1
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2025; 298:123-184. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Rose GD. The Iconic α-Helix: From Pauling to the Present. Methods Mol Biol 2025; 2867:1-17. [PMID: 39576572 DOI: 10.1007/978-1-0716-4196-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The protein folding problem dates back to Pauling's insights almost a century ago, but the first venture into actual protein structure was the Pauling-Corey-Brandson α-helix in 1951, a proposed model that was confirmed almost immediately using X-ray crystallography. Many subsequent efforts to predict protein helices from the amino acid sequence met with only partial success, as discussed here. Surprisingly, in 2021, these efforts were superseded by deep-learning artificial intelligence, especially AlphaFold2, a machine learning program based on neural nets. This approach can predict most protein structures successfully at or near atomic resolution. Deservedly, deep-learning artificial intelligence was named Science magazine's 2021 "breakthrough of the year." Today, ~200 million predicted protein structures can be downloaded from the AlphaFold2 Protein Structure Database. Deep learning represents a deep conundrum because these successfully predicted macromolecular structures are based on methods that are completely devoid of a hypothesis or of any physical chemistry. Perhaps we are now poised to transcend five centuries of reductive science.
Collapse
|
3
|
Thakur AK, Meng W, Gierasch LM. Local and non-local topological information in the denatured state ensemble of a β-barrel protein. Protein Sci 2018; 27:2062-2072. [PMID: 30252171 DOI: 10.1002/pro.3516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 11/06/2022]
Abstract
The folding of predominantly β-sheet proteins is complicated by the presence of a large number of non-local interactions in their native states, which increase the ruggedness of their folding energy landscapes. However, forming non-local contacts early in folding or even in the unfolded state can smooth the energy landscape and facilitate productive folding. We report that several sequence regions of a β-barrel protein, cellular retinoic acid-binding protein 1 (CRABP1), populate native-like secondary structure to a significant extent in the denatured state in 8 M urea. In addition, we provide evidence for both local and non-local interactions in the denatured state of CRABP1. NMR chemical shift perturbations (CSPs) under denaturing conditions upon substitution of single residues by mutation support the presence of several non-local interactions in topologically key sites, arguing that the denatured state is conformationally restricted and contains topological information for the native fold. Among the most striking non-local interactions are those between the N- and C-terminal regions, which are involved in closure of the native β-barrel. In addition, CSPs support the presence of two features in the denatured state: a major hydrophobic cluster involving residues from various parts of the sequence and a native-like interaction similar to one identified in previous studies as forming early in folding (Budyak et al., Structure 21, 476 [2013]). Taken together, our data support a model in which transient structures involving nonlocal interactions prime early folding interactions in CRABP1, determine its barrel topology, and may protect this predominantly β-sheet protein against aggregation.
Collapse
Affiliation(s)
- Abhay K Thakur
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, 01003
| | - Wenli Meng
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, 01003
| | - Lila M Gierasch
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, 01003
| |
Collapse
|
4
|
Leader DP, Milner-White EJ. Bridging of partially negative atoms by hydrogen bonds from main-chain NH groups in proteins: The crown motif. Proteins 2015; 83:2067-76. [DOI: 10.1002/prot.24923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/29/2015] [Accepted: 09/01/2015] [Indexed: 11/05/2022]
Affiliation(s)
- David P. Leader
- College of Medical, Veterinary and Life Sciences, University of Glasgow; Glasgow G12 8QQ United Kingdom
| | - E. James Milner-White
- College of Medical, Veterinary and Life Sciences, University of Glasgow; Glasgow G12 8QQ United Kingdom
| |
Collapse
|
5
|
Afzal AM, Al-Shubailly F, Leader DP, Milner-White EJ. Bridging of anions by hydrogen bonds in nest motifs and its significance for Schellman loops and other larger motifs within proteins. Proteins 2014; 82:3023-31. [DOI: 10.1002/prot.24663] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/30/2014] [Accepted: 08/05/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Avid M. Afzal
- College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow G12 8QQ United Kingdom
| | - Fawzia Al-Shubailly
- College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow G12 8QQ United Kingdom
| | - David P. Leader
- College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow G12 8QQ United Kingdom
| | - E. James Milner-White
- College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow G12 8QQ United Kingdom
| |
Collapse
|
6
|
Budyak IL, Krishnan B, Marcelino-Cruz AM, Ferrolino MC, Zhuravleva A, Gierasch LM. Early folding events protect aggregation-prone regions of a β-rich protein. Structure 2013; 21:476-85. [PMID: 23454187 DOI: 10.1016/j.str.2013.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/19/2012] [Accepted: 01/15/2013] [Indexed: 01/22/2023]
Abstract
Protein folding and aggregation inevitably compete with one another. This competition is even keener for proteins with frustrated landscapes, such as those rich in β structure. It is interesting that, despite their rugged energy landscapes and high β sheet content, intracellular lipid-binding proteins (iLBPs) appear to successfully avoid aggregation, as they are not implicated in aggregation diseases. In this study, we used a canonical iLBP, cellular retinoic acid-binding protein 1 (CRABP1), to understand better how folding is favored over aggregation. Analysis of folding kinetics of point mutants reveals that the folding pathway of CRABP1 involves early barrel closure. This folding mechanism protects sequences in CRABP1 that comprise cores of aggregates as identified by nuclear magnetic resonance. The amino acid conservation pattern in other iLBPs suggests that early barrel closure may be a general strategy for successful folding and minimization of aggregation. We suggest that folding mechanisms in general may incorporate steps that disfavor aggregation.
Collapse
Affiliation(s)
- Ivan L Budyak
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
7
|
Basehore HK, Ropson IJ. Residual interactions in unfolded bile acid-binding protein by 19F NMR. Protein Sci 2011; 20:327-35. [PMID: 21280124 DOI: 10.1002/pro.563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The folding initiation mechanism of human bile acid-binding protein (BABP) has been examined by (19) F NMR. Equilibrium unfolding studies of BABP labeled with fluorine at all eight of its phenylalanine residues showed that at least two sites experience changes in solvent exposure at high denaturant concentrations. Peak assignments were made by site-specific 4FPhe incorporation. The resonances for proteins specifically labeled at Phe17, Phe47, and Phe63 showed changes in chemical shift at denaturant concentrations at which the remaining five phenylalanine residues appear to be fully solvent-exposed. Phe17 is a helical residue that was not expected to participate in a folding initiation site. Phe47 and Phe63 form part of a hydrophobic core region that may be conserved as a site for folding initiation in the intracellular lipid-binding protein family.
Collapse
Affiliation(s)
- H Kenney Basehore
- Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17022, USA
| | | |
Collapse
|
8
|
Vasudev PG, Chatterjee S, Shamala N, Balaram P. Structural Chemistry of Peptides Containing Backbone Expanded Amino Acid Residues: Conformational Features of β, γ, and Hybrid Peptides. Chem Rev 2010; 111:657-87. [DOI: 10.1021/cr100100x] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Prema. G. Vasudev
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Sunanda Chatterjee
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Narayanaswamy Shamala
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Padmanabhan Balaram
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
NMR unfolding studies on a liver bile acid binding protein reveal a global two-state unfolding and localized singular behaviors. Arch Biochem Biophys 2009; 481:21-9. [DOI: 10.1016/j.abb.2008.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/07/2008] [Accepted: 10/14/2008] [Indexed: 11/20/2022]
|
10
|
Krishnan B, Gierasch LM. Cross-strand split tetra-Cys motifs as structure sensors in a beta-sheet protein. CHEMISTRY & BIOLOGY 2008; 15:1104-15. [PMID: 18940670 PMCID: PMC2631173 DOI: 10.1016/j.chembiol.2008.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 09/17/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
We have designed "split tetra-Cys motifs" that bind the biarsenical fluorescein dye 4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein (FlAsH) across strands of a model beta-rich protein. Our strategy was to divide the linear FlAsH binding tetra-Cys sequence such that dye could be fully liganded only when the strands were arranged in space correctly by native protein conformational proximities. We introduced pairs of alternating cysteines on adjacent beta strands of cellular retinoic acid binding protein to create FlAsH binding sites in the native structure. Selective labeling occurred both in vitro and in vivo relative to sites with fewer than four Cys or with inappropriate geometry. Interestingly, two of the split tetra-Cys motif-carrying proteins bound FlAsH whether native or urea unfolded, while one was capable of binding FlAsH only when native. This latter design exemplifies the potential of split motifs as structure sensors.
Collapse
Affiliation(s)
- Beena Krishnan
- Department of Biochemistry & Molecular Biology, University of Massachusetts-Amherst, Amherst, MA 01003
| | - Lila M. Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts-Amherst, Amherst, MA 01003
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003
| |
Collapse
|
11
|
Abstract
Reverse turns are a major class of protein secondary structure; they represent sites of chain reversal and thus sites where the globular character of a protein is created. It has been speculated for many years that turns may nucleate the formation of structure in protein folding, as their propensity to occur will favor the approximation of their flanking regions and their general tendency to be hydrophilic will favor their disposition at the solvent-accessible surface. Reverse turns are local features, and it is therefore not surprising that their structural properties have been extensively studied using peptide models. In this article, we review research on peptide models of turns to test the hypothesis that the propensities of turns to form in short peptides will relate to the roles of corresponding sequences in protein folding. Turns with significant stability as isolated entities should actively promote the folding of a protein, and by contrast, turn sequences that merely allow the chain to adopt conformations required for chain reversal are predicted to be passive in the folding mechanism. We discuss results of protein engineering studies of the roles of turn residues in folding mechanisms. Factors that correlate with the importance of turns in folding indeed include their intrinsic stability, as well as their topological context and their participation in hydrophobic networks within the protein's structure.
Collapse
|
12
|
Bhattacharjya S, Xu P, Wang P, Osborne MJ, Ni F. Conformational analyses of a partially-folded bioactive prodomain of human furin. Biopolymers 2007; 86:329-44. [PMID: 17477394 DOI: 10.1002/bip.20748] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The 81-residue multifunctional prodomain of human furin adopts only a partially-folded conformational state under near physiological conditions. By use of NMR spectroscopy, we demonstrate that the N-terminal residues 1-46 of the prodomain in 50% trifluoroethanol (TFE) populates backbone conformations containing a short helix, a beta-strand and a helix-loop-helix super-secondary structure with elements of tertiary interactions. (15)N NMR relaxation measurements indicate that the helix-loop-helix region has similar motional characteristics in the fast picosecond to nanosecond timescales. On the other hand, the intervening segment (residues 47-65) is predominantly unstructured with a long and highly flexible region surrounding the protease 'activation loop' followed by a partially helical segment in the C-terminal end. Interestingly, the helix-loop-helix "fold" was found to be populated even when excised out of the full-length prodomain, since a peptide fragment derived from residues Pro16-Arg49 can also form the helix-loop-helix structure in aqueous solution in the absence of TFE. Structure analyses reveal that two helices orient in an antiparallel fashion directed by the sharing of hydrophobic residues involved in helix-capping interactions. Very importantly, a positively-charged Lys residue replacing His43 in the 16-49 fragment imparts stability to the super-secondary structure at both acidic and neutral pH, while a hydrophobic residue Leu at position 43 appears to destabilize the helical conformation in the 31-44 region. As such, this study provides valuable insights into the structural properties of the furin prodomain in relation to its role in the folding of the furin zymogen and its inhibitory action toward furin.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- Biomolecular NMR and Protein Research Laboratory, Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
13
|
Marcelino AMC, Smock RG, Gierasch LM. Evolutionary coupling of structural and functional sequence information in the intracellular lipid-binding protein family. Proteins 2007; 63:373-84. [PMID: 16477649 DOI: 10.1002/prot.20860] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have mined the evolutionary record for the large family of intracellular lipid-binding proteins (iLBPs) by calculating the statistical coupling of residue variations in a multiple sequence alignment using methods developed by Ranganathan and coworkers (Lockless and Ranganathan, Science 1999:286;295-299). The 213 sequences analyzed have a wide range of ligand-binding functions as well as highly divergent phylogenetic origins, assuring broad sampling of sequence space. Emerging from this analysis were two major clusters of coupled residues, which when mapped onto the structure of a representative iLBP under study in our laboratory, cellular retinoic-acid binding protein I, are largely contiguous and provide useful points of comparison to available data for the folding of this protein. One cluster comprises a predominantly hydrophobic core away from the ligand-binding site and likely represents key structural information for the iLBP fold. The other cluster includes the portal region where ligand enters its binding site, regions of the ligand-binding cavity, and the region where the 10-stranded beta-barrel characteristic of this family closes (between strands 1' and 10). Linkages between these two clusters suggest that evolutionary pressures on this family constrain structural and functional sequence information in an interdependent fashion. The necessity of the structure to wrap around a hydrophobic ligand confounds the typical sequestration of hydrophobic side chains. Additionally, ligand entry and exit require these structures to have a capacity for specific conformational change during binding and release. We conclude that an essential and structurally apparent separation of local and global sequence information is conserved throughout the iLBP family.
Collapse
|
14
|
Gunasekaran K, Hagler AT, Gierasch LM. Sequence and structural analysis of cellular retinoic acid-binding proteins reveals a network of conserved hydrophobic interactions. Proteins 2004; 54:179-94. [PMID: 14696180 DOI: 10.1002/prot.10520] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proteins in the intracellular lipid-binding protein (iLBP) family show remarkably high structural conservation despite their low-sequence identity. A multiple-sequence alignment using 52 sequences of iLBP family members revealed 15 fully conserved positions, with a disproportionately high number of these (n=7) located in the relatively small helical region. The conserved positions displayed high structural conservation based on comparisons of known iLBP crystal structures. It is striking that the beta-sheet domain had few conserved positions, despite its high structural conservation. This observation prompted us to analyze pair-wise interactions within the beta-sheet region to ask whether structural information was encoded in interacting amino acid pairs. We conducted this analysis on the iLBP family member, cellular retinoic acid-binding protein I (CRABP I), whose folding mechanism is under study in our laboratory. Indeed, an analysis based on a simple classification of hydrophobic and polar amino acids revealed a network of conserved interactions in CRABP I that cluster spatially, suggesting a possible nucleation site for folding. Significantly, a small number of residues participated in multiple conserved interactions, suggesting a key role for these sites in the structure and folding of CRABP I. The results presented here correlate well with available experimental evidence on folding of CRABPs and their family members and suggest future experiments. The analysis also shows the usefulness of considering pair-wise conservation based on a simple classification of amino acids, in analyzing sequences and structures to find common core regions among homologues.
Collapse
Affiliation(s)
- Kannan Gunasekaran
- Department of Biochemistry, University of Massachusetts, Amherst 01003, USA
| | | | | |
Collapse
|
15
|
Ignatova Z, Gierasch LM. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc Natl Acad Sci U S A 2003; 101:523-8. [PMID: 14701904 PMCID: PMC327180 DOI: 10.1073/pnas.0304533101] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vivo fluorescent labeling of an expressed protein has enabled the observation of its stability and aggregation directly in bacterial cells. Mammalian cellular retinoic acid-binding protein I (CRABP I) was mutated to incorporate in a surface-exposed omega loop the sequence Cys-Cys-Gly-Pro-Cys-Cys, which binds specifically to a biarsenical fluorescein dye (FlAsH). Unfolding of labeled tetra-Cys CRABP I is accompanied by enhancement of FlAsH fluorescence, which made it possible to determine the free energy of unfolding of this protein by urea titration in cells and to follow in real time the formation of inclusion bodies by a slow-folding, aggregationprone mutant (FlAsH-labeled P39A tetra-Cys CRABP I). Aggregation in vivo displayed a concentration-dependent apparent lag time similar to observations of protein aggregation in purified in vitro model systems.
Collapse
Affiliation(s)
- Zoya Ignatova
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
16
|
Rotondi KS, Rotondi LF, Gierasch LM. Native structural propensity in cellular retinoic acid-binding protein I 64-88: the role of locally encoded structure in the folding of a beta-barrel protein. Biophys Chem 2003; 100:421-36. [PMID: 12646381 DOI: 10.1016/s0301-4622(02)00296-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A central question in protein folding is the relative importance of locally encoded structure and cooperative interactions among residues distant in sequence. We have been exploring this question in a predominantly beta-sheet protein, since beta-structure formation clearly relies on both local and global sequence information. We present evidence that a 24-residue peptide corresponding to two linked hairpins of cellular retinoic acid-binding protein I (CRABP I) adopts significant native structure in aqueous solution. Prior work from our laboratory showed that the two turns contained in this fragment (turns III and IV) had the highest tendency of any of the eight turns in this anti-parallel beta-barrel to fold into native turns. In addition, the primary sequence of these two turns is well conserved throughout the structural family to which CRABP I belongs, and residues in the turns and their associated hairpins participate in a network of conserved long-range interactions. We propose that the strong local-sequence biases within the chain segment comprising turns III and IV favor longer-range interactions that are crucial to the folding and native-state stability of CRABP I, and may play a similar role in related intracellular lipid-binding proteins (iLBPs).
Collapse
Affiliation(s)
- Kenneth S Rotondi
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
17
|
Ermolenko DN, Thomas ST, Aurora R, Gronenborn AM, Makhatadze GI. Hydrophobic interactions at the Ccap position of the C-capping motif of alpha-helices. J Mol Biol 2002; 322:123-35. [PMID: 12215419 DOI: 10.1016/s0022-2836(02)00734-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We investigated the possible role of residues at the Ccap position in an alpha-helix on protein stability. A set of 431 protein alpha-helices containing a C'-Gly from the Protein Data Bank (PDB) was analyzed, and the normalized frequencies for finding particular residues at the Ccap position, the average fraction of buried surface area, and the hydrogen bonding patterns of the Ccap residue side-chain were calculated. We found that on average the Ccap position is 70% buried and noted a significant correlation (R=0.8) between the relative burial of this residue and its hydrophobicity as defined by the Gibbs energy of transfer from octanol or cyclohexane to water. Ccap residues with polar side-chains are commonly involved in hydrogen bonding. The hydrogen bonding pattern is such that, the longer side-chains of Glu, Gln, Arg, Lys, His form hydrogen bonds with residues distal (>+/-4) in sequence, while the shorter side-chains of Asp, Asn, Ser, Thr exhibit hydrogen bonds with residues close in sequence (<+/-4), mainly involving backbone atoms. Experimentally we determined the thermodynamic propensities of residues at the Ccap position using the protein ubiquitin as a model system. We observed a large variation in the stability of the ubiquitin variants depending on the nature of the Ccap residue. Furthermore, the measured changes in stability of the ubiquitin variants correlate with the hydrophobicity of the Ccap residue. The experimental results, together with the statistical analysis of protein structures from the PDB, indicate that the key hydrophobic capping interactions between a helical residue (C3 or C4) and a residue outside the helix (C", C3' or C4') are frequently enhanced by the hydrophobic interactions with Ccap residues.
Collapse
Affiliation(s)
- Dmitri N Ermolenko
- Department of Biochemistry and Molecular Biology H171, Penn State University College of Medicine, Hershey, PA 17033-2390, USA
| | | | | | | | | |
Collapse
|
18
|
Meyer JD, Manning MC, Vander Velde DG. Characterization of the solution conformations of leuprolide acetate. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2002; 60:159-68. [PMID: 12213125 DOI: 10.1034/j.1399-3011.2002.21006.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Leuprolide acetate (pGlu-His-Trp-Ser-Tyr-d-Leu-Leu-Arg-Pro-NHEt), a potent LHRH agonist in wide clinical use, was characterized conformationally by NMR and circular dichroism. It displayed quite different preferred conformations under different solution conditions: two low population beta-turns in water, a nascent helix in TFE/water at low pH, and a high population beta-turn in TFE/water at slightly acidic pH. The pH-related conformational change in TFE/water is attributed to the pK(a) of the acetate counterion, not to ionizable groups on the peptide. None of these conformations are in exact agreement with previous computational predictions.
Collapse
Affiliation(s)
- J D Meyer
- Center for Pharmaceutical Biotechnology, University of Colorado Health Sciences Center, Denver, USA
| | | | | |
Collapse
|
19
|
Sagermann M, Mårtensson LG, Baase WA, Matthews BW. A test of proposed rules for helix capping: implications for protein design. Protein Sci 2002; 11:516-21. [PMID: 11847274 PMCID: PMC2373482 DOI: 10.1110/ps.39802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
alpha-helices within proteins are often terminated (capped) by distinctive configurations of the polypeptide chain. Two common arrangements are the Schellman motif and the alternative alpha(L) motif. Rose and coworkers developed stereochemical rules to identify the locations of such motifs in proteins of unknown structure based only on their amino acid sequences. To check the effectiveness of these rules, they made specific predictions regarding the structural and thermodynamic consequences of certain mutations in T4 lysozyme. We have constructed these mutants and show here that they have neither the structure nor the stability that was predicted. The results show the complexity of the protein-folding problem. Comparison of known protein structures may show that a characteristic sequence of amino acids (a sequence motif) corresponds to a conserved structural motif. In any particular protein, however, changes in other parts of the sequence may result in a different conformation. The structure is determined by sequence as a whole, not by parts considered in isolation.
Collapse
Affiliation(s)
- Martin Sagermann
- Institute of Molecular Biology, Howard Hughes Medical Institute and Department of Physics, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | |
Collapse
|
20
|
Affiliation(s)
- J Venkatraman
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
21
|
Abstract
To explore the ways that proline residues may influence the conformational options of a polypeptide backbone, we have characterized Pro-->Ala mutants of cellular retinoic acid-binding protein I (CRABP I). While all three Xaa-Pro bonds are in the trans conformation in the native protein and the equilibrium stability of each mutant is similar to that of the parent protein, each has distinct effects on folding and unfolding kinetics. The mutation of Pro105 does not alter the kinetics of folding of CRABP I, which indicates that the flexible loop containing this residue is passive in the folding process. By contrast, replacement of Pro85 by Ala abolishes the observable slow phase of folding, revealing that correct configuration of the 84-85 peptide bond is prerequisite to productive folding. Substitution of Pro39 by Ala yields a protein that folds and unfolds more slowly. Removal of the conformational constraint imposed by the proline ring likely raises the transition state barrier by increasing the entropic cost of narrowing the conformational ensemble. Additionally, the Pro-->Ala mutation removes a helix-termination signal that is important for efficient folding to the native state.
Collapse
Affiliation(s)
- S J Eyles
- Departments of Biochemistry and Molecular Biology and Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
22
|
Lacroix E, Viguera AR, Serrano L. Elucidating the folding problem of alpha-helices: local motifs, long-range electrostatics, ionic-strength dependence and prediction of NMR parameters. J Mol Biol 1998; 284:173-91. [PMID: 9811549 DOI: 10.1006/jmbi.1998.2145] [Citation(s) in RCA: 368] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The information about the conformational behavior of monomeric helical peptides in solution, as well as the alpha-helix stability in proteins, has been previously utilized to derive a database with the energy contributions for various interactions taking place in an alpha-helix: intrinsic helical propensities, side-chain-side-chain interactions, main-chain-main-chain hydrogen bonds, and capping effects. This database was implemented in an algorithm based on the helix/coil transition theory (AGADIR). Here, we have modified this algorithm to include previously described local motifs: hydrophobic staple, Schellman motif and Pro-capping motif, new variants of these, and newly described side-chain-side-chain interactions. Based on recent experimental data we have introduced a position dependence of the helical propensities for some of the 20 amino acid residues. A new electrostatic model that takes into consideration all electrostatic interactions up to 12 residues in distance in the helix and random-coil conformations, as well as the effect of ionic strength, has been implemented. We have synthesized and analyzed several peptides, and used data from peptides already analysed by other groups, to test the validity of our electrostatic model. The modified algorithm predicts, with an overall standard deviation value of 6.6 (maximum helix is 100%), the helical, content of 778 peptides of which 223 correspond to wild-type and modified protein fragments. To improve the prediction potential of the algorithm and to have a direct comparison with nuclear magnetic resonance data, the algorithm now predicts the conformational shift of the CalphaH protons, 13Calpha and 3JalphaN values. We have found that for those peptides correctly predicted from the point of view of circular dichroism, the prediction of the NMR parameters is very good.
Collapse
Affiliation(s)
- E Lacroix
- EMBL, Meyerhofstrasse 1, Heidelberg D-69117, Germany
| | | | | |
Collapse
|
23
|
Clark PL, Weston BF, Gierasch LM. Probing the folding pathway of a beta-clam protein with single-tryptophan constructs. FOLDING & DESIGN 1998; 3:401-12. [PMID: 9806942 DOI: 10.1016/s1359-0278(98)00053-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cellular retinoic acid binding protein I (CRABPI) is a small, predominantly beta-sheet protein with a simple architecture and no disulfides or cofactors. Folding of mutants containing only one of the three native tryptophans has been examined using stopped-flow fluorescence and circular dichroism at multiple wavelengths. RESULTS Within 10 ms, the tryptophan fluorescence of all three mutants shows a blue shift, and stopped-flow circular dichroism shows significant secondary structure content. The local environment of Trp7, a completely buried residue located near the intersection of the N and C termini, develops on a 100 ms time scale. Spectral signatures of the other two tryptophan residues (87 and 109) become native-like in a 1 s kinetic phase. CONCLUSIONS Formation of the native beta structure of CRABPI is initiated by rapid hydrophobic collapse, during which local segments of chain adopt significant secondary structure. Subsequently, transient yet specific interactions of amino acid residues restrict the arrangement of the chain topology and initiate long-range associations such as the docking of the N and C termini. The development of native tertiary environments, including the specific packing of the beta-sheet sidechains, occurs in a final, highly cooperative step simultaneous with stable interstrand hydrogen bonding.
Collapse
Affiliation(s)
- P L Clark
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
24
|
Abstract
Helix-capping motifs are specific patterns of hydrogen bonding and hydrophobic interactions found at or near the ends of helices in both proteins and peptides. In an alpha-helix, the first four >N-H groups and last four >C=O groups necessarily lack intrahelical hydrogen bonds. Instead, such groups are often capped by alternative hydrogen bond partners. This review enlarges our earlier hypothesis (Presta LG, Rose GD. 1988. Helix signals in proteins. Science 240:1632-1641) to include hydrophobic capping. A hydrophobic interaction that straddles the helix terminus is always associated with hydrogen-bonded capping. From a global survey among proteins of known structure, seven distinct capping motifs are identified-three at the helix N-terminus and four at the C-terminus. The consensus sequence patterns of these seven motifs, together with results from simple molecular modeling, are used to formulate useful rules of thumb for helix termination. Finally, we examine the role of helix capping as a bridge linking the conformation of secondary structure to supersecondary structure.
Collapse
Affiliation(s)
- R Aurora
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|