1
|
Judd KD, Parsons SW, Majumder T, Dawlaty JM. Electrostatics, Hydration, and Chemical Equilibria at Charged Monolayers on Water. Chem Rev 2025; 125:2440-2473. [PMID: 39933097 DOI: 10.1021/acs.chemrev.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The chemistry and physics of soft matter interfaces, especially aqueous-organic interfaces, are centrally important to many areas of science and technology. Often, the thermodynamics, kinetics, and selectivity of reactions are modified at interfaces. Here, we review the electrostatics and hydration at charged monolayers on water and their influence on interfacial chemical equilibria. First, we provide an understanding of interfaces as a conceptual continuation of the solvation shell of small molecules, along with recent relevant experimental work. Then, we provide a summary of models for describing the electrostatics of aqueous interfaces. While we will discuss a range of new developments, our focus will be on systems where the electrostatics of the surface is controllable by the choice of relatively simple insoluble surfactants. New insights into the molecular structure of the double layer, with particular attention on the knowledge gained from spectroscopy will be reviewed. Our approach is to familiarize the reader with simple models, followed by discussion of models with further complexity for explaining interfacial phenomena. Experiments that test the limits of such models will also be discussed. Finally, we will provide an outlook on engineering the interfacial environment for tailored reactivity, along with the anticipated experimental advancements and potentials impacts.
Collapse
Affiliation(s)
- Kenneth D Judd
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| | - Sean W Parsons
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| | - Tirthick Majumder
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| | - Jahan M Dawlaty
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Wang K, Wang Y, Pera-Titus M. Liquid-liquid and gas-liquid dispersions in electrochemistry: concepts, applications and perspectives. Chem Soc Rev 2024; 53:11701-11724. [PMID: 39495483 PMCID: PMC11562458 DOI: 10.1039/d3cs00535f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Indexed: 11/05/2024]
Abstract
Electrochemistry plays a pivotal role in a vast number of domains spanning from sensing and manufacturing to energy storage, environmental conservation, and healthcare. Electrochemical applications encompassing gaseous or organic substrates encounter shortcomings ascribed to high mass transfer/internal resistances and low solubility in aqueous electrolytes, resulting in high overpotentials. In practice, strong acids and expensive organic electrolytes are required to promote charge transfer in electrochemical cells, resulting in a high carbon footprint. Liquid-liquid (L-L) and gas-liquid (G-L) dispersions involve the dispersion of a nano/micro gas or liquid into a continuous liquid phase such as micelles, (macro)emulsions, microemulsions, and microfoams stabilised by surface-active agents such as surfactants and colloidal particles. These dispersions hold promise in addressing the drawbacks of electrochemical reactions by fostering the interfacial surface area between immiscible reagents and mass transfer of electroactive organic and gas reactants and products from/to the bulk to/from the electrode surface. This tutorial review provides a taxonomy of liquid-liquid and gas-liquid dispersions for applications in electrochemistry, with emphasis on their assets and challenges in industrially relevant reactions for fine chemistry and depollution.
Collapse
Affiliation(s)
- Kang Wang
- Cardiff Catalysis Institute, Cardiff University, Cardiff CF10 3AT, UK.
| | - Yucheng Wang
- Cardiff Catalysis Institute, Cardiff University, Cardiff CF10 3AT, UK.
| | - Marc Pera-Titus
- Cardiff Catalysis Institute, Cardiff University, Cardiff CF10 3AT, UK.
| |
Collapse
|
3
|
Ueda Y, Micheau C, Akutsu-Suyama K, Tokunaga K, Yamada M, Yamada NL, Bourgeois D, Motokawa R. Fluorous and Organic Extraction Systems: A Comparison from the Perspectives of Coordination Structures, Interfaces, and Bulk Extraction Phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24257-24271. [PMID: 39506552 DOI: 10.1021/acs.langmuir.4c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Microscopic structures in liquid-liquid extraction, such as structuration between extractants or extracted complexes in bulk organic phases and at interfaces, can influence macroscopic phenomena, such as the distribution behavior of solutes, including extraction efficiency and selectivity. In this study, we correlated the macroscopic behavior of the Zr(IV) extraction from nitric acid solutions with microscopic structural information to understand at the molecular level the key factors contributing to the higher metal ion extraction performance in the fluorous extraction system as compared to the analogous organic extraction system. The fluorous and organic extraction systems consist of tris(4,4,5,5,6,6,7,7,7-nonafluoroheptyl) phosphate (TFP) in perfluorohexane and tri-n-heptyl phosphate (THP) in n-hexane, respectively. Extended X-ray absorption fine structure, neutron reflectometry (NR), and small-angle neutron scattering revealed the structural information around the central metal ion of the complex, at the interface, and in the bulk extraction phase, respectively. NR results showed that extractant molecules did not accumulate much at the interface in both extraction system. In the fluorous extraction system, extractant aggregates with a 1.46 nm radius of gyration (Rg) were formed after contact with nitric acid, and remained even after Zr(IV) extraction through the form of a 1:3 (Zr(IV):TFP) complex. In contrast, in the organic extraction system, only extractant dimers with Rg of 0.70 nm were formed and Zr(IV) is extracted through the form of a 1:2 (Zr(IV):THP) complex. We speculate that differences in the local coordination structure around the Zr(IV) ion and the structuration of the extractant molecules in the bulk extraction phase contribute to the high Zr(IV) extraction performance in the fluorous extraction system. In particular, the size of the aggregates hardly changed with increasing Zr(IV) concentration in the fluorous phase, which may be closely related to the absence of phase splitting in the fluorous extraction system.
Collapse
Affiliation(s)
- Yuki Ueda
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki319-1195, Japan
| | - Cyril Micheau
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki319-1195, Japan
| | - Kazuhiro Akutsu-Suyama
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki319-1106, Japan
| | - Kohei Tokunaga
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, Tomata, Okayama 708-0698, Japan
| | - Masako Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Norifumi L Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Damien Bourgeois
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, BP 13 17171, Marcoule, 30207 Bagnols-sur-Cèze, France
| | - Ryuhei Motokawa
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki319-1195, Japan
| |
Collapse
|
4
|
Kumar A, Andersson GG. A review of ion scattering spectroscopy studies at liquid interfaces with noble gas ion projectiles. Adv Colloid Interface Sci 2024; 333:103302. [PMID: 39340972 DOI: 10.1016/j.cis.2024.103302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Ion scattering spectroscopy (ISS) is an analytical tool that provides direct structural, topographical, and atomic compositional information at interfaces when ions are used as projectiles. Since its development in 1967, ISS is commonly used to obtain quantitative information about solid interfaces. Over the last couple of decades, ISS has emerged as an important technique to probe liquid interfaces and their studies employing ISS has become not uncommon, more so with Neutral impact collision ion scattering spectroscopy (NICISS). Therefore, here the principle of ISS with a particular focus on NICISS and its data evaluation are summarised while reviewing some important studies at vapor-liquid interfaces that provide direct information for molecular orientation of liquids (including ionic liquids), composition and distribution of atoms (or solutes) and charges as a function of depth to gain vast variety of thermodynamical information. Employing ISS such information can be achieved with high depth resolution of ∼1-2 Å (depending on the nature of the experiment). These examples highlight the significance of ISS and show potential for its application for studies related to specific ion effects, atmospheric reaction in aerosol and sea water droplets, and even determining the fate of environmental pollutants like heavy metal ions and per-fluoroalkyl substances (PFAS). Furthermore, some limitations of ISS are also discussed relating to investigation of high-vapor pressure liquids and probing buried interfaces like liquid-liquid interfaces while presenting progresses made in probing solid-liquid interfaces.
Collapse
Affiliation(s)
- Anand Kumar
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia; CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| | - Gunther G Andersson
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia; Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia.
| |
Collapse
|
5
|
Warias JE, Petersdorf L, Hövelmann SC, Giri RP, Lemke C, Festersen S, Greve M, Mandin P, LeBideau D, Bertram F, Magnussen OM, Murphy BM. The laser pump X-ray probe system at LISA P08 PETRA III. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:779-790. [PMID: 38843001 PMCID: PMC11226150 DOI: 10.1107/s1600577524003400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/17/2024] [Indexed: 07/06/2024]
Abstract
Understanding and controlling the structure and function of liquid interfaces is a constant challenge in biology, nanoscience and nanotechnology, with applications ranging from molecular electronics to controlled drug release. X-ray reflectivity and grazing incidence diffraction provide invaluable probes for studying the atomic scale structure at liquid-air interfaces. The new time-resolved laser system at the LISA liquid diffractometer situated at beamline P08 at the PETRA III synchrotron radiation source in Hamburg provides a laser pump with X-ray probe. The femtosecond laser combined with the LISA diffractometer allows unique opportunities to investigate photo-induced structural changes at liquid interfaces on the pico- and nanosecond time scales with pump-probe techniques. A time resolution of 38 ps has been achieved and verified with Bi. First experiments include laser-induced effects on salt solutions and liquid mercury surfaces with static and varied time scales measurements showing the proof of concept for investigations at liquid surfaces.
Collapse
Affiliation(s)
- Jonas Erik Warias
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Lukas Petersdorf
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
| | - Svenja Carolin Hövelmann
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Rajendra Prasad Giri
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Christoph Lemke
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Sven Festersen
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Matthias Greve
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | | | | | - Florian Bertram
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Olaf Magnus Magnussen
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
| | - Bridget Mary Murphy
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
| |
Collapse
|
6
|
Gündoğdu G, Yılmaz Topuzlu E, Mutlu F, Ertekin UE, Okur HI. Oil-in-Water Emulsions Probed Using Fluorescence Multivariate-Curve-Resolution Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13116-13121. [PMID: 38861700 PMCID: PMC11494642 DOI: 10.1021/acs.langmuir.4c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
Hydrophobic surfaces in contact with aqueous media are omnipresent in nature. A plethora of key biological and physiological processes occur at the interface of immiscible fluids. Besides its fundamental importance, probing such interfaces is rather challenging, especially when one medium is bathed in the other. Herein, we demonstrate a fluorescence-based method that probes the oil-water interface and interfacial processes through surface dielectric perturbations. The fluorescence response of Nile Red is measured in hexadecane in water nanoemulsions. Three major spectral components appear: two from the bulk liquid media (hexadecane and water) and a distinct band at around 640 nm due to the interfacial component. Such spectra are deconvoluted using the multivariate-curve-resolution algorithm, and interface-correlated fluorescence spectra are attained. The influence of anionic sodium dodecylbenzenesulfonate (SDBS) and cationic cetyltrimethylammonium bromide (CTAB) surfactants on the oil-water interface is elucidated with concentration-dependent measurements. A charge-dependent spectral shift is observed. The interface correlated band at 641 nm for bare hexadecane nanoemulsions red shifts in the presence of anionic surfactants, indicating an apparent dielectric increase. In contrast, the same band gradually blue shifts with increasing cationic surfactant concentration, indicating an apparent interface dielectric decrease. Such a method can be utilized to probe alterations at interfaces beyond the oil/water interface.
Collapse
Affiliation(s)
- Gülsüm Gündoğdu
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
- National
Nanotechnology Research Center (UNAM), Bilkent
University, 06800 Ankara, Turkey
- Department
of Energy Science and Technology, Faculty of Science, Turkish-German University, Istanbul 34820, Turkey
| | - Ezgi Yılmaz Topuzlu
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
- National
Nanotechnology Research Center (UNAM), Bilkent
University, 06800 Ankara, Turkey
| | - Ferhat Mutlu
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Umay E. Ertekin
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Halil I. Okur
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
- National
Nanotechnology Research Center (UNAM), Bilkent
University, 06800 Ankara, Turkey
| |
Collapse
|
7
|
Takiue T, Aratono M. Recent progress in application of surface X-ray scattering techniques to soft interfacial films. Adv Colloid Interface Sci 2024; 325:103108. [PMID: 38364360 DOI: 10.1016/j.cis.2024.103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
X-ray reflection (XR) and surface grazing incidence X-ray diffraction GIXD) techniques have traditionally been used to evaluate the structure of soft interfacial films. In recent years, the use of synchrotron radiation and two-dimensional detectors has enabled high resolution and high speed measurements of interfacial films, which makes it possible to evaluate more detailed and complex interfacial film structures and adsorption dynamics. In this review, we will provide an overview of recent progress in structural characterization of simple oil/water interfaces, interfacial films of biologically relevant materials, oil/water interfaces for extraction of rare metal ions, and adsorption of nanoparticles. Examples of the application of time-resolved XR methods and surface sensitive techniques such as GISAXS and surface X-ray fluorescence analysis will also be presented.
Collapse
Affiliation(s)
- Takanori Takiue
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan; Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan.
| | - Makoto Aratono
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Sorina PO, Victorov AI. Local Structure of Nonuniform Fluid Mixtures Containing Associating and Chainlike Molecules from a Multilayer Quasichemical Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1577-1593. [PMID: 38198683 DOI: 10.1021/acs.langmuir.3c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In this work, we develop a theory for predicting details of the local structure in nonuniform multicomponent fluids that may contain chainlike and associating components. This theory is an extension─to the fluid interfaces and mesoscopic structures of different geometry─of the multilayer quasichemical model originally proposed by Smirnova to describe liquid solution in the vicinity of a planar solid wall. The basis of the theory is the "cut-and-bond" approach, much in spirit of SAFT, where an infinite attraction between the separated monomeric units of a chainlike molecule mimics the chemical bonds of the chain. We describe the equilibrium structure of the mixture, including the spatial distribution of the monomeric units and the local orientation of the chemical bonds in chainlike molecules, and discuss the contribution of chemical bonds to the local chemical potential in a nonuniform fluid. To test the new theory, we apply it to mixtures containing combinations of model components: a strongly associating solvent, an inert substance of varying chain length, and a chainlike amphiphile. To compare predictions from the multilayer model with the results of continuous description of nonuniform fluids, we also address the square-gradient theory and derive an analytical expression for the influence parameter that takes into account pair correlations in the quasichemical approximation. The multilayer quasichemical model developed in this work predicts formation of aggregates in liquid solution and describes the local structure of the interfaces between the coexisting liquid phases in the mixture. Our theoretical predictions agree on a qualitative level with the accumulated knowledge about the structure of different types of systems studied in this work.
Collapse
Affiliation(s)
- Polina O Sorina
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Alexey I Victorov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| |
Collapse
|
9
|
Wojciechowski K, Borucka K, Mierzejewska J. Are all yeast biosurfactants really capable of lowering surface tension below 30 mN/m ? Colloids Surf B Biointerfaces 2023; 230:113503. [PMID: 37586111 DOI: 10.1016/j.colsurfb.2023.113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The study discusses pitfalls in attempts to determine reliable surface tension values for the culture media and their extracts for two biosurfactant-producing yeast strains: Rhodotorula graminis and Rhodotorula babjevae. The values obtained from an Axisymmetric Drop Shape Analysis (ADSA) tensiometer showed systematically more and more shallow dynamic surface tension decays, suggesting a deterioration of their surface activity. The rate of this apparent surface activity loss was shown to depend on the sample history, with slower changes observed in vigorously shaken samples. On the other hand, the force-based Wilhelmy plate method provided apparently stable surface tension values of the order of 30 mN/m, in accordance with numerous previous literature reports on similar yeast biosurfactants. Both observations can be justified by the presence of an oil emulsified by biosurfactants produced by the yeast. We show that the odd (apparent) surface tension results are in fact the measurement artifacts resulting from slow demulsification and subsequent oil-spreading assisted by the yeast biosurfactants. The apparent surface tension reduction is thus indeed caused by the presence of biosurfactants, but its value does not represent their real adsorption in a thermodynamic sense. Consequently, the often reported in the literature very low surface tension values for the yeast culture media, of the order of 30 ± 5 mN/m, should be treated with caution, especially if the emulsion stabilized with the biosurfactant had not been fully destabilized prior to the measurement.
Collapse
Affiliation(s)
- Kamil Wojciechowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; Department of Chemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Karolina Borucka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Jolanta Mierzejewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
10
|
Ankner JF, Ashkar R, Browning JF, Charlton TR, Doucet M, Halbert CE, Islam F, Karim A, Kharlampieva E, Kilbey SM, Lin JYY, Phan MD, Smith GS, Sukhishvili SA, Thermer R, Veith GM, Watkins EB, Wilson D. Cinematic reflectometry using QIKR, the quite intense kinetics reflectometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:013302. [PMID: 36725568 DOI: 10.1063/5.0122279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
The Quite Intense Kinetics Reflectometer (QIKR) will be a general-purpose, horizontal-sample-surface neutron reflectometer. Reflectometers measure the proportion of an incident probe beam reflected from a surface as a function of wavevector (momentum) transfer to infer the distribution and composition of matter near an interface. The unique scattering properties of neutrons make this technique especially useful in the study of soft matter, biomaterials, and materials used in energy storage. Exploiting the increased brilliance of the Spallation Neutron Source Second Target Station, QIKR will collect specular and off-specular reflectivity data faster than the best existing such machines. It will often be possible to collect complete specular reflectivity curves using a single instrument setting, enabling "cinematic" operation, wherein the user turns on the instrument and "films" the sample. Samples in time-dependent environments (e.g., temperature, electrochemical, or undergoing chemical alteration) will be observed in real time, in favorable cases with frame rates as fast as 1 Hz. Cinematic data acquisition promises to make time-dependent measurements routine, with time resolution specified during post-experiment data analysis. This capability will be deployed to observe such processes as in situ polymer diffusion, battery electrode charge-discharge cycles, hysteresis loops, and membrane protein insertion into lipid layers.
Collapse
Affiliation(s)
- J F Ankner
- Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - R Ashkar
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - J F Browning
- Neutron Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - T R Charlton
- Neutron Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M Doucet
- Neutron Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - C E Halbert
- Neutron Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - F Islam
- Neutron Technologies Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - A Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | - E Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - S M Kilbey
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - J Y Y Lin
- Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M D Phan
- Neutron Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - G S Smith
- Neutron Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - S A Sukhishvili
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - R Thermer
- Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - G M Veith
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - E B Watkins
- Neutron Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - D Wilson
- Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
11
|
INAGAWA A. Development of Analytical Platforms Utilizing Micro/Nanospaces Generated by Phase Separation of Aqueous Solutions. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
New Design of a Sample Cell for Neutron Reflectometry in Liquid–Liquid Systems and Its Application for Studying Structures at Air–Liquid and Liquid–Liquid Interfaces. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Knowledge of interfacial structures in liquid–liquid systems is imperative, especially for improving two-phase biological and chemical reactions. Therefore, we developed a new sample cell for neutron reflectometry (NR), which enables us to observe the layer structure around the interface, and investigated the adsorption behavior of a typical surfactant, sodium dodecyl sulfate (SDS), on the toluene-d8-D2O interface under the new experimental conditions. The new cell was characterized by placing the PTFE frame at the bottom to produce a smooth interface and downsized compared to the conventional cell. The obtained NR profiles were readily analyzable and we determined a slight difference in the SDS adsorption layer structure at the interface between the toluene-d8-D2O and air-D2O systems. This could be owing to the difference in the adsorption behavior of the SDS molecules depending on the interfacial conditions.
Collapse
|
13
|
Glikman D, Braunschweig B. Nanoscale Effects on the Surfactant Adsorption and Interface Charging in Hexadecane/Water Emulsions. ACS NANO 2021; 15:20136-20147. [PMID: 34898170 DOI: 10.1021/acsnano.1c08038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoscale properties at interfaces play a key role in the colloidal stability of emulsions and other soft matter materials where physical properties need to be controlled from the nano to macroscopically visible length scales. Our molecular level understanding of oil-water interfaces arises mostly from results at extended interfaces and the common view that emulsions are stabilized by a large number of surfactant molecules at the droplet's interface which, however, has been recently challenged. In this work, we show that the particle size and the curvature of oil droplets at the nanoscale is of great importance for the interface adsorption of dodecyl sulfate surfactants and possible counterion condensation at the charged hexadecane-water interface. Using second-harmonic scattering, we have studied the surface charge of oil droplets in nanoemulsions where we systematically varied the particle size R between 80 and 270 nm and demonstrate that the surface charge density σ changes drastically with size: For sizes >200 nm, σ is similar to what can be expected at flat extended interfaces, while σ is dramatically reduced by almost an order of magnitude when the particle size of the oil droplet is 80 nm. Using a theoretical approach that considers counterion condensation, we quantify the nanoscale effects on the change in surface charge with particle size and find excellent agreement with our experimental result. Modeling of the experimental results also implies that the charge per particle remains constant and depends on a critical balance of surfactant adsorption and ion condensation.
Collapse
Affiliation(s)
- Dana Glikman
- Institute of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
14
|
Neutron reflectometry study of the interface between two immiscible electrolyte solutions: Effects of electrolyte concentration, applied electric field, and lipid adsorption. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Raiteri P, Kraus P, Gale JD. Molecular dynamics simulations of liquid-liquid interfaces in an electric field: The water-1,2-dichloroethane interface. J Chem Phys 2020; 153:164714. [PMID: 33138425 DOI: 10.1063/5.0027876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The polarized interface between two immiscible liquids plays a central role in many technological processes. In particular, for electroanalytical and ion extraction applications, an external electric field is typically used to selectively induce the transfer of ionic species across the interfaces. Given that it is experimentally challenging to obtain an atomistic insight into the ion transfer process and the structure of liquid-liquid interfaces, atomistic simulations have often been used to fill this knowledge gap. However, due to the long-range nature of the electrostatic interactions and the use of 3D periodic boundary conditions, the use of external electric fields in molecular dynamics simulations requires special care. Here, we show how the simulation setup affects the dielectric response of the materials and demonstrate how by a careful design of the system it is possible to obtain the correct electric field on both sides of a liquid-liquid interface when using standard 3D Ewald summation methods. In order to prove the robustness of our approach, we ran extensive molecular dynamics simulations with a rigid-ion and polarizable force field of the water/1,2-dichloroethane interface in the presence of weak external electric fields.
Collapse
Affiliation(s)
- Paolo Raiteri
- Curtin Institute for Computation, School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, WA 6845, Australia
| | - Peter Kraus
- Curtin Institute for Computation, School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, WA 6845, Australia
| | - Julian D Gale
- Curtin Institute for Computation, School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
16
|
Srebnik S, Marmur A. Negative Pressure within a Liquid-Fluid Interface Determines Its Thickness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7943-7947. [PMID: 32551666 DOI: 10.1021/acs.langmuir.0c01193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The density within the interface between two fluid phases at equilibrium gradually changes from that of one phase to that of the other. The main change in density, according to experimental measurements, practically occurs over a finite distance of O [1 nm]. If we assume that the average stress difference within the interface is on the order of magnitude of ambient pressure, then the Bakker equation implies that for a liquid with surface tensions, say ∼50 mN/m, we get an interface thickness of ∼500 nm. This is certainly too big because it contradicts experimental findings. Alternatively, if the thickness is assumed to be O [10 nm] or less, as is usually believed, the average stress difference must be ∼5 × 106 N/m2 or bigger, which is surprisingly high. This paper shows using a few approaches that such a high average stress difference is due to negative stresses in the interface.
Collapse
Affiliation(s)
- Simcha Srebnik
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Abraham Marmur
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
17
|
Zohrabi M, Yang Lim W, Bright VM, Gopinath JT. High extinction ratio, low insertion loss, optical switch based on an electrowetting prism. OPTICS EXPRESS 2020; 28:5991-6001. [PMID: 32225857 PMCID: PMC7347523 DOI: 10.1364/oe.381565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 05/13/2023]
Abstract
An optical switch based on an electrowetting prism coupled to a multimode fiber has demonstrated a large extinction ratio with speeds up to 300 Hz. Electrowetting prisms provide a transmissive, low power, and compact alternative to conventional free-space optical switches, with no moving parts. The electrowetting prism performs beam steering of ±3° with an extinction ratio of 47 dB between the ON and OFF states and has been experimentally demonstrated at scanning frequencies of 100-300 Hz. The optical design is modeled in Zemax to account for secondary rays created at each surface interface (without scattering). Simulations predict 50 dB of extinction, in good agreement with experiment.
Collapse
Affiliation(s)
- Mo Zohrabi
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - Wei Yang Lim
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - Victor M. Bright
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - Juliet T. Gopinath
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
18
|
Reflectometry Reveals Accumulation of Surfactant Impurities at Bare Oil/Water Interfaces. Molecules 2019; 24:molecules24224113. [PMID: 31739471 PMCID: PMC6891303 DOI: 10.3390/molecules24224113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/06/2019] [Accepted: 11/09/2019] [Indexed: 12/04/2022] Open
Abstract
Bare interfaces between water and hydrophobic media like air or oil are of fundamental scientific interest and of great relevance for numerous applications. A number of observations involving water/hydrophobic interfaces have, however, eluded a consensus mechanistic interpretation so far. Recent theoretical studies ascribe these phenomena to an interfacial accumulation of charged surfactant impurities in water. In the present work, we show that identifying surfactant accumulation with X-ray reflectometry (XRR) or neutron reflectometry (NR) is challenging under conventional contrast configurations because interfacial surfactant layers are then hardly visible. On the other hand, both XRR and NR become more sensitive to surfactant accumulation when a suitable scattering length contrast is generated by using fluorinated oil. With this approach, significant interfacial accumulation of surfactant impurities at the bare oil/water interface is observed in experiments involving standard cleaning procedures. These results suggest that surfactant impurities may be a limiting factor for the investigation of fundamental phenomena involving water/hydrophobic interfaces.
Collapse
|
19
|
Wang J, McGorty R. Measuring capillary wave dynamics using differential dynamic microscopy. SOFT MATTER 2019; 15:7412-7419. [PMID: 31465080 DOI: 10.1039/c9sm01508f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interface between two fluids is roughened by thermally excited capillary waves. By using colloid-polymer systems which exhibit liquid-gas phase separation, the time and length scales of capillary waves become accessible to optical microscopy methods. Here, we study such a system using bright-field optical microscopy combined with a novel extension of differential dynamic microscopy. With differential dynamic microscopy, we analyze images in order to determine the decay time of interfacial fluctuations spanning wavevectors from 0.1 to 1 μm-1. We find capillary velocities on the order of 0.1 μm s-1 that depend on the sample composition in expected ways and that match values from the literature. This work demonstrates the first application of differential dynamic microscopy to the study of interfacial dynamics.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | | |
Collapse
|
20
|
Delcea M, Helm CA. X-ray and Neutron Reflectometry of Thin Films at Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8519-8530. [PMID: 30901219 DOI: 10.1021/acs.langmuir.8b04315] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the 1980s, Helmuth Möhwald studied lipid monolayers at the air/water interface to understand the thermodynamically characterized phases at the molecular level. In collaboration with Jens Als-Nielsen, X-ray reflectometry was used and further developed to determine the electron density profile perpendicular to the water surface. Using a slab model, parameters such as thickness and density of the individual molecular regions, as well as the roughness of the individual interfaces, were determined. Later, X-ray and neutron reflectometry helped to understand the coverage and conformation of anchored and adsorbed polymers. Nowadays, they resolve molecular properties in emerging topics such as liquid metals and ionic liquids. Much is still to be learned about buried interfaces (e.g., liquid/liquid interfaces). In this Article, a historical and theoretical background of X-ray reflectivity is given, recent developments of X-ray and neutron reflectometry for polymers at interfaces and thin layers are highlighted, and emerging research topics involving these techniques are emphasized.
Collapse
Affiliation(s)
- Mihaela Delcea
- Institute of Biochemistry , University of Greifswald , Felix-Hausdorff-Straße 4 , 17489 Greifswald , Germany
- ZIK HIKE- Zentrum für Innovationskompetenz , Humorale Immunreaktionen bei kardiovaskulären Erkrankungen , Fleischmannstraße 42 , 17489 Greifswald , Germany
| | - Christiane A Helm
- Institute of Physics , University of Greifswald , Felix-Hausdorff-Straße 4 , 17489 Greifswald , Germany
| |
Collapse
|
21
|
Servis MJ, Clark AE. Surfactant-enhanced heterogeneity of the aqueous interface drives water extraction into organic solvents. Phys Chem Chem Phys 2019; 21:2866-2874. [DOI: 10.1039/c8cp06450d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liquid/liquid extraction (LLE) is one of the most industrially relevant separations methods. Adsorbed surfactant is demonstrated to enhance interfacial heterogeneity and lead to water protrusions that form the basis for transport into the organic phase.
Collapse
Affiliation(s)
| | - Aurora E. Clark
- Department of Chemistry
- Washington State University
- Pullman
- USA
- Pacific Northwest National Laboratory
| |
Collapse
|
22
|
Chen L, Chen Z, Li Z, Hu J, Tian SX. Time-delayed mass spectrometry of the low-energy electron impact with a liquid beam surface. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:103102. [PMID: 30399745 DOI: 10.1063/1.5022394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
We set up an experimental apparatus to investigate the low-energy electron impact with a liquid beam surface, in which a cylindrical liquid beam with a diameter of 25 μm emits as the laminar flow from a microjet and the positively charged ions produced by the electron-impact ionizations are detected with a linear time-of-flight mass spectrometer. We propose a time-delayed mass spectrometry for this apparatus to identify the cationic fragments produced on the liquid surface, in which the application of the ion extracting pulse is delayed with different time intervals after the electron beam pulse. Sensitivity and specificity of the present methodology are demonstrated by the combinational experiments of the gas-phase and liquid ethanol. In comparison with the gas-phase experiments, the ion peaks become much broader in the mass spectra of the liquid beam, primarily due to the molecular evaporation and diffusion. After delaying with about 2 μs, we find that the hydrocarbon ions are ultimately the predominant products in the mass spectra of the liquid ethanol and they are proposed to be produced on the liquid surface. Above observations are in line with the widely accepted picture of the molecular orientation on the liquid surface; namely, the ethanol's CH3-CH2- group on the liquid surface prefers to be oriented outside. Therefore, we demonstrate a new mass spectrometry to explore the molecular structures of the liquid surface.
Collapse
Affiliation(s)
- Lingling Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Ziwei Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Ziyuan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Jie Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Shan Xi Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
Abstract
Reflectometry experiments probe the scattering length density along the normal of interfaces by analysing the specularly scattered intensity. Lateral fluctuations result in intensity scattered away from the specular condition. In this paper the principles and peculiarities of grazing incidence scattering experiments are explained. One specific example, the self assembly of polymer micelles close to interfaces, is taken as a show case in order to introduce the scattering geometry and accessible length scales. The basic idea of the distorted wave Born approximation is lined out and some scientific examples are summarized.
Collapse
|
24
|
Wei Z, Piantavigna S, Holt SA, Nelson A, Spicer PT, Prescott SW. Comparing Surfactant Structures at "Soft" and "Hard" Hydrophobic Materials: Not All Interfaces Are Equivalent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9141-9152. [PMID: 29999320 DOI: 10.1021/acs.langmuir.8b01686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The interfacial structures of a range of amphiphilic molecules are studied with both "soft" and "hard" hydrophobic substrates. Neutron reflection and quartz crystal microbalance with dissipation measurements highlight the differences between the adsorbed structures adopted by sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (C16TAB), and the "AM1" surface active peptide. At the soft siloxane/water interface, small molecular surfactants form loosely packed layers, with the hydrophobic tails penetrating into the oily layer, and an area per surfactant molecule that is significantly less than previously reported for the air/water interface. Neutron reflection measurements, supported by quartz crystal microbalance studies, indicate that for C16TAB, approximately 30 ± 8% of the alkyl tail penetrates into the poly(dimethylsiloxane) (PDMS) layer, whereas 20 ± 5% of the alkyl tail of SDS is located in the PDMS. For the engineered peptide surfactant AM1 (21 residues), it was found that one face of the α helix penetrated into the PDMS film. In contrast, penetration of the surfactant tails was not observed against hard solidlike hydrophobic surfaces made from octadecyltrichlorosilane (OTS) for any of the molecular species studied. At the OTS/water interface, C16TAB and SDS were seen to adsorb as larger aggregates and not as monolayers. Amphiphilic adsorption (amount, structural conformation) at the PDMS/water interface is shown to be different from that at both the air/water interface and the hard OTS/water interface, illustrating that interfacial structures cannot be predicted by the surfactant packing parameter alone. The bound PDMS layer is shown to be a useful proxy for the oil/water interface in surface and stabilization studies, with hydrophobic components of the molecules able to penetrate into the oily PDMS.
Collapse
Affiliation(s)
- Zengyi Wei
- School of Chemical Engineering , UNSW Sydney , Sydney , NSW 2052 , Australia
| | - Stefania Piantavigna
- Australian Nuclear Science and Technology Organisation , Lucas Heights , NSW 2234 , Australia
| | - Stephen A Holt
- Australian Nuclear Science and Technology Organisation , Lucas Heights , NSW 2234 , Australia
| | - Andrew Nelson
- Australian Nuclear Science and Technology Organisation , Lucas Heights , NSW 2234 , Australia
| | - Patrick T Spicer
- School of Chemical Engineering , UNSW Sydney , Sydney , NSW 2052 , Australia
| | - Stuart W Prescott
- School of Chemical Engineering , UNSW Sydney , Sydney , NSW 2052 , Australia
| |
Collapse
|
25
|
Moghimikheirabadi A, Sagis LM, Ilg P. Effective interaction potentials for model amphiphilic surfactants adsorbed at fluid-fluid interfaces. Phys Chem Chem Phys 2018; 20:16238-16246. [PMID: 29863213 DOI: 10.1039/c8cp01632a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computer simulations are a useful tool to explore the effects of interactions and structure of surfactants on interfacial microstructure and properties. Starting with "molecular-level", three-dimensional reference systems of short amphiphilic surfactants at fluid-fluid interfaces, we here derive effective interaction potentials for the corresponding two-dimensional systems of structureless particles confined to the interface plane. These reference systems are comprised of two immiscible mono atomic fluids (water- and oil-like particles) and nonionic linear amphiphilic surfactants. Our results show that coarse grained interaction potentials are only weakly dependent on surface concentration but their behavior is strongly dependent on surfactant interactions. The coarse grained system preserves the in-plane surfactant center-of-mass pair correlation function at the interface and the results of surface pressure-area isotherms are in a good agreement. This approach can be extended straightforwardly to other types of surfactants at both fluid-fluid and fluid-gas interfaces providing us with an effective pairwise interaction potential for the surfactant monolayer. These effective interactions can be used to explore large-scale self-assembly within the monolayer especially at low surface concentrations where reference simulations are extremely time-consuming.
Collapse
|
26
|
Miller R, Aksenenko EV, Kovalchuk VI, Fainerman VB. Adsorption of C 14EO 8 at the interface between its aqueous solution drop and air saturated by different alkanes vapor. Phys Chem Chem Phys 2018; 19:2193-2200. [PMID: 28045155 DOI: 10.1039/c6cp07705f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The dynamic and equilibrium surface tension for drops of aqueous C14EO8 solutions at the interface to pure air or pentane, hexane, heptane and toluene saturated air, and the dynamic surface tension of pure water at these interfaces are presented. Two theoretical models were employed: both assuming a diffusion controlled adsorption of the surfactant, and either a diffusion or kinetic barrier governed adsorption of the alkanes. The experimental results are best described by the model which implies a diffusion control for the C14EO8 molecules and the existence of a kinetic barrier for the alkane molecules. The desorption of alkanes from the surface layer after equilibration and their subsequent removal from the measuring cell was studied as well. The desorption process was shown to be slow for heptane and hexane. However, for the pentane vapor the desorption is quite rapid, and after the desorption commences the surface tension becomes equal to that at the interface with pure air.
Collapse
Affiliation(s)
- R Miller
- MPI Colloids and Interfaces, Potsdam, Germany.
| | - E V Aksenenko
- Institute of Colloid Chemistry and Chemistry of Water, Kyiv (Kiev), Ukraine
| | - V I Kovalchuk
- Institute of Biocolloid Chemistry, Kyiv (Kiev), Ukraine
| | | |
Collapse
|
27
|
The Water-Alkane Interface at Various NaCl Salt Concentrations: A Molecular Dynamics Study of the Readily Available Force Fields. Sci Rep 2018; 8:352. [PMID: 29321556 PMCID: PMC5762912 DOI: 10.1038/s41598-017-18633-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/14/2017] [Indexed: 11/11/2022] Open
Abstract
In this study, classical molecular dynamic simulations have been used to examine the molecular properties of the water-alkane interface at various NaCl salt concentrations (up to 3.0 mol/kg). A variety of different force field combinations have been compared against experimental surface/interfacial tension values for the water-vapour, decane-vapour and water-decane interfaces. Six different force fields for water (SPC, SPC/E, TIP3P, TIP3Pcharmm, TIP4P & TIP4P2005), and three further force fields for alkane (TraPPE-UA, CGenFF & OPLS) have been compared to experimental data. CGenFF, OPLS-AA and TraPPE-UA all accurately reproduce the interfacial properties of decane. The TIP4P2005 (four-point) water model is shown to be the most accurate water model for predicting the interfacial properties of water. The SPC/E water model is the best three-point parameterisation of water for this purpose. The CGenFF and TraPPE parameterisations of oil accurately reproduce the interfacial tension with water using either the TIP4P2005 or SPC/E water model. The salinity dependence on surface/interfacial tension is accurately captured using the Smith & Dang parameterisation of NaCl. We observe that the Smith & Dang model slightly overestimates the surface/interfacial tensions at higher salinities (>1.5 mol/kg). This is ascribed to an overestimation of the ion exclusion at the interface.
Collapse
|
28
|
Multilayer Adsorption of Heptane Vapor at Water Drop Surfaces. COLLOIDS AND INTERFACES 2017. [DOI: 10.3390/colloids1010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
|
30
|
Kairaliyeva T, Aksenenko EV, Mucic N, Makievski AV, Fainerman VB, Miller R. Surface Tension and Adsorption Studies by Drop Profile Analysis Tensiometry. J SURFACTANTS DETERG 2017; 20:1225-1241. [PMID: 29200810 PMCID: PMC5686271 DOI: 10.1007/s11743-017-2016-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/23/2017] [Indexed: 10/25/2022]
Abstract
Surface tension and dilational viscoelasticity of solutions of various surfactants measured with bubble and drop profile analysis tensiometry are discussed. The study also includes experiments on the co-adsorption of surfactant molecules from a solution drop and alkane molecules from saturated alkane vapor phase. Using experimental data for 12 surfactants with different surface activities, it is shown that depletion due to adsorption of surfactant from the drop bulk can be significant. An algorithm is proposed quantitatively to take into consideration the depletion effect which is required for a correct description of the co-adsorption of alkanes on the solution drop surface and the correct analysis of experimental dynamic surface tension data to determine the adsorption mechanism. Bubble and drop profile analysis tensiometry is also the method of choice for measuring the dilational viscoelasticity of the adsorbed interfacial layer. The same elasticity moduli are obtained with the bubble and drop method only when the equilibrium surface pressures are sufficiently small (Π < 15 mN m-1). When the surface pressure for a surfactant solution is larger than this value, the viscoelasticity moduli determined from drop profile experiments become significantly larger than those obtained from bubble profile measurements.
Collapse
Affiliation(s)
- T. Kairaliyeva
- Max-Planck-Institut für Kolloid-und Grenzflächenforschung, Potsdam, Germany
| | - E. V. Aksenenko
- Institute of Colloid Chemistry and Chemistry of Water, Kyiv (Kiev), Ukraine
| | - N. Mucic
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | | | | | - Reinhard Miller
- Max-Planck-Institut für Kolloid-und Grenzflächenforschung, Potsdam, Germany
| |
Collapse
|
31
|
Influence of alkane and perfluorocarbon vapors on adsorbed surface layers and spread insoluble monolayers of surfactants, proteins and lipids. Adv Colloid Interface Sci 2017; 244:100-112. [PMID: 26656422 DOI: 10.1016/j.cis.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/15/2015] [Accepted: 11/18/2015] [Indexed: 12/27/2022]
Abstract
The influence of hexane vapor in the air atmosphere on the surface tension of water and solutions of C10EO8, CnTAB and proteins are presented. For dry air, a fast and strong decrease of surface tension of water was observed. In humid air, the process is slower and the surface tension higher. There are differences between the results obtained by the maximum bubble pressure, pendant drop and emerging bubble methods, which are discussed in terms of depletion and initial surface load. The surface tension of aqueous solutions of β-сasein (BCS), β-lactoglobulin (BLG) and human serum albumin (HSA) at the interfaces with air and air-saturated hexane vapor were measured. The results indicate that the equilibrium surface tension in the hexane vapor atmosphere is considerably lower (at 13-20mN/m) as compared to the values at the interface with pure air. A reorientation model is proposed assuming several states of adsorbed molecules with different molar area values. The newly developed theoretical model is used to describe the effect of alkane vapor in the gas phase on the surface tension. This model assumes that the first layer is composed of surfactant (or protein) molecules mixed with alkane, and the second layer is formed by alkane molecules only. The processing of the experimental data for the equilibrium surface tension for the C10EO8 and BCS solutions results in a perfect agreement between the observed and calculated values. The co-adsorption mechanism of dipalmitoyl phosphatidyl choline (DPPC) and the fluorocarbon molecules leads to remarkable differences in the surface pressure term of cohesion Πcoh. This in turn leads to a very efficient fluidization of the monolayer. It was found that the adsorption equilibrium constant for dioctanoyl phosphatidyl choline is increased in the presence of perfluorohexane, and the intermolecular interaction of the components is strong.
Collapse
|
32
|
Fainerman V, Aksenenko E, Lylyk S, Tarasevich Y, Miller R. Adsorption of surfactants and proteins at the interface between their aqueous solution drop and air saturated by hexane vapour. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.08.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Fainerman V, Aksenenko E, Kovalchuk V, Miller R. Surface tension of water and C 10 EO 8 solutions at the interface to hexane vapor saturated air. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.01.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Surface structure of aqueous ionic surfactant solutions and effects of solvent therein—a computer simulation study. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3812-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Salamah A, Phan CM, Pham HG. Dynamic adsorption of cetyl trimethyl ammonium bromide at decane/water interface. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Dynamic surface tension of С10ЕО8 at the aqueous solution/hexane vapor interface as measured by bubble pressure tensiometry. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Molecular structure of ionic surfactant solution surface and effects of counter-ion therein—a joint investigation by simulation and experiment. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3685-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Scoppola E, Watkins E, Li Destri G, Porcar L, Campbell RA, Konovalov O, Fragneto G, Diat O. Structure of a liquid/liquid interface during solvent extraction combining X-ray and neutron reflectivity measurements. Phys Chem Chem Phys 2015; 17:15093-7. [PMID: 25993438 DOI: 10.1039/c5cp01809a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have resolved the molecular structure of a bulk oil/water interface that contains amphiphilic ligand molecules using a combination of X-ray and neutron reflectivity measurements for the first time. This new capability can greatly impact future work in the field of ion separation by phase transfer, i.e. liquid/liquid extraction.
Collapse
Affiliation(s)
- E Scoppola
- Institut Laue-Langevin, 71 avenue des Martyrs, F-38000 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Ghadar Y, Parmar P, Samuels AC, Clark AE. Solutes at the liquid:liquid phase boundary—Solubility and solvent conformational response alter interfacial microsolvation. J Chem Phys 2015; 142:104707. [DOI: 10.1063/1.4914142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yasaman Ghadar
- Department of Chemistry and the Materials Science and Engineering, Washington State University, Pullman, Washington 99164, USA
| | - Payal Parmar
- Department of Chemistry and the Materials Science and Engineering, Washington State University, Pullman, Washington 99164, USA
| | - Alex C. Samuels
- Department of Chemistry and the Materials Science and Engineering, Washington State University, Pullman, Washington 99164, USA
| | - Aurora E. Clark
- Department of Chemistry and the Materials Science and Engineering, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
41
|
Using neutral impact collision ion scattering spectroscopy and angular resolved X-ray photoelectron spectroscopy to analyze surface structure of surfactant solutions. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3541-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Abstract
The liquid interface is a narrow, highly anisotropic region, characterized by rapidly varying density, polarity, and molecular structure. I review several aspects of interfacial solvation and show how these affect reactivity at liquid/liquid interfaces. I specifically consider ion transfer, electron transfer, and SN2 reactions, showing that solvent effects on these reactions can be understood by examining the unique structure and dynamics of the liquid interface region.
Collapse
Affiliation(s)
- Ilan Benjamin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064;
| |
Collapse
|
43
|
Fainerman VB, Aksenenko EV, Mucic N, Javadi A, Miller R. Thermodynamics of adsorption of ionic surfactants at water/alkane interfaces. SOFT MATTER 2014; 10:6873-6887. [PMID: 24909966 DOI: 10.1039/c4sm00463a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
On the basis of experimental data for the homologous series of alkyltrimethylammonium bromides (CnTAB) the equilibrium surface tension isotherms at three types of liquid-fluid interfaces are discussed: solution/air, solution/alkane vapor and solution/liquid alkane interfaces. It is shown that the adsorption characteristics can be described at all three interfaces by the same thermodynamic approach. In the presence of alkane molecules (in the liquid alkane phase or in the alkane vapor phase) the CnTAB adsorption layers can be best described by a co-adsorption of the alkane molecules.
Collapse
Affiliation(s)
- V B Fainerman
- Donetsk Medical University, 16 Ilych Avenue, Donetsk 83003, Ukraine
| | | | | | | | | |
Collapse
|
44
|
Penfold J, Thomas RK. Neutron reflectivity and small angle neutron scattering: An introduction and perspective on recent progress. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Wick CD, Chang TM. Computational Observation of Pockets of Enhanced Water Concentration at the 1-Octanol/Water Interface. J Phys Chem B 2014; 118:7785-91. [DOI: 10.1021/jp411427a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Collin D. Wick
- Department
of Chemistry, Louisiana Tech University, P.O. Box 10348, Ruston, Louisiana 71270, United States
| | - Tsun-Mei Chang
- Department
of Chemistry, University of Wisconsin-Parkside, 900 Wood Road, Kenosha, Wisconsin 53141, United States
| |
Collapse
|
46
|
Cooper JK, Benjamin I. Photoinduced Excited State Electron Transfer at Liquid/Liquid Interfaces. J Phys Chem B 2014; 118:7703-14. [DOI: 10.1021/jp409541u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jason K. Cooper
- Department
of Chemistry and
Biochemistry University of California Santa Cruz, California 95064, United States
| | - Ilan Benjamin
- Department
of Chemistry and
Biochemistry University of California Santa Cruz, California 95064, United States
| |
Collapse
|
47
|
Ghadar Y, Clark AE. Intermolecular network analysis of the liquid and vapor interfaces of pentane and water: microsolvation does not trend with interfacial properties. Phys Chem Chem Phys 2014; 16:12475-87. [DOI: 10.1039/c4cp00602j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesoscopic interfacial properties are not correlated to the distribution of microsolvated species and mechanisms (above) for microsolvation at water:pentane interfaces.
Collapse
Affiliation(s)
- Yasaman Ghadar
- Department of Chemistry
- Washington State University
- Pullman, USA
| | - Aurora E. Clark
- Department of Chemistry
- Washington State University
- Pullman, USA
| |
Collapse
|
48
|
Fainerman VB, Mucic N, Pradines V, Aksenenko EV, Miller R. Adsorption of alkyltrimethylammonium bromides at water/alkane interfaces: competitive adsorption of alkanes and surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13783-13789. [PMID: 24111851 DOI: 10.1021/la402782e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The adsorption of members of the homologous series of alkyl trimethylammonium bromides (C(n)TAB) is studied at water/alkane interfaces by drop profile analysis tensiometry. The results are discussed in terms of a competitive adsorption process of alkane and surfactant molecules. A thermodynamic model, derived originally for the adsorption of surfactant mixtures, is adapted such that it describes a competitive adsorption of the surfactant molecules from the aqueous phase and alkane molecules from the oil phase. This new model involves the interspecies attraction coefficient, which mutually increases the adsorption activities of the alkane and C(n)TAB. The effects of the alkyl chain length n of C(n)TABs and the influence of the number of C atoms in the alkane chain are discussed, and the physical quantities are compared to those determined at the aqueous solution/air interface. The new theoretical model for aqueous solution/oil interfaces is also compared to a theory that does not consider the adsorption of alkane. The proposed new model demonstrates good agreement with the experimental data.
Collapse
Affiliation(s)
- V B Fainerman
- Donetsk Medical University , 16 Ilych Avenue, 83003 Donetsk, Ukraine
| | | | | | | | | |
Collapse
|
49
|
Chang TM, Dang LX. Computational studies of [bmim][PF6]/n-alcohol interfaces with many-body potentials. J Phys Chem A 2013; 118:7186-93. [PMID: 24063438 DOI: 10.1021/jp405910k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this paper, we present the results from molecular dynamics simulations of the equilibrium properties of liquid/liquid interfaces of room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and simple alcohols (i.e., methanol, 1-butanol, and 1-hexanol) at room temperature. Polarizable potential models are employed to describe the interactions among species. Results from our simulations show stable interfaces between the ionic liquid and n-alcohols, and we found that the interfacial widths decrease from methanol to 1-butanol systems and then increase for 1-hexanol interfaces. Angular distribution analysis reveals that the interface induces a strong orientational order of [bmim] and n-alcohol molecules near the interface, with [bmim] extending its butyl group into the alcohol phase, whereas the alcohol has the OH group pointing into the ionic liquid region, which is consistent with the recent sum-frequency-generation experiments. We found the interface to have a significant influence on the dynamics of ionic liquids and n-alcohols. The orientational autocorrelation functions illustrate that [bmim] rotates more freely near the interface than in the bulk, whereas the rotation of n-alcohol is hindered at the interface. Additionally, the time scale associated with the diffusion along the interfacial direction is found to be faster for [bmim] but slowed down for n-alcohols approaching the interface. We also calculate the dipole moment of n-alcohols as a function of the distance normal to the interface. We found that, even though methanol and 1-butanol have different dipole moments in bulk phase, they reach a similar value at the interface.
Collapse
Affiliation(s)
- Tsun-Mei Chang
- Department of Chemistry, University of Wisconsin , Parkside, Wisconsin 53141, United States
| | | |
Collapse
|
50
|
Cummings OT, Wick CD. Computational study on the effect of alkyl chain length on alkane–water interfacial width. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2012.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|