1
|
Pormohammad A, Hansen D, Turner RJ. Antibacterial, Antibiofilm, and Antioxidant Activity of 15 Different Plant-Based Natural Compounds in Comparison with Ciprofloxacin and Gentamicin. Antibiotics (Basel) 2022; 11:1099. [PMID: 36009966 PMCID: PMC9404727 DOI: 10.3390/antibiotics11081099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Plant-based natural compounds (PBCs) are comparatively explored in this study to identify the most effective and safe antibacterial agent/s against six World Health Organization concern pathogens. Based on a contained systematic review, 11 of the most potent PBCs as antibacterial agents are included in this study. The antibacterial and antibiofilm efficacy of the included PBCs are compared with each other as well as common antibiotics (ciprofloxacin and gentamicin). The whole plants of two different strains of Cannabis sativa are extracted to compare the results with sourced ultrapure components. Out of 15 PBCs, tetrahydrocannabinol, cannabidiol, cinnamaldehyde, and carvacrol show promising antibacterial and antibiofilm efficacy. The most common antibacterial mechanisms are explored, and all of our selected PBCs utilize the same pathway for their antibacterial effects. They mostly target the bacterial cell membrane in the initial step rather than the other mechanisms. Reactive oxygen species production and targeting [Fe-S] centres in the respiratory enzymes are not found to be significant, which could be part of the explanation as to why they are not toxic to eukaryotic cells. Toxicity and antioxidant tests show that they are not only nontoxic but also have antioxidant properties in Caenorhabditis elegans as an animal model.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
- C-Crest Laboratories Inc., Montreal, QC H1P 3H8, Canada
| | - Dave Hansen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
2
|
Fields FR, Lee SW, McConnell MJ. Using bacterial genomes and essential genes for the development of new antibiotics. Biochem Pharmacol 2016; 134:74-86. [PMID: 27940263 DOI: 10.1016/j.bcp.2016.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
The shrinking antibiotic development pipeline together with the global increase in antibiotic resistant infections requires that new molecules with antimicrobial activity are developed. Traditional empirical screening approaches of natural and non-natural compounds have identified the majority of antibiotics that are currently available, however this approach has produced relatively few new antibiotics over the last few decades. The vast amount of bacterial genome sequence information that has become available since the sequencing of the first bacterial genome more than 20years ago holds potential for contributing to the discovery of novel antimicrobial compounds. Comparative genomic approaches can identify genes that are highly conserved within and between bacterial species, and thus may represent genes that participate in key bacterial processes. Whole genome mutagenesis studies can also identify genes necessary for bacterial growth and survival under different environmental conditions, making them attractive targets for the development of novel inhibitory compounds. In addition, transcriptomic and proteomic approaches can be used to characterize RNA and protein levels on a cellular scale, providing information on bacterial physiology that can be applied to antibiotic target identification. Finally, bacterial genomes can be mined to identify biosynthetic pathways that produce many intrinsic antimicrobial compounds and peptides. In this review, we provide an overview of past and current efforts aimed at using bacterial genomic data in the discovery and development of novel antibiotics.
Collapse
Affiliation(s)
- Francisco R Fields
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Michael J McConnell
- Biomedical Institute of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
3
|
Killer peptide: a novel paradigm of antimicrobial, antiviral and immunomodulatory auto-delivering drugs. Future Med Chem 2012; 3:1209-31. [PMID: 21806382 DOI: 10.4155/fmc.11.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The incidence of life-threatening viral and microbial infections has dramatically increased over recent decades. Despite significant developments in anti-infective chemotherapy, many issues have increasingly narrowed the therapeutic options, making it imperative to discover new effective molecules. Among them, small peptides are arousing great interest. This review will focus in particular on a killer peptide, engineered from an anti-idiotypic recombinant antibody that mimics the activity of a wide-spectrum antimicrobial yeast killer toxin targeting β-glucan cell-wall receptors. The in vitro and in vivo antimicrobial, antiviral and immunomodulatory activities of killer peptide and its ability to spontaneously and reversibly self-assemble and slowly release its active dimeric form over time will be discussed as a novel paradigm of targeted auto-delivering drugs.
Collapse
|
4
|
Wecke T, Mascher T. Antibiotic research in the age of omics: from expression profiles to interspecies communication. J Antimicrob Chemother 2011; 66:2689-704. [DOI: 10.1093/jac/dkr373] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
5
|
Has nature already identified all useful antibacterial targets? Curr Opin Microbiol 2008; 11:387-92. [PMID: 18804175 DOI: 10.1016/j.mib.2008.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 07/18/2008] [Accepted: 08/22/2008] [Indexed: 11/20/2022]
Abstract
Novel antimicrobial targets are urgently needed to overcome rising antibiotic resistance of important human pathogens. However, evidence from previous antimicrobial screenings, in silico analysis, and experimental target evaluation suggests that the number of novel bacterial broad-spectrum targets might be severely limited. This is because of the poor conservation of genes among diverse bacterial pathogens, partial functional redundancy and nutrient-rich host environments. Remaining opportunities under these circumstances include the development of narrow-spectrum antibiotics against specific pathogens and the exploration of target combinations.
Collapse
|
6
|
Enna S, Feuerstein G, Piette J, Williams M. Fifty years of Biochemical Pharmacology: The discipline and the journal. Biochem Pharmacol 2008; 76:1-10. [DOI: 10.1016/j.bcp.2008.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 03/31/2008] [Indexed: 01/01/2023]
|
7
|
Sun Y, Wipat A, Pocock M, Lee PA, Flanagan K, Worthington JT. Exploring microbial genome sequences to identify protein families on the grid. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE : A PUBLICATION OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY 2007; 11:435-42. [PMID: 17674626 DOI: 10.1109/titb.2007.892913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The analysis of microbial genome sequences can identify protein families that provide potential drug targets for new antibiotics. With the rapid accumulation of newly sequenced genomes, this analysis has become a computationally intensive and data-intensive problem. This paper describes the development of a Web-service-enabled, component-based, architecture to support the large-scale comparative analysis of complete microbial genome sequences and the subsequent identification of orthologues and protein families (Microbase). The system is coordinated through the use of Web-service-based notifications and integrates distributed computing resources together with genomic databases to realize all-against-all comparisons for a large volume of genome sequences and to present the data in a computationally amenable format through a Web service interface. We demonstrate the use of the system in searching for orthologues and candidate protein families, which ultimately could lead to the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Yudong Sun
- Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | | | | | | | | | | |
Collapse
|
8
|
Lerner CG, Hajduk PJ, Wagner R, Wagenaar FL, Woodall C, Gu YG, Searle XB, Florjancic AS, Zhang T, Clark RF, Cooper CS, Mack JC, Yu L, Cai M, Betz SF, Chovan LE, McCall JO, Black-Schaefer CL, Kakavas SJ, Schurdak ME, Comess KM, Walter KA, Edalji R, Dorwin SA, Smith RA, Hebert EJ, Harlan JE, Metzger RE, Merta PJ, Baranowski JL, Coen ML, Thornewell SJ, Shivakumar AG, Saiki AY, Soni N, Bui M, Balli DJ, Sanders WJ, Nilius AM, Holzman TF, Fesik SW, Beutel BA. From Bacterial Genomes to Novel Antibacterial Agents: Discovery, Characterization, and Antibacterial Activity of Compounds that Bind to HI0065 (YjeE) from Haemophilus influenzae. Chem Biol Drug Des 2007; 69:395-404. [PMID: 17581233 DOI: 10.1111/j.1747-0285.2007.00521.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As part of a fully integrated and comprehensive strategy to discover novel antibacterial agents, NMR- and mass spectrometry-based affinity selection screens were performed to identify compounds that bind to protein targets uniquely found in bacteria and encoded by genes essential for microbial viability. A biphenyl acid lead series emerged from an NMR-based screen with the Haemophilus influenzae protein HI0065, a member of a family of probable ATP-binding proteins found exclusively in eubacteria. The structure-activity relationships developed around the NMR-derived biphenyl acid lead were consistent with on-target antibacterial activity as the Staphylococcus aureus antibacterial activity of the series correlated extremely well with binding affinity to HI0065, while the correlation of binding affinity with B-cell cytotoxicity was relatively poor. Although further studies are needed to conclusively establish the mode of action of the biphenyl series, these compounds represent novel leads that can serve as the basis for the development of novel antibacterial agents that appear to work via an unprecedented mechanism of action. Overall, these results support the genomics-driven hypothesis that targeting bacterial essential gene products that are not present in eukaryotic cells can identify novel antibacterial agents.
Collapse
Affiliation(s)
- Claude G Lerner
- Abbott Global Pharmaceutical Research and Development, Abbott Park, IL 60064-6098, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Antibacterial discovery research has been driven, medically, commercially and intellectually, by the need for new therapeutics that are not subject to the resistance mechanisms that have evolved to combat previous generations of antibacterial agents. This need has often been equated with the identification and exploitation of novel targets. But efforts towards discovery and development of inhibitors of novel targets have proved frustrating. It might be that the 'good old targets' are qualitatively different from the crop of all possible novel targets. What has been learned from existing targets that can be applied to the quest for new antibacterials?
Collapse
Affiliation(s)
- Lynn L Silver
- LL Silver Consulting, Springfield, New Jersey 07081, USA.
| |
Collapse
|
10
|
Singh SB, Barrett JF. Empirical antibacterial drug discovery—Foundation in natural products. Biochem Pharmacol 2006; 71:1006-15. [PMID: 16412984 DOI: 10.1016/j.bcp.2005.12.016] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 12/09/2005] [Accepted: 12/09/2005] [Indexed: 11/21/2022]
Abstract
Natural products have been a rich source in providing leads for the development of drugs for the treatment of bacterial infections. However, beyond the discovery of the natural product, thienamycin and the synthetic lead, oxazolidinone in the 1970s, there has been a dearth of new compounds. This commentary provides an overview of current antibiotic leads and their mechanism of action, and highlights tools that can be applied to the discovery of new antibiotics.
Collapse
Affiliation(s)
- Sheo B Singh
- Natural Products Chemistry, RY80Y-350, Merck Research Laboratories, P.O. 2000, Rahway, NJ 07065, USA.
| | | |
Collapse
|
11
|
van Hoek AHAM, Scholtens IMJ, Cloeckaert A, Aarts HJM. Detection of antibiotic resistance genes in different Salmonella serovars by oligonucleotide microarray analysis. J Microbiol Methods 2005; 62:13-23. [PMID: 15823391 DOI: 10.1016/j.mimet.2005.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Accepted: 01/10/2005] [Indexed: 11/25/2022]
Abstract
In this study the feasibility of 50- and 60-mer oligonucleotides in microarray analysis for the detection and identification of antibiotic resistance genes in various Salmonella strains was assessed. The specificity of the designed oligonucleotides was evaluated, furthermore the optimal spotting concentration was determined. The oligonucleotide microarray was used to screen two sets of Salmonella strains for the presence of several antibiotic resistance genes. Set 1 consisted of strains with variant Salmonella Genomic Island 1 (SGI1) multidrug resistance (MDR) regions of which the antibiotic resistance profiles and genotypes were known. The second set contained strains of which initially only phenotypic data were available. The microarray results of the first set of Salmonella strains perfectly matched with the phenotypic and genotypic information. The microarray data of the second set were almost completely in concordance with the available phenotypic data. It was concluded that the microarray technique in combination with random primed genomic labeling and 50- or 60-mer oligonucleotides is a powerful tool for the detection of antibiotic resistance genes in bacteria.
Collapse
Affiliation(s)
- Angela H A M van Hoek
- RIKILT-Institute of Food Safety, Bornsesteeg 45, NL-6708PD Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
12
|
Acharya T, Kennedy R, Daar AS, Singer PA. Biotechnology to improve health in developing countries -- a review. Mem Inst Oswaldo Cruz 2004; 99:341-50. [PMID: 15322621 DOI: 10.1590/s0074-02762004000400001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
The growing health disparities between the developing and the developed world call for urgent action from the scientific community. Science and technology have in the past played a vital role in improving public health. Today, with the tremendous potential of genomics and other advances in the life sciences, the contribution of science to improve public health and reduce global health disparities is more pertinent than ever before. Yet the benefits of modern medicine still have not reached millions of people in developing countries. It is crucial to recognize that science and technology can be used very effectively in partnership with public health practices in developing countries and can enhance their efficacy. The fight to improve global health needs, in addition to effective public health measures, requires rapid and efficient diagnostic tools; new vaccines and drugs, efficient delivery methods and novel approaches to therapeutics; and low-cost restoration of water, soil and other natural resources. In 2002, the University of Toronto published a report on the "Top 10 Biotechnologies for Improving Health in Developing Countries". Here we review these new and emerging biotechnologies and explore how they can be used to support the goals of developing countries in improving health.
Collapse
Affiliation(s)
- Tara Acharya
- Joint Centre for Bioethics, University of Toronto, 88 College St., Toronto ON, M5G-1L4, Canada
| | | | | | | |
Collapse
|
13
|
Barrett CT, Barrett JF. Antibacterials: are the new entries enough to deal with the emerging resistance problems? Curr Opin Biotechnol 2003; 14:621-6. [PMID: 14662392 DOI: 10.1016/j.copbio.2003.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fifty years of making analogs based on less than ten antibacterial scaffolds has resulted in the development and marketing of over 100 antibacterial agents but, with the exception of the oxazolidinone core, no new scaffolds have emerged in the past 30 years to address emerging resistance problems. As the support for antibacterial research shifts away from large pharmaceutical companies, a wave of biotechnology companies have pursued a diverse choice of targets resulting in several novel classes of agent in late-stage development. Although critical for certain resistance niche needs, these agents are unlikely to provide the solution to the requirement for a major novel scaffold class of antibacterials.
Collapse
|
14
|
Abstract
The widespread use of antibiotics impacts both the bacterial ecology and the host at multiple levels, both advantageously and deleteriously. Since serious bacterial infection can lead to death in the absence of antibiotic therapy, antibiotics remain a necessary weapon in the clinician's arsenal for maintaining good health. It is thus critical that the placement and usage of these crucial antibiotics be constantly improved, and that emerging antibiotic resistance is vigorously assessed. To realize both these ends, it may be valuable to turn to the discipline of pharmacogenomics and develop it for use in a fairly novel way, that is, as the means by which to determine and analyze the impact of antibiotic therapy on both the pathogen and host.
Collapse
Affiliation(s)
- Daniel B Davison
- Bristol-Myers Squibb Pharmaceutical Research Institute, Lawrenceville, NJ 08534, USA. daniel.davison@ bms.com
| | | |
Collapse
|
15
|
De Backer MD, Van Dijck P, Luyten WHML. Functional genomics approaches for the identification and validation of antifungal drug targets. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 2:113-27. [PMID: 12083946 DOI: 10.2165/00129785-200202020-00004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
So far, antifungal drug discovery seems to have benefited little from the enormous advances in the field of genomics in the last decade. Although it has become clear that traditional drug screening is not delivering the long-awaited novel potent antifungals, little has been reported on efforts to use novel genome-based methodologies in the quest for new drugs acting on human pathogenic fungi. Although the market for a novel systemic and even topical broad-spectrum antifungal appears considerable, many large pharmaceutical companies have decided to scale back their activities in antifungal drug discovery. Here we report on some of the recent advances in genomics-based technologies that will allow us not only to identify and validate novel drug targets but hopefully also to discover active therapeutic agents. Novel drug targets have already been found by 'en masse' gene inactivation strategies (e.g. using antisense RNA inhibition). In addition, genome expression profiling using DNA microarrays helps to assign gene function but also to understand better the mechanism of action of known drugs (e.g. itraconazole) and to elucidate how new drug candidates work. No doubt, we have a long way to go just to catch up with the advances made in other therapeutic areas, but all tools are at hand to derive practical benefits from the genomics revolution. The next few years should prove a very exciting time in the history of antifungal drug discovery.
Collapse
|
16
|
Donadio S, Carrano L, Brandi L, Serina S, Soffientini A, Raimondi E, Montanini N, Sosio M, Gualerzi CO. Targets and assays for discovering novel antibacterial agents. J Biotechnol 2002; 99:175-85. [PMID: 12385707 DOI: 10.1016/s0168-1656(02)00208-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The increasing frequency of nosocomial infections due to multi-resistant pathogens exerts a significant toll and calls for novel and better antibiotics. Different approaches can be used in the search for novel antibiotics acting on drug-resistant bacterial pathogens. We present some considerations on valid bacterial targets to be used for searching new antibiotics, and how the information from bacterial genome sequences can assist in choosing the appropriate targets. Other factors to be considered in target selection are the chemical diversity available for screening and its uniqueness. We will conclude discussing our strategy for searching novel antibacterials. This is based on a large collection of microbial extracts as a source of chemical diversity and on the use of specific targets essential for the viability of bacterial pathogens. Two assay strategies have been implemented: a pathway-based assay, where a series of essential bacterial targets is screened in a single assay; and a binding assay, where many targets can be screened individually in the same format.
Collapse
Affiliation(s)
- Stefano Donadio
- Biosearch Italia, via R. Lepetit 34, 21040 Gerenzano(VA), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Bacterial resistance to present day antibiotics has become a dangerous threat to public health. Consequently, the pharmaceutical industry must provide new agents and novel classes to combat bacterial disease and to stay a step ahead of the rapid evolution of bacterial resistance mechanisms. The need for novel antibacterials has resulted in a search for previously unexplored targets for chemotherapy, utilising the new techniques of genomics to identify them. Several targets currently under investigation are involved in the process of bacterial virulence. These targets are unique in that their inhibition, by definition, should interfere with the process of infection rather than with bacterial viability. If successful, virulence inhibition may represent a 'kinder, gentler' approach to chemotherapy in which the pathogen is disarmed rather than killed outright.
Collapse
Affiliation(s)
- Lefa E Alksne
- Wyeth Research, 401 North Middletown Road, Pearl River, NY 10965, USA.
| |
Collapse
|
18
|
Abstract
This review focuses on target-based approaches for developing new chemical classes of antibacterial agents aimed at the bacterial cell wall. The clinical success of antibiotics such as beta-lactams and glycopeptides validates this chemotherapeutic strategy and emerging resistance to these agents warrants the development of new antibacterial drugs. Understanding the mechanism of action and resistance to beta-lactams and glycopeptides at a molecular level has supported the development of new agents that prevent transpeptidation and transglycosylation reactions of peptidoglycan polymerisation. The enzymes involved in the synthesis of the peptidoglycan structural unit have also been targeted for antibacterial discovery. The influence of bacterial genetics and genomics, structural biology, assay development and the properties of known inhibitors on these approaches will be discussed in the context of drug discovery.
Collapse
Affiliation(s)
- David W Green
- Cubist Pharmaceuticals, Inc., 65 Hayden Ave., Lexington, MA 02421, USA.
| |
Collapse
|
19
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2001. [PMCID: PMC2447213 DOI: 10.1002/cfg.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|