. Fap7 binds to Rps14 with a very high affinity. Fap7 binding blocks both rRNA-binding elements of Rps14, suggesting that Fap7 inhibits premature interactions of Rps14 with RNA. The Fap7/Rps14 interaction is modulated by nucleotide binding to Fap7. Rps14 strongly activates the ATPase activity but not the adenylate kinase activity of Fap7, identifying Rps14 as an example of a ribosomal protein functioning as an ATPase-activating factor. In addition, Fap7 inhibits the RNA cleavage activity of Nob1, the endonuclease responsible for the final maturation step of the small subunit rRNA, in a nucleotide independent manner. Thus, Fap7 may regulate small subunit biogenesis at multiple stages.
Collapse
|
34
|
Dembowski JA, Kuo B, Woolford JL. Has1 regulates consecutive maturation and processing steps for assembly of 60S ribosomal subunits. Nucleic Acids Res 2013; 41:7889-904. [PMID: 23788678 PMCID: PMC3763536 DOI: 10.1093/nar/gkt545] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ribosome biogenesis requires ∼200 assembly factors in Saccharomyces cerevisiae. The pre-ribosomal RNA (rRNA) processing defects associated with depletion of most of these factors have been characterized. However, how assembly factors drive the construction of ribonucleoprotein neighborhoods and how structural rearrangements are coupled to pre-rRNA processing are not understood. Here, we reveal ATP-independent and ATP-dependent roles of the Has1 DEAD-box RNA helicase in consecutive pre-rRNA processing and maturation steps for construction of 60S ribosomal subunits. Has1 associates with pre-60S ribosomes in an ATP-independent manner. Has1 binding triggers exonucleolytic trimming of 27SA3 pre-rRNA to generate the 5′ end of 5.8S rRNA and drives incorporation of ribosomal protein L17 with domain I of 5.8S/25S rRNA. ATP-dependent activity of Has1 promotes stable association of additional domain I ribosomal proteins that surround the polypeptide exit tunnel, which are required for downstream processing of 27SB pre-rRNA. Furthermore, in the absence of Has1, aberrant 27S pre-rRNAs are targeted for irreversible turnover. Thus, our data support a model in which Has1 helps to establish domain I architecture to prevent pre-rRNA turnover and couples domain I folding with consecutive pre-rRNA processing steps.
Collapse
Affiliation(s)
- Jill A Dembowski
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
35
|
Insights into the mechanism of ribosomal incorporation of mammalian L13a protein during ribosome biogenesis. Mol Cell Biol 2013; 33:2829-42. [PMID: 23689135 DOI: 10.1128/mcb.00250-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In contrast to prokaryotes, the precise mechanism of incorporation of ribosomal proteins into ribosomes in eukaryotes is not well understood. For the majority of eukaryotic ribosomal proteins, residues critical for rRNA binding, a key step in the hierarchical assembly of ribosomes, have not been well defined. In this study, we used the mammalian ribosomal protein L13a as a model to investigate the mechanism(s) underlying eukaryotic ribosomal protein incorporation into ribosomes. This work identified the arginine residue at position 68 of L13a as being essential for L13a binding to rRNA and incorporation into ribosomes. We also demonstrated that incorporation of L13a takes place during maturation of the 90S preribosome in the nucleolus, but that translocation of L13a into the nucleolus is not sufficient for its incorporation into ribosomes. Incorporation of L13a into the 90S preribosome was required for rRNA methylation within the 90S complex. However, mutations abolishing ribosomal incorporation of L13a did not affect its ability to be phosphorylated or its extraribosomal function in GAIT element-mediated translational silencing. These results provide new insights into the mechanism of ribosomal incorporation of L13a and will be useful in guiding future studies aimed at fully deciphering mammalian ribosome biogenesis.
Collapse
|
36
|
Gamalinda M, Jakovljevic J, Babiano R, Talkish J, de la Cruz J, Woolford JL. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing. Nucleic Acids Res 2012; 41:1965-83. [PMID: 23268442 PMCID: PMC3561946 DOI: 10.1093/nar/gks1272] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.
Collapse
Affiliation(s)
- Michael Gamalinda
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
37
|
Jakovljevic J, Ohmayer U, Gamalinda M, Talkish J, Alexander L, Linnemann J, Milkereit P, Woolford JL. Ribosomal proteins L7 and L8 function in concert with six A₃ assembly factors to propagate assembly of domains I and II of 25S rRNA in yeast 60S ribosomal subunits. RNA (NEW YORK, N.Y.) 2012; 18:1805-22. [PMID: 22893726 PMCID: PMC3446705 DOI: 10.1261/rna.032540.112] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 07/02/2012] [Indexed: 05/24/2023]
Abstract
Ribosome biogenesis is a complex multistep process that involves alternating steps of folding and processing of pre-rRNAs in concert with assembly of ribosomal proteins. Recently, there has been increased interest in the roles of ribosomal proteins in eukaryotic ribosome biogenesis in vivo, focusing primarily on their function in pre-rRNA processing. However, much less is known about participation of ribosomal proteins in the formation and rearrangement of preribosomal particles as they mature to functional subunits. We have studied ribosomal proteins L7 and L8, which are required for the same early steps in pre-rRNA processing during assembly of 60S subunits but are located in different domains within ribosomes. Depletion of either leads to defects in processing of 27SA(3) to 27SB pre-rRNA and turnover of pre-rRNAs destined for large ribosomal subunits. A specific subset of proteins is diminished from these residual assembly intermediates: six assembly factors required for processing of 27SA(3) pre-rRNA and four ribosomal proteins bound to domain I of 25S and 5.8S rRNAs surrounding the polypeptide exit tunnel. In addition, specific sets of ribosomal proteins are affected in each mutant: In the absence of L7, proteins bound to domain II, L6, L14, L20, and L33 are greatly diminished, while proteins L13, L15, and L36 that bind to domain I are affected in the absence of L8. Thus, L7 and L8 might establish RNP structures within assembling ribosomes necessary for the stable association and function of the A(3) assembly factors and for proper assembly of the neighborhoods containing domains I and II.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/genetics
- Active Transport, Cell Nucleus/physiology
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Fungal
- Microarray Analysis
- Organisms, Genetically Modified
- Protein Interaction Domains and Motifs/genetics
- Protein Interaction Domains and Motifs/physiology
- Protein Multimerization/genetics
- Protein Multimerization/physiology
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA Processing, Post-Transcriptional/physiology
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/physiology
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/ultrastructure
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/physiology
- Yeasts/genetics
- Yeasts/metabolism
Collapse
Affiliation(s)
- Jelena Jakovljevic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Uli Ohmayer
- Institut für Biochemie III, Universität Regensburg, 93053 Regensburg, Germany
| | - Michael Gamalinda
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jason Talkish
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Lisa Alexander
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jan Linnemann
- Institut für Biochemie III, Universität Regensburg, 93053 Regensburg, Germany
| | - Philipp Milkereit
- Institut für Biochemie III, Universität Regensburg, 93053 Regensburg, Germany
| | - John L. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
38
|
Strunk BS, Novak MN, Young CL, Karbstein K. A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 2012; 150:111-21. [PMID: 22770215 DOI: 10.1016/j.cell.2012.04.044] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/26/2012] [Accepted: 04/23/2012] [Indexed: 01/09/2023]
Abstract
Assembly factors (AFs) prevent premature translation initiation on small (40S) ribosomal subunit assembly intermediates by blocking ligand binding. However, it is unclear how AFs are displaced from maturing 40S ribosomes, if or how maturing subunits are assessed for fidelity, and what prevents premature translation initiation once AFs dissociate. Here we show that maturation involves a translation-like cycle whereby the translation factor eIF5B, a GTPase, promotes joining of large (60S) subunits with pre-40S subunits to give 80S-like complexes, which are subsequently disassembled by the termination factor Rli1, an ATPase. The AFs Tsr1 and Rio2 block the mRNA channel and initiator tRNA binding site, and therefore 80S-like ribosomes lack mRNA or initiator tRNA. After Tsr1 and Rio2 dissociate from 80S-like complexes Rli1-directed displacement of 60S subunits allows for translation initiation. This cycle thus provides a functional test of 60S subunit binding and the GTPase site before ribosomes enter the translating pool.
Collapse
Affiliation(s)
- Bethany S Strunk
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
39
|
Faza MB, Chang Y, Occhipinti L, Kemmler S, Panse VG. Role of Mex67-Mtr2 in the nuclear export of 40S pre-ribosomes. PLoS Genet 2012; 8:e1002915. [PMID: 22956913 PMCID: PMC3431309 DOI: 10.1371/journal.pgen.1002915] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/02/2012] [Indexed: 11/19/2022] Open
Abstract
Nuclear export of mRNAs and pre-ribosomal subunits (pre40S and pre60S) is fundamental to all eukaryotes. While genetic approaches in budding yeast have identified bona fide export factors for mRNAs and pre60S subunits, little is known regarding nuclear export of pre40S subunits. The yeast heterodimeric transport receptor Mex67-Mtr2 (TAP-p15 in humans) binds mRNAs and pre60S subunits in the nucleus and facilitates their passage through the nuclear pore complex (NPC) into the cytoplasm by interacting with Phe-Gly (FG)-rich nucleoporins that line its transport channel. By exploiting a combination of genetic, cell-biological, and biochemical approaches, we uncovered an unanticipated role of Mex67-Mtr2 in the nuclear export of 40S pre-ribosomes. We show that recruitment of Mex67-Mtr2 to pre40S subunits requires loops emanating from its NTF2-like domains and that the C-terminal FG-rich nucleoporin interacting UBA-like domain within Mex67 contributes to the transport of pre40S subunits to the cytoplasm. Remarkably, the same loops also recruit Mex67-Mtr2 to pre60S subunits and to the Nup84 complex, the respective interactions crucial for nuclear export of pre60S subunits and mRNAs. Thus Mex67-Mtr2 is a unique transport receptor that employs a common interaction surface to participate in the nuclear export of both pre-ribosomal subunits and mRNAs. Mex67-Mtr2 could engage a regulatory crosstalk among the three major export pathways for optimal cellular growth and proliferation.
Collapse
Affiliation(s)
- Marius B. Faza
- Institute of Biochemistry (IBC), ETH Zurich, Zurich, Switzerland
- MLS Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Yiming Chang
- Institute of Biochemistry (IBC), ETH Zurich, Zurich, Switzerland
| | - Laura Occhipinti
- Institute of Biochemistry (IBC), ETH Zurich, Zurich, Switzerland
- MLS Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Stefan Kemmler
- Institute of Biochemistry (IBC), ETH Zurich, Zurich, Switzerland
| | - Vikram G. Panse
- Institute of Biochemistry (IBC), ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
40
|
Burwick N, Shimamura A, Liu JM. Non-Diamond Blackfan anemia disorders of ribosome function: Shwachman Diamond syndrome and 5q- syndrome. Semin Hematol 2011; 48:136-43. [PMID: 21435510 DOI: 10.1053/j.seminhematol.2011.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A number of human disorders, dubbed ribosomopathies, are linked to impaired ribosome biogenesis or function. These include but are not limited to Diamond Blackfan anemia (DBA), Shwachman Diamond syndrome (SDS), and the 5q- myelodysplastic syndrome (MDS). This review focuses on the latter two non-DBA disorders of ribosome function. Both SDS and 5q- syndrome lead to impaired hematopoiesis and a predisposition to leukemia. SDS, due to bi-allelic mutations of the SBDS gene, is a multi-system disorder that also includes bony abnormalities, and pancreatic and neurocognitive dysfunction. SBDS associates with the 60S subunit in human cells and has a role in subunit joining and translational activation in yeast models. In contrast, 5q- syndrome is associated with acquired haplo-insufficiency of RPS14, a component of the small 40S subunit. RPS14 is critical for 40S assembly in yeast models, and depletion of RPS14 in human CD34(+) cells is sufficient to recapitulate the 5q- erythroid defect. Both SDS and the 5q- syndrome represent important models of ribosome function and may inform future treatment strategies for the ribosomopathies.
Collapse
Affiliation(s)
- Nicholas Burwick
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | |
Collapse
|
41
|
Inside the 40S ribosome assembly machinery. Curr Opin Chem Biol 2011; 15:657-63. [PMID: 21862385 DOI: 10.1016/j.cbpa.2011.07.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 12/29/2022]
Abstract
Ribosome assembly involves rRNA transcription, modification, folding and cleavage from precursor transcripts, and association of ribosomal proteins (Rps). In bacteria, this complex process requires only a handful of proteins in addition to those needed for rRNA transcription, modification and cleavage, while in eukaryotes a large machinery comprising ∼200 proteins in the yeast S. cerevisiae has been identified. Furthermore, while the bacterial assembly factors generally produce only cold-sensitive phenotypes upon deletion, most of the eukaryotic assembly factors are essential, comprising ∼20% of essential yeast proteins. This review explores recent rapid progress in the structural and functional dissection of the 40S assembly machinery.
Collapse
|
42
|
Strunk BS, Loucks CR, Su M, Vashisth H, Cheng S, Schilling J, Brooks CL, Karbstein K, Skiniotis G. Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science 2011; 333:1449-53. [PMID: 21835981 DOI: 10.1126/science.1208245] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ribosome assembly in eukaryotes requires approximately 200 essential assembly factors (AFs) and occurs through ordered events that initiate in the nucleolus and culminate in the cytoplasm. Here, we present the electron cryo-microscopy (cryo-EM) structure of a late cytoplasmic 40S ribosome assembly intermediate from Saccharomyces cerevisiae at 18 angstrom resolution. We obtained cryo-EM reconstructions of preribosomal complexes lacking individual components to define the positions of all seven AFs bound to this intermediate. These late-binding AFs are positioned to prevent each step in the translation initiation pathway. Together, they obstruct the binding sites for initiation factors, prevent the opening of the messenger RNA channel, block 60S subunit joining, and disrupt the decoding site. These redundant mechanisms probably ensure that pre-40S particles do not enter the translation pathway, which would result in their rapid degradation.
Collapse
Affiliation(s)
- Bethany S Strunk
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Campbell MG, Karbstein K. Protein-protein interactions within late pre-40S ribosomes. PLoS One 2011; 6:e16194. [PMID: 21283762 PMCID: PMC3024409 DOI: 10.1371/journal.pone.0016194] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/07/2010] [Indexed: 12/28/2022] Open
Abstract
Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.
Collapse
Affiliation(s)
- Melody G. Campbell
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Katrin Karbstein
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
44
|
O'Donohue MF, Choesmel V, Faubladier M, Fichant G, Gleizes PE. Functional dichotomy of ribosomal proteins during the synthesis of mammalian 40S ribosomal subunits. ACTA ACUST UNITED AC 2010; 190:853-66. [PMID: 20819938 PMCID: PMC2935573 DOI: 10.1083/jcb.201005117] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Subsets of 40S ribosomal subunits are required for initiating rRNA processing, rRNA maturation, and nuclear export. Our knowledge of the functions of metazoan ribosomal proteins in ribosome synthesis remains fragmentary. Using siRNAs, we show that knockdown of 31 of the 32 ribosomal proteins of the human 40S subunit (ribosomal protein of the small subunit [RPS]) strongly affects pre–ribosomal RNA (rRNA) processing, which often correlates with nucleolar chromatin disorganization. 16 RPSs are strictly required for initiating processing of the sequences flanking the 18S rRNA in the pre-rRNA except at the metazoan-specific early cleavage site. The remaining 16 proteins are necessary for progression of the nuclear and cytoplasmic maturation steps and for nuclear export. Distribution of these two subsets of RPSs in the 40S subunit structure argues for a tight dependence of pre-rRNA processing initiation on the folding of both the body and the head of the forming subunit. Interestingly, the functional dichotomy of RPS proteins reported in this study is correlated with the mutation frequency of RPS genes in Diamond-Blackfan anemia.
Collapse
Affiliation(s)
- Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire des Eucaryotes, Université de Toulouse-UPS and Centre National de La Recherche Scientifique, F-31000 Toulouse, France
| | | | | | | | | |
Collapse
|
45
|
Wu GF, Hou YL, Hou WR, Song Y, Zhang T. Giant panda ribosomal protein S14: cDNA, genomic sequence cloning, sequence analysis, and overexpression. GENETICS AND MOLECULAR RESEARCH 2010; 9:2004-15. [PMID: 20957604 DOI: 10.4238/vol9-4gmr899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
RPS14 is a component of the 40S ribosomal subunit encoded by the RPS14 gene and is required for its maturation. The cDNA and the genomic sequence of RPS14 were cloned successfully from the giant panda (Ailuropoda melanoleuca) using RT-PCR technology and touchdown-PCR, respectively; they were both sequenced and analyzed. The length of the cloned cDNA fragment was 492 bp; it contained an open-reading frame of 456 bp, encoding 151 amino acids. The length of the genomic sequence is 3421 bp; it contains four exons and three introns. Alignment analysis indicates that the nucleotide sequence shares a high degree of homology with those of Homo sapiens, Bos taurus, Mus musculus, Rattus norvegicus, Gallus gallus, Xenopus laevis, and Danio rerio (93.64, 83.37, 92.54, 91.89, 87.28, 84.21, and 84.87%, respectively). Comparison of the deduced amino acid sequences of the giant panda with those of these other species revealed that the RPS14 of giant panda is highly homologous with those of B. taurus, R. norvegicus and D. rerio (85.99, 99.34 and 99.34%, respectively), and is 100% identical with the others. This degree of conservation of RPS14 suggests evolutionary selection. Topology prediction shows that there are two N-glycosylation sites, three protein kinase C phosphorylation sites, two casein kinase II phosphorylation sites, four N-myristoylation sites, two amidation sites, and one ribosomal protein S11 signature in the RPS14 protein of the giant panda. The RPS14 gene can be readily expressed in Escherichia coli. When it was fused with the N-terminally His-tagged protein, it gave rise to accumulation of an expected 22-kDa polypeptide, in good agreement with the predicted molecular weight. The expression product obtained can be purified for studies of its function.
Collapse
Affiliation(s)
- G-F Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | | | | | | | | |
Collapse
|
46
|
Lamanna AC, Karbstein K. An RNA conformational switch regulates pre-18S rRNA cleavage. J Mol Biol 2010; 405:3-17. [PMID: 20934433 DOI: 10.1016/j.jmb.2010.09.064] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/27/2010] [Accepted: 09/29/2010] [Indexed: 12/30/2022]
Abstract
To produce mature ribosomal RNAs (rRNAs), polycistronic rRNA transcripts are cleaved in an ordered series of events. We have uncovered the molecular basis for the ordering of two essential cleavage steps at the 3'-end of 18S rRNA. Using in vitro and in vivo structure probing, RNA binding and cleavage experiments, and yeast genetics, we demonstrate that a conserved RNA sequence in the spacer region between the 18S and 5.8S rRNAs base-pairs with the decoding site of 18S rRNA in early assembly intermediates. Nucleolar cleavage at site A(2) excises this sequence element, leading to a conformational switch in pre-18S rRNA, by which the ribosomal decoding site is formed. This conformational switch positions the nuclease Nob1 for cytoplasmic cleavage at the 3'-end of 18S rRNA and is required for the final maturation step of 18S rRNA in vivo and in vitro. More generally, our data show that the intrinsic ability of RNA to form stable structural switches is exploited to order and regulate RNA-dependent biological processes.
Collapse
Affiliation(s)
- Allison C Lamanna
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
47
|
Abstract
The 5q- syndrome is the most distinct of all the myelodysplastic syndromes with a clear genotype/phenotype relationship. The significant progress made during recent years has been based on the determination of the commonly deleted region and the demonstration of haploinsufficiency for the ribosomal gene RPS14. The functional screening of all the genes in the commonly deleted region determined that RPS14 haploinsufficiency is the probable cause of the erythroid defect in the 5q- syndrome. A mouse model of the human 5q- syndrome has now been created by chromosomal engineering involving a large-scale deletion of the Cd74-Nid67 interval (containing RPS14). A variety of lines of evidence support the model of ribosomal deficiency causing p53 activation and defective erythropoiesis, including most notably the crossing of the "5q- mice" with p53-deficient mice, thereby ameliorating the erythroid progenitor defect. Emerging evidence supports the notion that the p53 activation observed in the mouse model may also apply to the human 5q- syndrome. Other mouse modeling data suggest that haploinsufficiency of the microRNA genes miR-145 and miR-146a may contribute to the thrombocytosis seen in the 5q- syndrome. Lenalidomide has become an established therapy for the 5q- syndrome, although its precise mode of action remains uncertain.
Collapse
|
48
|
Babiano R, de la Cruz J. Ribosomal protein L35 is required for 27SB pre-rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Res 2010; 38:5177-92. [PMID: 20392820 PMCID: PMC2926614 DOI: 10.1093/nar/gkq260] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/19/2010] [Accepted: 03/29/2010] [Indexed: 11/12/2022] Open
Abstract
Ribosome synthesis involves the concomitance of pre-rRNA processing and ribosomal protein assembly. In eukaryotes, this is a complex process that requires the participation of specific sequences and structures within the pre-rRNAs, at least 200 trans-acting factors and the ribosomal proteins. There is little information on the function of individual 60S ribosomal proteins in ribosome synthesis. Herein, we have analysed the contribution of ribosomal protein L35 in ribosome biogenesis. In vivo depletion of L35 results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. Pulse-chase, northern hybridization and primer extension analyses show that processing of the 27SB to 7S pre-rRNAs is strongly delayed upon L35 depletion. Most likely as a consequence of this, release of pre-60S ribosomal particles from the nucleolus to the nucleoplasm is also blocked. Deletion of RPL35A leads to similar although less pronounced phenotypes. Moreover, we show that L35 assembles in the nucleolus and binds to early pre-60S ribosomal particles. Finally, flow cytometry analysis indicated that L35-depleted cells mildly delay the G1 phase of the cell cycle. We conclude that L35 assembly is a prerequisite for the efficient cleavage of the internal transcribed spacer 2 at site C(2).
Collapse
Affiliation(s)
| | - Jesús de la Cruz
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
49
|
Granneman S, Petfalski E, Swiatkowska A, Tollervey D. Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA-protein cross-linking. EMBO J 2010; 29:2026-36. [PMID: 20453830 PMCID: PMC2892368 DOI: 10.1038/emboj.2010.86] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 04/14/2010] [Indexed: 12/21/2022] Open
Abstract
Understanding of eukaryotic ribosome synthesis has been slowed by a lack of structural data for the pre-ribosomal particles. We report rRNA-binding sites for six late-acting 40S ribosome synthesis factors, three of which cluster around the 3' end of the 18S rRNA in model 3D structures. Enp1 and Ltv1 were previously implicated in 'beak' structure formation during 40S maturation--and their binding sites indicate direct functions. The kinase Rio2, putative GTPase Tsr1 and dimethylase Dim1 bind sequences involved in tRNA interactions and mRNA decoding, indicating that their presence is incompatible with translation. The Dim1- and Tsr1-binding sites overlap with those of homologous Escherichia coli proteins, revealing conservation in assembly pathways. The primary binding sites for the 18S 3'-endonuclease Nob1 are distinct from its cleavage site and were unaltered by mutation of the catalytic PIN domain. Structure probing indicated that at steady state the cleavage site is likely unbound by Nob1 and flexible in the pre-rRNA. Nob1 binds before pre-rRNA cleavage, and we conclude that structural reorganization is needed to bring together the catalytic PIN domain and its target.
Collapse
Affiliation(s)
- Sander Granneman
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, UK
| | | | | | | |
Collapse
|
50
|
Genetic interactions show the importance of rRNA modification machinery for the role of Rps15p during ribosome biogenesis in S. cerevisiae. PLoS One 2010; 5:e10472. [PMID: 20454621 PMCID: PMC2862742 DOI: 10.1371/journal.pone.0010472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/28/2010] [Indexed: 11/19/2022] Open
Abstract
Rps15p, an essential ribosomal protein, was previously shown to be critical for nuclear export of small subunit pre-particles. We have designed a synthetic lethal screen in Saccharomyces cerevisiæ to identify its genetic partners and further elucidate its role during ribosomal biogenesis. Our screen revealed interactions with mutants affected at various stages during ribosome biogenesis, from early nucleolar steps to nuclear export. Mutations were identified in genes encoding proteins involved in early ribosome biogenesis steps, like the small subunit processome component Utp15p, the 90S pre-ribosome factor Slx9p and the H/ACA snoRNP core protein Nhp2p. In addition, we found a synthetic lethality with BUD23, a gene encoding a methyltransferase involved both in rRNA modification and small subunit nuclear export. Interestingly, deletion of snR36 or snR85, two H/ACA snoRNAs that direct modifications close to Rps15p's binding site on the rRNA, produces mild and opposite effects on growth in an rps15 hypomorphic background. These data uncover an unreported link between a ribosomal protein and rRNA modification machinery.
Collapse
|