Maaskant-van Wijk PA, Faas BH, de Ruijter JA, Overbeeke MA, von dem Borne AE, van Rhenen DJ, van der Schoot CE. Genotyping of RHD by multiplex polymerase chain reaction analysis of six RHD-specific exons.
Transfusion 1998;
38:1015-21. [PMID:
9838930 DOI:
10.1046/j.1537-2995.1998.38111299056309.x]
[Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND
Qualitative RHD variants are the result of the replacement of RHD exons by their RHCE counterparts or of point mutations in RHD causing amino acid substitutions. For RHD typing, the use of at least two RHD typing polymerase chain reaction (PCR) assays directed at different regions of RHD is advised to prevent discrepancies between phenotyping and genotyping results, but even then discrepancies occur. A multiplex RHD PCR based on amplification of six RHD-specific exons in one reaction mixture is described.
STUDY DESIGN AND METHODS
Six RHD-specific primer sets were designed to amplify RHD exons 3, 4, 5, 6, 7, and 9. DNA from 119 donors (87 D+, 14 D- and 18 with known D variants; whites and nonwhites) with known Rh phenotypes was analyzed.
RESULTS
All six RHD-specific exons from 85 D+ individuals were amplified, whereas none of the RHD exons from 13 D- individuals were amplified. Multiplex PCR analysis showed that the genotypes of two donors typed as D+ were DIVa and DVa. Red cell typing confirmed these findings. From all D variants tested (DIIIc, DIVa, DIVb, DVa, DVI, DDFR, DDBT) and from RoHar, RHD-specific exons were amplified as expected from the proposed genotypes.
CONCLUSION
The multiplex PCR assay is reliable in determining genotypes in people who have the D+ and partial D phenotypes as well as in discovering people with new D variants. Because the multiplex PCR is directed at six regions of RHD, the chance of discrepancies is markedly reduced. The entire analysis can be performed in one reaction mixture, which results in higher speed, higher accuracy, and the need for smaller samples. This technique might be of great value in prenatal RHD genotyping.
Collapse