1
|
Wu CC, Kao YH, Kim YD, Ting CC, Chen H, Wu FC, Miura K, Ogasawara T, Hoshi K, Lo WL, Chen YC, Jeng JH, Ko EC. Impact of red-lime and white-lime betel quid on oral cell lines: Cytotoxicity and effects on fibronectin and type I collagen expression. J Dent Sci 2025; 20:819-829. [PMID: 40224095 PMCID: PMC11993079 DOI: 10.1016/j.jds.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Indexed: 04/15/2025] Open
Abstract
Background/purpose Chewing betel quid is linked to an increased risk of oral cancer. This study investigates the effects of red-lime and white-lime betel quid extracts on oral cell lines, focusing on cytotoxicity and their influence on fibronectin and Type I collagen expression, which were crucial for oral tissue integrity and cancer development. Materials and methods Four oral cell lines, human gingival fibroblasts, tongue squamous cell carcinoma cells, human periodontal ligament fibroblasts, and human fetal osteoblasts, were treated with red-lime and white-lime betel quid extracts. Cytotoxicity assays and Western blotting were used to assess cell viability and protein expression. Results Both red-lime and white-lime betel quid extracts exhibited dose-dependent effects on all tested cell lines, with variations in sensitivity observed among cell types. Notably, red-lime betel quid exerted stronger cytotoxic effects on human gingival fibroblasts and human fetal osteoblasts. Red-lime betel quid increased fibronectin and Type I collagen in periodontal ligament fibroblasts but reduced both proteins in fetal osteoblasts. White-lime betel quid extract generally elevated fibronectin and decreased Type I collagen across cell lines. Conclusion This study reveals a nuanced, concentration-dependent impact of betel quid extracts on oral cells, with significant variability in cytotoxicity and changes in fibronectin and Type I collagen expression. These findings suggest that abrupt cessation of betel quid chewing can lead to dental issues such as mobile teeth. Red-lime betel quid uniquely affects periodontal ligament fibroblasts by increasing both fibronectin and Type I collagen.
Collapse
Affiliation(s)
- Chia-Chen Wu
- Liberty Lab of Tissue Engineering Takao, Kaohsiung, Taiwan
| | - Yu-Hsun Kao
- Liberty Lab of Tissue Engineering Takao, Kaohsiung, Taiwan
- Division of Oral and Maxillofacial Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yong-Deok Kim
- Department of Oral and Maxillofacial Surgery School of Dentistry and Dental Research Institute, and Institute of Translational Dental Sciences, Pusan National University, Yangsan, South Korea
| | - Chun-Chan Ting
- Liberty Lab of Tissue Engineering Takao, Kaohsiung, Taiwan
- School of Dentistry, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hangshen Chen
- Liberty Lab of Tissue Engineering Takao, Kaohsiung, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Feng-Cheng Wu
- Liberty Lab of Tissue Engineering Takao, Kaohsiung, Taiwan
| | - Keiichiro Miura
- Division of Oral and Maxillofacial Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toru Ogasawara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuto Hoshi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wen-liang Lo
- College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Edward Chengchuan Ko
- Liberty Lab of Tissue Engineering Takao, Kaohsiung, Taiwan
- Division of Oral and Maxillofacial Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Precise Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Karbowniczek JE, Berniak K, Knapczyk-Korczak J, Williams G, Bryant JA, Nikoi ND, Banzhaf M, de Cogan F, Stachewicz U. Strategies of nanoparticles integration in polymer fibers to achieve antibacterial effect and enhance cell proliferation with collagen production in tissue engineering scaffolds. J Colloid Interface Sci 2023; 650:1371-1381. [PMID: 37480652 DOI: 10.1016/j.jcis.2023.07.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Current design strategies for biomedical tissue scaffolds are focused on multifunctionality to provide beneficial microenvironments to support tissue growth. We have developed a simple yet effective approach to create core-shell fibers of poly(3-hydroxybuty-rate-co-3-hydroxyvalerate) (PHBV), which are homogenously covered with titanium dioxide (TiO2) nanoparticles. Unlike the blend process, co-axial electrospinning enabled the uniform distribution of nanoparticles without the formation of large aggregates. We observed 5 orders of magnitude reduction in Escherichia coli survival after contact with electrospun scaffolds compared to the non-material control. In addition, our hybrid cores-shell structure supported significantly higher osteoblast proliferation after 7 days of cell culture and profound generation of 3D networked collagen fibers after 14 days. The organic-inorganic composite scaffold produced in this study demonstrates a unique combination of antibacterial properties and increased bone regeneration properties. In summary, the multifunctionality of the presented core-shell cPHBV+sTiO2 scaffolds shows great promise for biomedical applications.
Collapse
Affiliation(s)
- J E Karbowniczek
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Cracow, Poland
| | - K Berniak
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Cracow, Poland
| | - J Knapczyk-Korczak
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Cracow, Poland
| | - G Williams
- University of Birmingham, Institute for Microbiology and Infection, B15 2TT Birmingham, UK
| | - J A Bryant
- University of Birmingham, Institute for Microbiology and Infection, B15 2TT Birmingham, UK
| | - N D Nikoi
- University of Nottingham, School of Pharmacy, NG7 2RD Nottingham, UK
| | - M Banzhaf
- University of Birmingham, Institute for Microbiology and Infection, B15 2TT Birmingham, UK
| | - F de Cogan
- University of Nottingham, School of Pharmacy, NG7 2RD Nottingham, UK
| | - U Stachewicz
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Cracow, Poland.
| |
Collapse
|
3
|
Solorzano E, Alejo AL, Ball HC, Robinson GT, Solorzano AL, Safadi R, Douglas J, Kelly M, Safadi FF. The Lymphatic Endothelial Cell Secretome Inhibits Osteoblast Differentiation and Bone Formation. Cells 2023; 12:2482. [PMID: 37887326 PMCID: PMC10605748 DOI: 10.3390/cells12202482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Complex lymphatic anomalies (CLAs) are a set of rare diseases with unique osteopathic profiles. Recent efforts have identified how lymphatic-specific somatic activating mutations can induce abnormal lymphatic formations that are capable of invading bone and inducing bone resorption. The abnormal bone resorption in CLA patients has been linked to overactive osteoclasts in areas with lymphatic invasions. Despite these findings, the mechanism associated with progressive bone loss in CLAs remains to be elucidated. In order to determine the role of osteoblasts in CLAs, we sought to assess osteoblast differentiation and bone formation when exposed to the lymphatic endothelial cell secretome. When treated with lymphatic endothelial cell conditioned medium (L-CM), osteoblasts exhibited a significant decrease in proliferation, differentiation, and function. Additionally, L-CM treatment also inhibited bone formation through a neonatal calvaria explant culture. These findings are the first to reveal how osteoblasts may be actively suppressed during bone lymphatic invasion in CLAs.
Collapse
Affiliation(s)
- Ernesto Solorzano
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
- Musculoskeletal Research Group, NEOMED, Rootstown, OH 44272, USA;
- Basic and Translational Biomedicine (BTB) Graduate Program, College of Graduate Studies, NEOMED, Rootstown, OH 44272, USA;
| | - Andrew L. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
| | - Hope C. Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
- Musculoskeletal Research Group, NEOMED, Rootstown, OH 44272, USA;
- Basic and Translational Biomedicine (BTB) Graduate Program, College of Graduate Studies, NEOMED, Rootstown, OH 44272, USA;
| | - Gabrielle T. Robinson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
- Musculoskeletal Research Group, NEOMED, Rootstown, OH 44272, USA;
- Basic and Translational Biomedicine (BTB) Graduate Program, College of Graduate Studies, NEOMED, Rootstown, OH 44272, USA;
| | - Andrea L. Solorzano
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
| | - Rama Safadi
- College of Arts and Sciences, Kent State University, Kent, OH 44243, USA;
| | - Jacob Douglas
- Musculoskeletal Research Group, NEOMED, Rootstown, OH 44272, USA;
| | - Michael Kelly
- Basic and Translational Biomedicine (BTB) Graduate Program, College of Graduate Studies, NEOMED, Rootstown, OH 44272, USA;
- Department of Pediatric Hematology Oncology and Blood, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fayez F. Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
- Musculoskeletal Research Group, NEOMED, Rootstown, OH 44272, USA;
- Basic and Translational Biomedicine (BTB) Graduate Program, College of Graduate Studies, NEOMED, Rootstown, OH 44272, USA;
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
4
|
Multi-pin contact drawing enables production of anisotropic collagen fiber substrates for alignment of fibroblasts and monocytes. Colloids Surf B Biointerfaces 2022; 215:112525. [PMID: 35500531 DOI: 10.1016/j.colsurfb.2022.112525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
Abstract
Type I collagen is the most abundant protein in the human body and is known to play important roles in numerous biological processes including tissue morphogenesis and wound healing. As such, it is one of the most frequently used substrates for cell culture, and there have been considerable efforts to develop collagen-based cell culture substrates that mimic the structural organization of collagen as it is found in native tissues, i.e., collagen fibers. However, producing collagen fibers from extracted collagen has been notoriously difficult, with existing methods providing only low throughput production of collagen fibers. In this study, we prepared collagen fibers using a highly efficient, bio-friendly, and cost-effective approach termed contact drawing, which uses an entangled polymer fluid to aid in fiber formation. Contact drawing technology has been demonstrated previously for collagen using highly concentrated dextran solutions with low concentrations of collagen. Here, we show that by replacing dextran with polyethylene oxide (PEO), high collagen content fibers may be readily formed from mixtures of soluble collagen and PEO, a polymer that readily forms fibers by contact drawing at concentrations as low as 0.5%wt. The presence of collagen and the formation of well-ordered collagen structures in the resulting fibers were characterized by attenuated total reflectance Fourier-transform infrared spectromicroscopy, Raman spectromicroscopy, and fluorescence microscopy. Corresponding to well-ordered collagen, the mechanical properties of the PEO-collagen fibers approximated those observed for native collagen fibers. Growth of cells on aligned PEO-collagen fibers attached to a polydimethyl siloxane support was examined for human dermal fibroblast (WS1) and human peripheral leukemia blood monocyte (THP-1) cell lines. WS1 and THP-1 cells readily attached, displayed alignment through migration and spreading, and proliferated on the collagen fiber substrate over the course of several days. We also demonstrated the retrieval of viable cells from the PEO-collagen fiber substrates through enzymatic digestion of the collagen substrate with collagenase IV.
Collapse
|
5
|
Cerqueira A, García-Arnáez I, Romero-Gavilán F, Azkargorta M, Elortza F, Martín de Llanos JJ, Carda C, Gurruchaga M, Goñi I, Suay J. Complex effects of Mg-biomaterials on the osteoblast cell machinery: A proteomic study. BIOMATERIALS ADVANCES 2022; 137:212826. [PMID: 35929259 DOI: 10.1016/j.bioadv.2022.212826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
The cell-biomaterial interface is highly complex; thousands of molecules and many processes participate in its formation. Growing demand for improved biomaterials has highlighted the need to understand the structure and functions of this interface. Proteomic methods offer a viable alternative to the traditional in vitro techniques for analyzing such systems. Magnesium is a promoter of cell adhesion and osteogenesis. Here, we used the LC-MS/MS to compare the protein expression profiles of human osteoblasts (HOb) exposed to sol-gel coatings without (MT) and with Mg (MT1.5Mg) for 1, 3, and 7 days. PANTHER, DAVID, and IPA databases were employed for protein identification and data analysis. Confocal microscopy and gene expression analysis were used for further characterization. Exposure to MT1.5Mg increased the HOb cell area and the expression of SP7, RUNX2, IBP3, COL3A1, MXRA8, and FBN1 genes. Proteomic analysis showed that MT1.5Mg affected the early osteoblast maturation (PI3/AKT, mTOR, ERK/MAPK), insulin metabolism, cell adhesion (integrin, FAK, actin cytoskeleton regulation) and oxidative stress pathways. Thus, the effects of Mg on cell adhesion and osteogenesis are rather complex, affecting several pathways rather than single processes. Our analysis also confirms the potential of proteomics in biomaterial characterization, showing a good correlation with in vitro results.
Collapse
Affiliation(s)
- Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Iñaki García-Arnáez
- Department of Science and Technology of Polymers, University of the Basque Country, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - José Javier Martín de Llanos
- Department of Pathology Medicine and Odontology, Medicine Faculty, University of Valencia, Av Blasco Ibáñez, 13, 46010, Valencia, Spain; Research Institute of the University Clinical Hospital of Valencia (INCLIVA), C. de Menéndez y Pelayo, 4, 46010, Valencia, Spain
| | - Carmen Carda
- Department of Pathology Medicine and Odontology, Medicine Faculty, University of Valencia, Av Blasco Ibáñez, 13, 46010, Valencia, Spain; Research Institute of the University Clinical Hospital of Valencia (INCLIVA), C. de Menéndez y Pelayo, 4, 46010, Valencia, Spain
| | - Mariló Gurruchaga
- Department of Science and Technology of Polymers, University of the Basque Country, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Isabel Goñi
- Department of Science and Technology of Polymers, University of the Basque Country, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| |
Collapse
|
6
|
Wu CY, Wu TY, Guan ZY, Wang PY, Yang YC, Huang CW, Lin TH, Chen HY. Vapor-phased fabrication and modulation of cell-laden scaffolding materials. Nat Commun 2021; 12:3413. [PMID: 34099701 PMCID: PMC8184845 DOI: 10.1038/s41467-021-23776-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/18/2021] [Indexed: 11/09/2022] Open
Abstract
Bottom-up approaches using building blocks of modules to fabricate scaffolds for tissue engineering applications have enabled the fabrication of structurally complex and multifunctional materials allowing for physical and chemical flexibility to better mimic the native extracellular matrix. Here we report a vapor-phased fabrication process for constructing three-dimensional modulated scaffold materials via simple steps based on controlling mass transport of vapor sublimation and deposition. We demonstrate the fabrication of scaffolds comprised of multiple biomolecules and living cells with built-in boundaries separating the distinct compartments containing defined biological configurations and functions. We show that the fabricated scaffolds have mass production potential. We demonstrate overall >80% cell viability of encapsulated cells and that modulated scaffolds exhibit enhanced cell proliferation, osteogenesis, and neurogenesis, which can be assembled into various geometric configurations. We perform cell co-culture experiments to show independent osteogenesis and angiogenesis activities from separate compartments in one scaffold construct.
Collapse
Affiliation(s)
- Chih-Yu Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ting-Ying Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Zhen-Yu Guan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Peng-Yuan Wang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yen-Ching Yang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chao-Wei Huang
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Tzu-Hung Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Motoji H, To M, Hidaka K, Matsuo M. Vitamin C and eggshell membrane facilitate orthodontic tooth movement and induce histological changes in the periodontal tissue. J Oral Biosci 2020; 62:80-87. [DOI: 10.1016/j.job.2020.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/15/2022]
|