1
|
Houwman JA, André E, Westphal AH, van Berkel WJH, van Mierlo CPM. The Ribosome Restrains Molten Globule Formation in Stalled Nascent Flavodoxin. J Biol Chem 2016; 291:25911-25920. [PMID: 27784783 PMCID: PMC5207065 DOI: 10.1074/jbc.m116.756205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/13/2016] [Indexed: 11/06/2022] Open
Abstract
Folding of proteins usually involves intermediates, of which an important type is the molten globule (MG). MGs are ensembles of interconverting conformers that contain (non-)native secondary structure and lack the tightly packed tertiary structure of natively folded globular proteins. Whereas MGs of various purified proteins have been probed to date, no data are available on their presence and/or effect during protein synthesis. To study whether MGs arise during translation, we use ribosome-nascent chain (RNC) complexes of the electron transfer protein flavodoxin. Full-length isolated flavodoxin, which contains a non-covalently bound flavin mononucleotide (FMN) as cofactor, acquires its native α/β parallel topology via a folding mechanism that contains an off-pathway intermediate with molten globular characteristics. Extensive population of this MG state occurs at physiological ionic strength for apoflavodoxin variant F44Y, in which a phenylalanine at position 44 is changed to a tyrosine. Here, we show for the first time that ascertaining the binding rate of FMN as a function of ionic strength can be used as a tool to determine the presence of the off-pathway MG on the ribosome. Application of this methodology to F44Y apoflavodoxin RNCs shows that at physiological ionic strength the ribosome influences formation of the off-pathway MG and forces the nascent chain toward the native state.
Collapse
Affiliation(s)
- Joseline A Houwman
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Estelle André
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Adrie H Westphal
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Willem J H van Berkel
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Carlo P M van Mierlo
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
2
|
Correct folding of an α-helix and a β-hairpin using a polarized 2D torsional potential. Sci Rep 2015; 5:10359. [PMID: 26039188 PMCID: PMC5380191 DOI: 10.1038/srep10359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/09/2015] [Indexed: 01/12/2023] Open
Abstract
A new modification to the AMBER force field that incorporates the coupled two-dimensional main chain torsion energy has been evaluated for the balanced representation of secondary structures. In this modified AMBER force field (AMBER03(2D)), the main chain torsion energy is represented by 2-dimensional Fourier expansions with parameters fitted to the potential energy surface generated by high-level quantum mechanical calculations of small peptides in solution. Molecular dynamics simulations are performed to study the folding of two model peptides adopting either α-helix or β-hairpin structures. Both peptides are successfully folded into their native structures using an AMBER03(2D) force field with the implementation of a polarization scheme (AMBER03(2D)p). For comparison, simulations using a standard AMBER03 force field with and without polarization, as well as AMBER03(2D) without polarization, fail to fold both peptides successfully. The correction to secondary structure propensity in the AMBER03 force field and the polarization effect are critical to folding Trpzip2; without these factors, a helical structure is obtained. This study strongly suggests that this new force field is capable of providing a more balanced preference for helical and extended conformations. The electrostatic polarization effect is shown to be indispensable to the growth of secondary structures.
Collapse
|
3
|
Abstract
The denaturant-dependence of the major, observable relaxation rates for folding (kobs) of ribonuclease HI from Escherichia coli (RNase H) and phage T4 lysozyme (T4L) reveal that, for both proteins, folding begins with the rapid and transient accumulation of intermediate species in a "burst phase" which precedes the rate-limiting formation of the native state; this is evidenced by a "rollover" in the folding limb of the rate profiles (kobs versus denaturant, or chevron plot). These rate profiles are most simply described by a three-state mechanism (unfolded-to-intermediate-to-native), which implies that the burst phase represents a transition between two distinct thermodynamic states. It is shown here that the equilibrium properties of these burst phase reactions can be equally well modeled by a mechanism involving a continuum of states where the free energy of each state is linearly related to its m-value (the parameter describing the linear relationship between free energy and denaturant). A numerical model is also developed to describe the time evolution of such a system, which exhibits nearly perfect exponential behavior. Both models emphasize how a continuum of states operating under a linear free energy relationship may behave like a two state system. Such a scheme finds experimental justification from an interpretation of recent native state hydrogen exchange data. The analytical model described for a continuum can account for the observed kinetic profiles of several other model proteins. The results, however, appear context specific, suggesting that burst phase reactions are not entirely random and non-specific. The results reported in this study have important implications for the concept of cooperativity in protein folding reactions.
Collapse
Affiliation(s)
- M J Parker
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
4
|
Kannan N, Vishveshwara S. Identification of side-chain clusters in protein structures by a graph spectral method. J Mol Biol 1999; 292:441-64. [PMID: 10493887 DOI: 10.1006/jmbi.1999.3058] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper presents a novel method to detect side-chain clusters in protein three-dimensional structures using a graph spectral approach. Protein side-chain interactions are represented by a labeled graph in which the nodes of the graph represent the Cbeta atoms and the edges represent the distance between the Cbeta atoms. The distance information and the non-bonded connectivity of the residues are represented in the form of a matrix called the Laplacian matrix. The constructed matrix is diagonalized and clustering information is obtained from the vector components associated with the second lowest eigenvalue and cluster centers are obtained from the vector components associated with the top eigenvalues. The method uses global information for clustering and a single numeric computation is required to detect clusters of interest. The approach has been adopted here to detect a variety of side-chain clusters and identify the residue which makes the largest number of interactions among the residues forming the cluster (cluster centers). Detecting such clusters and cluster centers are important from a protein structure and folding point of view. The crucial residues which are important in the folding pathway as determined by PhiF values (which is a measure of the effect of a mutation on the stability of the transition state of folding) as obtained from protein engineering methods, can be identified from the vector components corresponding to the top eigenvalues. Expanded clusters are detected near the active and binding site of the protein, supporting the nucleation condensation hypothesis for folding. The method is also shown to detect domains in protein structures and conserved side-chain clusters in topologically similar proteins.
Collapse
Affiliation(s)
- N Kannan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| | | |
Collapse
|
5
|
Callender RH, Dyer RB, Gilmanshin R, Woodruff WH. Fast events in protein folding: the time evolution of primary processes. Annu Rev Phys Chem 1999; 49:173-202. [PMID: 9933907 DOI: 10.1146/annurev.physchem.49.1.173] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most experimental studies on the dynamics of protein folding have been confined to timescales of 1 ms and longer. Yet it is obvious that many phenomena that are obligatory elements of the folding process occur on much faster timescales. For example, it is also now clear that the formation of secondary and tertiary structures can occur on nanosecond and microsecond times, respectively. Although fast events are essential to, and sometimes dominate, the overall folding process, with a few exceptions their experimental study has become possible only recently with the development of appropriate techniques. This review discusses new approaches that are capable of initiating and monitoring the fast events in protein folding with temporal resolution down to picoseconds. The first important results from those techniques, which have been obtained for the folding of some globular proteins and polypeptide models, are also discussed.
Collapse
Affiliation(s)
- R H Callender
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA. ,
| | | | | | | |
Collapse
|
6
|
Dalessio PM, Ropson IJ. pH dependence of the folding of intestinal fatty acid binding protein. Arch Biochem Biophys 1998; 359:199-208. [PMID: 9808761 DOI: 10.1006/abbi.1998.0908] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The folding of a mostly beta-sheet protein, intestinal fatty acid binding protein, was examined over a pH range of 4 to 10 in the presence of urea. At pH values ranging from 5 to 10, folding was reversible at equilibrium by circular dichroism (CD) and fluorescence. No significant concentrations of intermediates accumulated at equilibrium, and the stability of the protein was similar over this range. However, at pH 4 and low concentrations of urea (1 to 3 M) significant time-dependent aggregation occurred. High salt concentrations increased the rate and degree of aggregation. Although higher final concentrations of urea (4 to 6 M) resolubilized these aggregates, the fluorescence and circular dichroism spectra of the protein under these conditions were not those of either the native or the unfolded protein. This state was molten globule-like, showing a more intense beta-sheet CD signal and a reduced fluorescence intensity with a redshifted emission wavelength maxima compared to the native protein. Higher concentrations of urea (7 to 8 M) unfolded this molten globule form in a cooperative transition. The kinetics of unfolding and refolding were examined by stopped-flow fluorescence. The mechanism of folding and unfolding did not change over the pH range from 6 to 9, with intermediate states observed during both processes. At pH 10 additional phases were observed during both folding and unfolding. The spectral properties of these kinetic intermediates were not similar to those of the molten globule form at pH 4.0. As such, the equilibrium molten globule observed at low pH and high ionic strength does not appear to be on the folding path for this protein.
Collapse
Affiliation(s)
- P M Dalessio
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, Pennsylvania, 17033-0850, USA
| | | |
Collapse
|
7
|
Clark PL, Weston BF, Gierasch LM. Probing the folding pathway of a beta-clam protein with single-tryptophan constructs. FOLDING & DESIGN 1998; 3:401-12. [PMID: 9806942 DOI: 10.1016/s1359-0278(98)00053-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cellular retinoic acid binding protein I (CRABPI) is a small, predominantly beta-sheet protein with a simple architecture and no disulfides or cofactors. Folding of mutants containing only one of the three native tryptophans has been examined using stopped-flow fluorescence and circular dichroism at multiple wavelengths. RESULTS Within 10 ms, the tryptophan fluorescence of all three mutants shows a blue shift, and stopped-flow circular dichroism shows significant secondary structure content. The local environment of Trp7, a completely buried residue located near the intersection of the N and C termini, develops on a 100 ms time scale. Spectral signatures of the other two tryptophan residues (87 and 109) become native-like in a 1 s kinetic phase. CONCLUSIONS Formation of the native beta structure of CRABPI is initiated by rapid hydrophobic collapse, during which local segments of chain adopt significant secondary structure. Subsequently, transient yet specific interactions of amino acid residues restrict the arrangement of the chain topology and initiate long-range associations such as the docking of the N and C termini. The development of native tertiary environments, including the specific packing of the beta-sheet sidechains, occurs in a final, highly cooperative step simultaneous with stable interstrand hydrogen bonding.
Collapse
Affiliation(s)
- P L Clark
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
8
|
Abstract
Nine nonnative conformations of ubiquitin, generated during two different thermal denaturation trajectories, were simulated under nearly native conditions (62 degrees C). The simulations included all protein and solvent atoms explicitly, and simulation times ranged from 1-2.4 ns. The starting structures had alpha-carbon root-mean-square deviations (RMSDs) from the crystal structure of 4-12 A and radii of gyration as high as 1.3 times that of the native state. In all but one case, the protein collapsed when the temperature was lowered and sampled conformations as compact as those reached in a control simulation beginning from the crystal structure. In contrast, the protein did not collapse when simulated in a 60% methanol:water mixture. The behavior of the protein depended on the starting structure: during simulation of the most native-like starting structures (<5 A RMSD to the crystal structure) the RMSD decreased, the number of native hydrogen bonds increased, and the secondary and tertiary structure increased. Intermediate starting structures (5-10 A RMSD) collapsed to the radius of gyration of the control simulation, hydrophobic residues were preferentially buried, and the protein acquired some native contacts. However, the protein did not refold. The least native starting structures (10-12 A RMSD) did not collapse as completely as the more native-like structures; instead, they experienced large fluctuations in radius of gyration and went through cycles of expansion and collapse, with improved burial of hydrophobic residues in successive collapsed states.
Collapse
Affiliation(s)
- D O Alonso
- Department of Medicinal Chemistry, University of Washington, Seattle 98195-7610, USA
| | | |
Collapse
|
9
|
Arai M, Ikura T, Semisotnov GV, Kihara H, Amemiya Y, Kuwajima K. Kinetic refolding of beta-lactoglobulin. Studies by synchrotron X-ray scattering, and circular dichroism, absorption and fluorescence spectroscopy. J Mol Biol 1998; 275:149-62. [PMID: 9451446 DOI: 10.1006/jmbi.1997.1456] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
beta-Lactoglobulin (beta LG) is a predominantly beta-sheet protein with a markedly high helical propensity and forms non-native alpha-helical intermediate in the refolding process. We measured the refolding reaction of beta LG with various techniques and characterized the folding kinetics and the structure of the intermediate formed within the burst phase of measurements, i.e. the burst-phase intermediate. Time-resolved stopped-flow X-ray scattering measurements using the integral intensity of scattering show that beta LG forms a compact, globular structure within 30 ms of refolding. The averaged radius of gyration within 100 ms is only 1.1 times larger than that in the native state, ensuring that the burst-phase intermediate is compact. The presence of a maximum peak in a Kratky plot shows a globular shape attained within 100 ms of refolding. Stopped-flow circular dichroism, tryptophan absorption and fluorescence spectroscopy show that pronounced secondary structure regains rapidly in the burst phase with concurrent non-native alpha-helix formation, and that the subsequent compaction process is accompanied by annealing of non-native secondary structure and slow acquisition of tertiary structure. These findings strongly suggest that both compaction and secondary structure formation in protein folding are quite rapid processes, taking place within a millisecond time-scale. The structure of the burst-phase intermediate in beta LG refolding was characterized as having a compact size, a globular shape, a hydrophobic core, substantial beta-sheets and remarkable non-native alpha-helical structure, but little tertiary structure. These results suggest that both local interactions and non-local hydrophobic interactions are dominant forces early in protein folding. The interplay of local and non-local interactions throughout folding processes is important in understanding the mechanisms of protein folding.
Collapse
Affiliation(s)
- M Arai
- Department of Physics, School of Science, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Stöckel J, Döring K, Malotka J, Jähnig F, Dornmair K. Pathway of detergent-mediated and peptide ligand-mediated refolding of heterodimeric class II major histocompatibility complex (MHC) molecules. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:684-91. [PMID: 9342218 DOI: 10.1111/j.1432-1033.1997.t01-2-00684.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We investigated the mechanism of refolding and reassembly of recombinant alpha and beta chains of the class II major histocompatibility molecules (MHC-II) HLA-DRB5*0101. Both chains were expressed in the cytosol of Escherichia coli, purified in urea and SDS, and reassembled to functional heterodimers by replacement of SDS by mild detergents, incubation in a redox-shuffling buffer and finally by oxidation and removal of detergent. Refolding was mediated by mild detergents and by peptide ligands. Early stages of structure formation were characterized by circular dichroism, fluorescence, and time-resolved fluorescence anisotropy decay (FAD) spectroscopies. We found that formation of secondary structure was detectable after replacement of SDS by mild detergents. At that stage the alpha and beta chains were still monomeric, the buffer was strongly reducing, and the folding intermediates did not yet interact with peptide ligands. Formation of folding intermediates capable of interacting with peptide ligands was detected after adjusting the redox potential with oxidized glutathione and incubation in mild detergents. We conclude that at that stage a tertiary structure close to the native structure is formed at least locally. The nature and concentration of detergent critically determined the refolding efficiency. We compared detergents with different carbohydrate headgroups, and with aliphatic chains ranging from C6 to C14 in length. For each of the detergents we observed a narrow concentration range for mediating refolding. Surprisingly, detergents with long aliphatic chains had to be used at higher concentrations than short-chain detergents, indicating that increasing the solubility of folding intermediates is not the only function of detergents during a refolding reaction. We discuss structure formation and interactions of detergents with stable folding intermediates. Understanding such interactions will help to develop rational strategies for refolding hydrophobic or oligomeric proteins.
Collapse
Affiliation(s)
- J Stöckel
- Max-Planck-Institut für Psychiatrie, Abteilung Neuroimmunologie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
11
|
Abstract
With the exception of the discovery of the rate of formation of the earliest intermediates, there have been no major conceptual leaps in our understanding of protein folding reactions over the past two years. Rather, this period has seen an extension of two established techniques: first, mutational analysis combined with a kinetic definition of the energy landscape of the reaction; and second, the use of hydrogen/deuterium exchange of backbone amide groups combined with NMR. Owing to the application of these methods to a wider range of proteins, it is now possible to draw some general conclusions about the physical processes that direct a protein to its native fold.
Collapse
Affiliation(s)
- A R Clarke
- Department of Biochemistry, University of Bristol, School of Medicine, UK
| | | |
Collapse
|
12
|
Balbach J, Forge V, Lau WS, van Nuland NA, Brew K, Dobson CM. Protein folding monitored at individual residues during a two-dimensional NMR experiment. Science 1996; 274:1161-3. [PMID: 8895458 DOI: 10.1126/science.274.5290.1161] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An approach is described to monitor directly at the level of individual residues the formation of structure during protein folding. A two-dimensional heteronuclear nuclear magnetic resonance (NMR) spectrum was recorded after the rapid initiation of the refolding of a protein labeled with nitrogen-15. The intensities and line shapes of the cross peaks in the spectrum reflected the kinetic time course of the folding events that occurred during the spectral accumulation. The method was used to demonstrate the cooperative nature of the acquisition of the native main chain fold of apo bovine alpha-lactalbumin. The general approach, however, should be applicable to the investigation of a wide range of chemical reactions.
Collapse
Affiliation(s)
- J Balbach
- Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QT, UK
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Many of the biophysical techniques developed to characterize native proteins at equilibrium have now been adapted to the structural and thermodynamic characterization of transient intermediate populations during protein folding. Recent advances in these techniques, the use of novel methods of initiating refolding, and a convergence of theoretical and experimental approaches are leading to a detailed understanding of many aspects of the folding process.
Collapse
Affiliation(s)
- K W Plaxco
- New Chemistry Laboratory, University of Oxford, UK.
| | | |
Collapse
|
14
|
Gladwin ST, Evans PA. Structure of very early protein folding intermediates: new insights through a variant of hydrogen exchange labelling. FOLDING & DESIGN 1996; 1:407-17. [PMID: 9080187 DOI: 10.1016/s1359-0278(96)00057-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hydrogen exchange labelling has been a key method in characterizing the structure of transient folding intermediates. In studies of several proteins, however, there has been clear spectroscopic evidence for partial folding of some kind at very early times, before any protection from exchange was measurable. These results, presumably a consequence of limited stability of specific backbone interactions, have made it difficult to assess the extent of native-like folding in the very early intermediates. We have used a variant of the labelling method to investigate marginally stable structures formed within the first few milliseconds of refolding of two such proteins, hen lysozyme and ubiquitin. RESULTS In lysozyme, population of a subset of native-like secondary structures on this timescale is revealed, thus reconciling the exchange behaviour with circular dichroism measurements and confirming the significance of the rapidly formed embryonic structure as a foundation for the subsequent folding pathway. In the case of ubiquitin, by contrast, no significantly protective structure was detectable, suggesting that here secondary structural elements can be populated only marginally ahead of the major cooperative folding event; this was also supported by stopped-flow circular dichroism measurements. CONCLUSIONS The hydrogen exchange approach can be extended to probe the formation of native-like structure formed in very early folding intermediates, even when the stability of specific interactions is marginal. In the case of lysozyme, this has provided a new window on an early stage of organization of the alpha-helical domain.
Collapse
Affiliation(s)
- S T Gladwin
- Department of Biochemistry, University of Cambridge, UK
| | | |
Collapse
|