1
|
Shao D, Gao X, Wei Y. Pre-mRNA Splicing Functions in Plant Sexual Reproduction Development. PLANTS (BASEL, SWITZERLAND) 2025; 14:1472. [PMID: 40431036 PMCID: PMC12114641 DOI: 10.3390/plants14101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/11/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025]
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a critical post-transcriptional regulatory mechanism in gene expression. The precise splicing of pre-mRNAs is essential for plant development and responding to genetic and environmental signals. In plant sexual reproduction, gene expression regulation relies on the accurate processing of pre-mRNAs, which is fundamental for coordinating developmental programs. The alternation of generations in plants involves two key phases: gametophyte development, which produces gametes, and fertilization, which leads to the formation of a diploid sporophyte. Gametophyte and embryo development represent essential processes in plant sexual reproduction. This review focuses on summarizing and analyzing the current evidence regarding the role of pre-mRNA splicing in plant sexual reproduction, with an emphasis on its involvement in gametophyte formation and embryo development. Future challenges in understanding RNA splicing regulation in plant sexual reproduction are also discussed, particularly in modulating splicing factor levels and activities and identifying target mRNAs and non-coding RNAs regulated by these factors. This review provides crucial insights into the molecular mechanisms of plant reproductive development and offers a theoretical basis for improving plant fertility and adaptability via RNA splicing regulation.
Collapse
Affiliation(s)
- Dongjie Shao
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China;
| | - Xinqi Gao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Yiming Wei
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China;
| |
Collapse
|
2
|
Takahashi H, Arae T, Ishibashi K, Sano R, Demura T, Ohtani M. Chemically-induced cellular stress signals are transmitted to alternative splicing via UsnRNA levels to alter gene expression in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2025; 115:46. [PMID: 40089952 PMCID: PMC11911268 DOI: 10.1007/s11103-025-01575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 02/17/2025] [Indexed: 03/18/2025]
Abstract
Alternative pre-mRNA splicing (AS) is a crucial regulatory layer of gene expression in eukaryotes. AS patterns can change in response to abiotic and biotic stress, allowing cellular functions to adapt to environmental conditions. Here, we examined the effects of cellular stress-inducing chemicals on AS-mediated gene regulation in Arabidopsis thaliana by investigating the alternatively spliced forms of SERINE-ARGININE PROTEIN30 (SRp30) and U1-70 K, encoding splicing factors, as well as ASCORBATE PEROXIDASE3 (APX3) and FOLYLPOLYGLUTAMATE SYNTHASE3 (FPGS3), encoding enzymes important for stress responses. Disrupting key cellular activities, including nitric oxide metabolism, ATPase activity, plastid function, and genome stability, affected AS patterns in Arabidopsis. Stress treatment altered the abundance of uridine-rich small nuclear RNAs (UsnRNAs), especially U1 snRNAs, which are essential non-coding RNA components of U1 small nuclear ribonucleoproteins (U1 snRNPs), suggesting that abnormalities in AS are partially mediated by changes in U1 snRNA levels. The shoot redifferentiation defectice2-1 (srd2-1) mutant defective for snRNA transcription was hypersensitive for stress treatment, since it showed changes in AS patterns at lower concentrations of stress inducers to compare with the wild type. Together, our data suggest that cellular stress can influence gene expression in plants by regulating AS, which is partially regulated by UsnRNA levels through the SRD2-mediated snRNA transcription.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Toshihiro Arae
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8562, Japan
| | - Kodai Ishibashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8562, Japan
| | - Ryosuke Sano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan
| | - Misato Ohtani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8562, Japan.
| |
Collapse
|
3
|
Lu Y, Liang K, Zhan X. Structure of a step II catalytically activated spliceosome from Chlamydomonas reinhardtii. EMBO J 2025; 44:975-990. [PMID: 39415054 PMCID: PMC11833078 DOI: 10.1038/s44318-024-00274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Pre-mRNA splicing, a fundamental step in eukaryotic gene expression, is executed by the spliceosomes. While there is extensive knowledge of the composition and structure of spliceosomes in yeasts and humans, the structural diversity of spliceosomes in non-canonical organisms remains unclear. Here, we present a cryo-EM structure of a step II catalytically activated spliceosome (C* complex) derived from the unicellular green alga Chlamydomonas reinhardtii at 2.6 Å resolution. This Chlamydomonas C* complex comprises 29 proteins and four RNA elements, creating a dynamic assembly that shares a similar overall architecture with yeast and human counterparts but also has unique features of its own. Distinctive structural characteristics include variations in protein compositions as well as some noteworthy RNA features. The splicing factor Prp17, with four fragments and a WD40 domain, is engaged in intricate interactions with multiple protein and RNA components. The structural elucidation of Chlamydomonas C* complex provides insights into the molecular mechanism of RNA splicing in plants and understanding splicing evolution in eukaryotes.
Collapse
Affiliation(s)
- Yichen Lu
- College of Life Sciences, Fudan University, Shanghai, 200433, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Ke Liang
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
4
|
Xie M, Tadesse D, Zhang J, Yao T, Zhang L, Jawdy SS, Devireddy A, Zheng K, Smith EB, Morrell-Falvey J, Pan C, Chen F, Tuskan GA, Muchero W, Chen JG. AtDGCR14L contributes to salt-stress tolerance via regulating pre-mRNA splicing in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2668-2682. [PMID: 39522174 DOI: 10.1111/tpj.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
In plants, pre-mRNA alternative splicing has been demonstrated to be a crucial tier that regulates gene expression in response to salt stress. However, the underlying mechanisms remain elusive. Here, we studied the roles of DIGEORGE-SYNDROME CRITICAL REGION 14-like (AtDGCR14L) in regulating pre-mRNA splicing and salt stress tolerance. We discovered that Arabidopsis AtDGCR14L is required for maintaining plant salt stress tolerance and the constitutively spliced and active isoforms of important stress- and/or abscisic acid (ABA)-responsive genes. We also identified the interaction between AtDGCR14L and splicing factor U1-70k, which needs a highly conserved three amino acid (TWG) motif in DGCR14. Different from wild-type AtDGCR14L, the overexpression of the TWG-substituted AtDGCR14L mutant did not change salt stress tolerance or pre-mRNA splicing of stress/ABA-responsive genes. Additionally, SWITCH3A (SWI3A) is a core subunit of the SWI/SUCROSE NONFERMENTING (SWI/SNF) chromatin-remodeling complexes. We found that SWI3A, whose splicing depends on AtDGCR14L, actively enhances salt stress tolerance. These results revealed that AtDGCR14L may play an essential role in crosstalk between plant salt-stress response and pre-mRNA splicing mechanisms. We also unveiled the potential role of SWI3A in controlling salt stress tolerance. The TWG motif in the intrinsically disordered region of AtDGCR14L is highly conserved and crucial for DGCR14 functions.
Collapse
Affiliation(s)
- Meng Xie
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Dimiru Tadesse
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Jin Zhang
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Tao Yao
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Li Zhang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Sara S Jawdy
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Amith Devireddy
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Kaijie Zheng
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Emily B Smith
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | | | - Chongle Pan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
- School of Computer Science, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Gerald A Tuskan
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Wellington Muchero
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Jin-Gui Chen
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| |
Collapse
|
5
|
Nguyen TKH, Kang H. Reading m 6A marks in mRNA: A potent mechanism of gene regulation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2586-2599. [PMID: 39364713 PMCID: PMC11622538 DOI: 10.1111/jipb.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
Modifications to RNA have recently been recognized as a pivotal regulator of gene expression in living organisms. More than 170 chemical modifications have been identified in RNAs, with N6-methyladenosine (m6A) being the most abundant modification in eukaryotic mRNAs. The addition and removal of m6A marks are catalyzed by methyltransferases (referred to as "writers") and demethylases (referred to as "erasers"), respectively. In addition, the m6A marks in mRNAs are recognized and interpreted by m6A-binding proteins (referred to as "readers"), which regulate the fate of mRNAs, including stability, splicing, transport, and translation. Therefore, exploring the mechanism underlying the m6A reader-mediated modulation of RNA metabolism is essential for a much deeper understanding of the epigenetic role of RNA modification in plants. Recent discoveries have improved our understanding of the functions of m6A readers in plant growth and development, stress response, and disease resistance. This review highlights the latest developments in m6A reader research, emphasizing the diverse RNA-binding domains crucial for m6A reader function and the biological and cellular roles of m6A readers in the plant response to developmental and environmental signals. Moreover, we propose and discuss the potential future research directions and challenges in identifying novel m6A readers and elucidating the cellular and mechanistic role of m6A readers in plants.
Collapse
Affiliation(s)
- Thi Kim Hang Nguyen
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangju61186Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangju61186Korea
| |
Collapse
|
6
|
Pinoti VF, Ferreira PB, Strini EJ, Lubini G, Thomé V, Cruz JO, Aziani R, Quiapim AC, Pinto APA, Araujo APU, De Paoli HC, Pranchevicius MCS, Goldman MHS. SCI1, a flower regulator of cell proliferation, and its partners NtCDKG2 and NtRH35 interact with the splicing machinery. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6312-6330. [PMID: 39113673 DOI: 10.1093/jxb/erae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/07/2024] [Indexed: 11/01/2024]
Abstract
Successful plant reproduction depends on the adequate development of floral organs controlled by cell proliferation and other processes. The Stigma/style cell-cycle inhibitor 1 (SCI1) gene regulates cell proliferation and affects the final size of the female reproductive organ. To unravel the molecular mechanism exerted by Nicotiana tabacum SCI1 in cell proliferation control, we searched for its interaction partners through semi-in vivo pull-down experiments, uncovering a cyclin-dependent kinase, NtCDKG;2. Bimolecular fluorescence complementation and co-localization experiments showed that SCI1 interacts with NtCDKG;2 and its cognate NtCyclin L in nucleoli and splicing speckles. The screening of a yeast two-hybrid cDNA library using SCI1 as bait revealed a novel DEAD-box RNA helicase (NtRH35). Interaction between the NtCDKG;2-NtCyclin L complex and NtRH35 is also shown. Subcellular localization experiments showed that SCI1, NtRH35, and the NtCDKG;2-NtCyclin L complex associate with each other within splicing speckles. The yeast two-hybrid screening of NtCDKG;2 and NtRH35 identified the conserved spliceosome components U2a', NF-κB activating protein (NKAP), and CACTIN. This work presents SCI1 and its interactors, the NtCDKG;2-NtCyclin L complex and NtRH35, as new spliceosome-associated proteins. Our findings reveal a network of interactions and indicate that SCI1 may regulate cell proliferation through the splicing process, providing new insights into the intricate molecular pathways governing plant development.
Collapse
Affiliation(s)
- Vitor F Pinoti
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Pedro B Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Edward J Strini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Greice Lubini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Vanessa Thomé
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Joelma O Cruz
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Rodrigo Aziani
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Andréa C Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Andressa P A Pinto
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Ana Paula U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Henrique C De Paoli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | | | - Maria Helena S Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
7
|
Sanjaya A, Nishijima R, Fujii Y, Asano M, Ishii K, Kazama Y, Abe T, Fujiwara MT. Rare occurrence of cryptic 5' splice sites by downstream 3' splice site/exon boundary mutations in a heavy-ion-induced egy1-4 allele of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1388040. [PMID: 39319001 PMCID: PMC11420051 DOI: 10.3389/fpls.2024.1388040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Pre-mRNA splicing is a fundamental process in eukaryotic gene expression, and the mechanism of intron definition, involving the recognition of the canonical GU (5'-splice site) and AG (3'-splice site) dinucleotides by splicing factors, has been postulated for most cases of splicing initiation in plants. Splice site mutations have played crucial roles in unraveling the mechanism of pre-mRNA splicing in planta. Typically, splice site mutations abolish splicing events or activate one or more cryptic splice sites surrounding the mutated region. In this report, we investigated the splicing pattern of the EGY1 gene in an Ar-ion-induced egy1-4 allele of Arabidopsis thaliana. egy1-4 has an AG-to-AC mutation in the 3'-end of intron 3, along with 4-bp substitutions and a 5-bp deletion in adjacent exon 4. RT-PCR, cDNA cloning, and amplicon sequencing analyses of EGY1 revealed that while most wild-type EGY1 mRNAs had a single splicing pattern, egy1-4 mRNAs had multiple splicing defects. Almost half of EGY1 transcripts showed 'intron retention' at intron 3, while the other half exhibited activation of 3' cryptic splice sites either upstream or downstream of the original 3'-splice site. Unexpectedly, around 8% of EGY1 transcripts in egy1-4 exhibited activation of cryptic 5'-splice sites positioned upstream of the authentic 5'-splice site of intron 3. Whole genome resequencing of egy1-4 indicated that it has no other known impactful mutations. These results may provide a rare, but real case of activation of cryptic 5'-splice sites by downstream 3'-splice site/exon mutations in planta.
Collapse
Affiliation(s)
- Alvin Sanjaya
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, Japan
- Graduate School of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
| | - Ryo Nishijima
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, Japan
| | - Yuki Fujii
- Graduate School of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
| | - Makoto Asano
- Graduate School of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
| | - Kotaro Ishii
- Ion Beam Breeding Group, RIKEN Nishina Center, Wako, Saitama, Japan
| | - Yusuke Kazama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, Japan
- Ion Beam Breeding Group, RIKEN Nishina Center, Wako, Saitama, Japan
| | - Tomoko Abe
- Ion Beam Breeding Group, RIKEN Nishina Center, Wako, Saitama, Japan
| | - Makoto T. Fujiwara
- Graduate School of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
- Ion Beam Breeding Group, RIKEN Nishina Center, Wako, Saitama, Japan
| |
Collapse
|
8
|
Sybilska E, Collin A, Sadat Haddadi B, Mur LAJ, Beckmann M, Guo W, Simpson CG, Daszkowska-Golec A. The cap-binding complex modulates ABA-responsive transcript splicing during germination in barley (Hordeum vulgare). Sci Rep 2024; 14:18278. [PMID: 39107424 PMCID: PMC11303550 DOI: 10.1038/s41598-024-69373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
To decipher the molecular bases governing seed germination, this study presents the pivotal role of the cap-binding complex (CBC), comprising CBP20 and CBP80, in modulating the inhibitory effects of abscisic acid (ABA) in barley. Using both single and double barley mutants in genes encoding the CBC, we revealed that the double mutant hvcbp20.ab/hvcbp80.b displays ABA insensitivity, in stark contrast to the hypersensitivity observed in single mutants during germination. Our comprehensive transcriptome and metabolome analysis not only identified significant alterations in gene expression and splicing patterns but also underscored the regulatory nexus among CBC, ABA, and brassinosteroid (BR) signaling pathways.
Collapse
Affiliation(s)
- Ewa Sybilska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Anna Collin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | | | - Luis A J Mur
- Department of Life Science, Aberystwyth University, Aberystwyth, UK
| | - Manfred Beckmann
- Department of Life Science, Aberystwyth University, Aberystwyth, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Craig G Simpson
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
9
|
Hardy EC, Balcerowicz M. Untranslated yet indispensable-UTRs act as key regulators in the environmental control of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4314-4331. [PMID: 38394144 PMCID: PMC11263492 DOI: 10.1093/jxb/erae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
To survive and thrive in a dynamic environment, plants must continuously monitor their surroundings and adjust their development and physiology accordingly. Changes in gene expression underlie these developmental and physiological adjustments, and are traditionally attributed to widespread transcriptional reprogramming. Growing evidence, however, suggests that post-transcriptional mechanisms also play a vital role in tailoring gene expression to a plant's environment. Untranslated regions (UTRs) act as regulatory hubs for post-transcriptional control, harbouring cis-elements that affect an mRNA's processing, localization, translation, and stability, and thereby tune the abundance of the encoded protein. Here, we review recent advances made in understanding the critical function UTRs exert in the post-transcriptional control of gene expression in the context of a plant's abiotic environment. We summarize the molecular mechanisms at play, present examples of UTR-controlled signalling cascades, and discuss the potential that resides within UTRs to render plants more resilient to a changing climate.
Collapse
Affiliation(s)
- Emma C Hardy
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| | - Martin Balcerowicz
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
10
|
Deepika, Madhu, Upadhyay SK. Deciphering the features and functions of serine/arginine protein kinases in bread wheat. PLANT GENE 2024; 38:100451. [DOI: 10.1016/j.plgene.2024.100451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
11
|
McCue K, Burge CB. An interpretable model of pre-mRNA splicing for animal and plant genes. SCIENCE ADVANCES 2024; 10:eadn1547. [PMID: 38718117 PMCID: PMC11078188 DOI: 10.1126/sciadv.adn1547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Pre-mRNA splicing is a fundamental step in gene expression, conserved across eukaryotes, in which the spliceosome recognizes motifs at the 3' and 5' splice sites (SSs), excises introns, and ligates exons. SS recognition and pairing is often influenced by protein splicing factors (SFs) that bind to splicing regulatory elements (SREs). Here, we describe SMsplice, a fully interpretable model of pre-mRNA splicing that combines models of core SS motifs, SREs, and exonic and intronic length preferences. We learn models that predict SS locations with 83 to 86% accuracy in fish, insects, and plants and about 70% in mammals. Learned SRE motifs include both known SF binding motifs and unfamiliar motifs, and both motif classes are supported by genetic analyses. Our comparisons across species highlight similarities between non-mammals, increased reliance on intronic SREs in plant splicing, and a greater reliance on SREs in mammalian splicing.
Collapse
Affiliation(s)
- Kayla McCue
- Computational and Systems Biology PhD Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Christopher B. Burge
- Computational and Systems Biology PhD Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
12
|
Liu Y, Do S, Huynh H, Li JX, Liu YG, Du ZY, Chen MX. Importance of pre-mRNA splicing and its study tools in plants. ADVANCED BIOTECHNOLOGY 2024; 2:4. [PMID: 39883322 PMCID: PMC11740881 DOI: 10.1007/s44307-024-00009-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/31/2025]
Abstract
Alternative splicing (AS) significantly enriches the diversity of transcriptomes and proteomes, playing a pivotal role in the physiology and development of eukaryotic organisms. With the continuous advancement of high-throughput sequencing technologies, an increasing number of novel transcript isoforms, along with factors related to splicing and their associated functions, are being unveiled. In this review, we succinctly summarize and compare the different splicing mechanisms across prokaryotes and eukaryotes. Furthermore, we provide an extensive overview of the recent progress in various studies on AS covering different developmental stages in diverse plant species and in response to various abiotic stresses. Additionally, we discuss modern techniques for studying the functions and quantification of AS transcripts, as well as their protein products. By integrating genetic studies, quantitative methods, and high-throughput omics techniques, we can discover novel transcript isoforms and functional splicing factors, thereby enhancing our understanding of the roles of various splicing modes in different plant species.
Collapse
Affiliation(s)
- Yue Liu
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Sally Do
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Henry Huynh
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jing-Xin Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ying-Gao Liu
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, Shandong, China.
| | - Zhi-Yan Du
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Mo-Xian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.
| |
Collapse
|
13
|
Shang L, Zhou Y, Wen S, Wang K, Li Y, Zhang M, Jian H, Lyu D. Construction of heat stress regulation networks based on Illumina and SMRT sequencing data in potato. FRONTIERS IN PLANT SCIENCE 2023; 14:1271084. [PMID: 38023929 PMCID: PMC10651764 DOI: 10.3389/fpls.2023.1271084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Potato (Solanum tuberosum L.) is one of the most important tuber food crops in the world; however, the cultivated potatoes are susceptible to high temperature, by which potato production is adversely affected. Understanding the coping mechanism of potato to heat stress is essential to secure yield and expand adaptability under environmental conditions with rising temperature. However, the lack of heat-related information has significantly limited the identification and application of core genes. To gain deeper insights into heat tolerance genes, next-generation sequencing and single-molecule real-time sequencing were used to learn the transcriptional response of potato to heat stress and 13,159 differentially expressed genes (DEGs) were identified in this study. All DEGs were grouped into 12 clusters using the K-means clustering algorithm. Gene Ontology enrichment analysis revealed that they were involved in temperature signaling, phytohormone, and protein modification. Among them, there were 950 differentially expressed transcription factors (DETFs). According to the network analysis of DETFs at the sixth hour under heat stress, we found some genes that were previously reported to be associated with photoperiodic tuberization, StCO (CONSTANS), tuber formation, StBEL11 (BEL1-LIKE 11), and earliness in potato, StCDF1 (CYCLING DOF FACTOR 1) responding to temperature. Furthermore, we verified the relative expression levels using quantitative real-time polymerase chain reaction, and the results were consistent with the inferences from transcriptomes. In addition, there were 22,125 alternative splicing events and 2,048 long non-coding RNAs. The database and network established in this study will extend our understanding of potato response to heat stress. It ultimately provided valuable resources for molecular analysis of heat stress response in potato and cultivation of potato varieties with heat tolerance.
Collapse
Affiliation(s)
- Lina Shang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yonghong Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Southwest University, Chongqing, China
| | - Shiqi Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Ke Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Meihua Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Hongju Jian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Southwest University, Chongqing, China
| | - Dianqiu Lyu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Schenstnyi K, Strauß A, Dressel A, Morbitzer R, Wunderlich M, Andrade AG, Phan TTT, Aguilera PDLA, Brancato C, Berendzen KW, Lahaye T. The tomato resistance gene Bs4 suppresses leaf watersoaking phenotypes induced by AvrHah1, a transcription activator-like effector from tomato-pathogenic xanthomonads. THE NEW PHYTOLOGIST 2022; 236:1856-1870. [PMID: 36056465 DOI: 10.1111/nph.18456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The Xanthomonas transcription activator-like effector (TALE) protein AvrBs3 transcriptionally activates the executor-type resistance (R) gene Bs3 from pepper (Capsicum annuum), thereby triggering a hypersensitive cell death reaction (HR). AvrBs3 also triggers an HR in tomato (Solanum lycopersicum) upon recognition by the nucleotide-binding leucine-rich repeat (NLR) R protein Bs4. Whether the executor-type R protein Bs3 and the NLR-type R protein Bs4 use common or distinct signalling components to trigger an HR remains unclear. CRISPR/Cas9-mutagenesis revealed, that the immune signalling node EDS1 is required for Bs4- but not for Bs3-dependent HR, suggesting that NLR- and executor-type R proteins trigger an HR via distinct signalling pathways. CRISPR/Cas9-mutagenesis also revealed that tomato Bs4 suppresses the virulence function of both TALEs, the HR-inducing AvrBs3 protein and of AvrHah1, a TALE that does not trigger an HR in tomato. Analysis of AvrBs3- and AvrHah1-induced host transcripts and disease phenotypes in CRISPR/Cas9-induced bs4 mutant plants indicates that both TALEs target orthologous transcription factor genes to promote disease in tomato and pepper host plants. Our studies display that tomato mutants lacking the TALE-sensing Bs4 protein provide a novel platform to either uncover TALE-induced disease phenotypes or genetically dissect components of executor-triggered HR.
Collapse
Affiliation(s)
- Kyrylo Schenstnyi
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Annett Strauß
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Angela Dressel
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Robert Morbitzer
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Markus Wunderlich
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Ana Gabriela Andrade
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Trang-Thi-Thu Phan
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | | | - Caterina Brancato
- University of Tübingen, ZMBP - Central Facilities, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Kenneth Wayne Berendzen
- University of Tübingen, ZMBP - Central Facilities, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Thomas Lahaye
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| |
Collapse
|
15
|
Siebert AE, Corll J, Paige Gronevelt J, Levine L, Hobbs LM, Kenney C, Powell CLE, Battistuzzi FU, Davenport R, Mark Settles A, Brad Barbazuk W, Westrick RJ, Madlambayan GJ, Lal S. Genetic analysis of human RNA binding motif protein 48 (RBM48) reveals an essential role in U12-type intron splicing. Genetics 2022; 222:iyac129. [PMID: 36040194 PMCID: PMC9526058 DOI: 10.1093/genetics/iyac129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
U12-type or minor introns are found in most multicellular eukaryotes and constitute ∼0.5% of all introns in species with a minor spliceosome. Although the biological significance for the evolutionary conservation of U12-type introns is debated, mutations disrupting U12 splicing cause developmental defects in both plants and animals. In human hematopoietic stem cells, U12 splicing defects disrupt proper differentiation of myeloid lineages and are associated with myelodysplastic syndrome, predisposing individuals to acute myeloid leukemia. Mutants in the maize ortholog of RNA binding motif protein 48 (RBM48) have aberrant U12-type intron splicing. Human RBM48 was recently purified biochemically as part of the minor spliceosome and shown to recognize the 5' end of the U6atac snRNA. In this report, we use CRISPR/Cas9-mediated ablation of RBM48 in human K-562 cells to show the genetic function of RBM48. RNA-seq analysis comparing wild-type and mutant K-562 genotypes found that 48% of minor intron-containing genes have significant U12-type intron retention in RBM48 mutants. Comparing these results to maize rbm48 mutants defined a subset of minor intron-containing genes disrupted in both species. Mutations in the majority of these orthologous minor intron-containing genes have been reported to cause developmental defects in both plants and animals. Our results provide genetic evidence that the primary defect of human RBM48 mutants is aberrant U12-type intron splicing, while a comparison of human and maize RNA-seq data identifies candidate genes likely to mediate mutant phenotypes of U12-type splicing defects.
Collapse
Affiliation(s)
- Amy E Siebert
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Jacob Corll
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - J Paige Gronevelt
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Laurel Levine
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Linzi M Hobbs
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Catalina Kenney
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Christopher L E Powell
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Fabia U Battistuzzi
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Ruth Davenport
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - A Mark Settles
- Horticultural Sciences Department and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - W Brad Barbazuk
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Randal J Westrick
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Gerard J Madlambayan
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Shailesh Lal
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| |
Collapse
|
16
|
Liu T, Zhang X, Zhang H, Cheng Z, Liu J, Zhou C, Luo S, Luo W, Li S, Xing X, Chang Y, Shi C, Ren Y, Zhu S, Lei C, Guo X, Wang J, Zhao Z, Wang H, Zhai H, Lin Q, Wan J. Dwarf and High Tillering1 represses rice tillering through mediating the splicing of D14 pre-mRNA. THE PLANT CELL 2022; 34:3301-3318. [PMID: 35670739 PMCID: PMC9421477 DOI: 10.1093/plcell/koac169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/11/2022] [Indexed: 06/09/2023]
Abstract
Strigolactones (SLs) constitute a class of plant hormones that regulate many aspects of plant development, including repressing tillering in rice (Oryza sativa). However, how SL pathways are regulated is still poorly understood. Here, we describe a rice mutant dwarf and high tillering1 (dht1), which exhibits pleiotropic phenotypes (such as dwarfism and increased tiller numbers) similar to those of mutants defective in SL signaling. We show that DHT1 encodes a monocotyledon-specific hnRNP-like protein that acts as a previously unrecognized intron splicing factor for many precursor mRNAs (pre-mRNAs), including for the SL receptor gene D14. We find that the dht1 (DHT1I232F) mutant protein is impaired in its stability and RNA binding activity, causing defective splicing of D14 pre-mRNA and reduced D14 expression, and consequently leading to the SL signaling-defective phenotypes. Overall, our findings deepen our understanding of the functional diversification of hnRNP-like proteins and establish a connection between posttranscriptional splicing and SL signaling in the regulation of plant development.
Collapse
Affiliation(s)
| | | | | | | | - Jun Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weifeng Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinxin Xing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanqi Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cuilan Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huqu Zhai
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- Author for correspondence: (J.W.), (Q.L.)
| | | |
Collapse
|
17
|
Kufel J, Diachenko N, Golisz A. Alternative splicing as a key player in the fine-tuning of the immunity response in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2022; 23:1226-1238. [PMID: 35567423 PMCID: PMC9276941 DOI: 10.1111/mpp.13228] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/01/2023]
Abstract
Plants, like animals, are constantly exposed to abiotic and biotic stresses, which often inhibit plant growth and development, and cause tissue damage, disease, and even plant death. Efficient and timely response to stress requires appropriate co- and posttranscriptional reprogramming of gene expression. Alternative pre-mRNA splicing provides an important layer of this regulation by controlling the level of factors involved in stress response and generating additional protein isoforms with specific features. Recent high-throughput studies have revealed that several defence genes undergo alternative splicing that is often affected by pathogen infection. Despite extensive work, the exact mechanisms underlying these relationships are still unclear, but the contribution of alternative protein isoforms to the defence response and the role of regulatory factors, including components of the splicing machinery, have been established. Modulation of gene expression in response to stress includes alternative splicing, chromatin remodelling, histone modifications, and nucleosome occupancy. How these processes affect plant immunity is mostly unknown, but these facets open new regulatory possibilities. Here we provide an overview of the current state of knowledge and recent findings regarding the growing importance of alternative splicing in plant response to biotic stress.
Collapse
Affiliation(s)
- Joanna Kufel
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Nataliia Diachenko
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Anna Golisz
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
18
|
Liu L, Wu D, Gu Y, Liu F, Liu B, Mao F, Yi X, Tang T, Zhao X. Comprehensive profiling of alternative splicing landscape during secondary dormancy in oilseed rape ( Brassica napus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:44. [PMID: 37313517 PMCID: PMC10248609 DOI: 10.1007/s11032-022-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Alternative splicing is a general mechanism that regulates gene expression at the post-transcriptional level, which increases the transcriptomic diversity. Oilseed rape (Brassica napus L.), one of the main oil crops worldwide, is prone to secondary dormancy. However, how alternative splicing landscape of oilseed rape seed changes in response to secondary dormancy is unknown. Here, we analyzed twelve RNA-seq libraries from varieties "Huaiyou-SSD-V1" and "Huaiyou-WSD-H2" which exhibited high (> 95%) and low (< 5%) secondary dormancy potential, respectively, and demonstrated that alternative splicing changes led to a significant increase with the diversity of the transcripts in response to secondary dormancy induction via polyethylene glycol 6000 (PEG6000) treatment. Among the four basic alternative splicing types, intron retention dominates, and exon skipping shows the rarest frequency. A total of 8% of expressed genes had two or more transcripts after PEG treatment. Further analysis revealed that global isoform expression percentage variations in alternative splicing in differently expressed genes (DEGs) is more than three times as much as those in non-DEGs, suggesting alternative splicing change is associated with the transcriptional activity change in response to secondary dormancy induction. Eventually, 342 differently spliced genes (DSGs) associated with secondary dormancy were identified, five of which were validated by RT-PCR. The number of the overlapped genes between DSGs and DEGs associated with secondary dormancy was much less than that of either DSGs or DEGs, suggesting that DSGs and DEGs may independently regulates secondary dormancy. Functional annotation analysis of DSGs revealed that spliceosome components are overrepresented among the DSGs, including small nuclear ribonucleoprotein particles (snRNPs), serine/arginine-rich (SR) proteins, and other splicing factors. Thus, it is proposed that the spliceosome components could be exploited to reduce secondary dormancy potential in oilseed rape. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01314-8.
Collapse
Affiliation(s)
- Lei Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Depeng Wu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Yujuan Gu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei 066600 China
| | - Fuxia Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Bin Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
| | - Feng Mao
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
| | - Xin Yi
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Tang Tang
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Xiangxiang Zhao
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| |
Collapse
|
19
|
Rosenkranz RRE, Ullrich S, Löchli K, Simm S, Fragkostefanakis S. Relevance and Regulation of Alternative Splicing in Plant Heat Stress Response: Current Understanding and Future Directions. FRONTIERS IN PLANT SCIENCE 2022; 13:911277. [PMID: 35812973 PMCID: PMC9260394 DOI: 10.3389/fpls.2022.911277] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 05/26/2023]
Abstract
Alternative splicing (AS) is a major mechanism for gene expression in eukaryotes, increasing proteome diversity but also regulating transcriptome abundance. High temperatures have a strong impact on the splicing profile of many genes and therefore AS is considered as an integral part of heat stress response. While many studies have established a detailed description of the diversity of the RNAome under heat stress in different plant species and stress regimes, little is known on the underlying mechanisms that control this temperature-sensitive process. AS is mainly regulated by the activity of splicing regulators. Changes in the abundance of these proteins through transcription and AS, post-translational modifications and interactions with exonic and intronic cis-elements and core elements of the spliceosomes modulate the outcome of pre-mRNA splicing. As a major part of pre-mRNAs are spliced co-transcriptionally, the chromatin environment along with the RNA polymerase II elongation play a major role in the regulation of pre-mRNA splicing under heat stress conditions. Despite its importance, our understanding on the regulation of heat stress sensitive AS in plants is scarce. In this review, we summarize the current status of knowledge on the regulation of AS in plants under heat stress conditions. We discuss possible implications of different pathways based on results from non-plant systems to provide a perspective for researchers who aim to elucidate the molecular basis of AS under high temperatures.
Collapse
Affiliation(s)
| | - Sarah Ullrich
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Karin Löchli
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
20
|
Identification of a biomass unaffected pale green mutant gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Sci Rep 2022; 12:7731. [PMID: 35546169 PMCID: PMC9095832 DOI: 10.1038/s41598-022-11825-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Chlorophyll (Chl) is an essential component of the photosynthetic apparatus and pigments in plant greening. Leaf color is an important agronomic and commercial trait of Chinese cabbage. In this study, we identified a pale green mutant pgm created by ethyl methane sulfonate (EMS) mutagenesis in Chinese cabbage. Compared with wild-type (FT), pgm had a lower Chl content with a higher Chl a/b ratio, imperfect chloroplast structure, and lower non-photochemical quenching. However, its net photosynthetic rate and biomass showed no significant differences. Genetic analysis revealed that the pale green phenotype of pgm was controlled by a recessive nuclear gene, designated as Brpgm. We applied BSR-Seq, linkage analysis, and whole-genome resequencing to map Brpgm and predicted that the target gene was BraA10g007770.3C (BrCAO), which encodes chlorophyllide a oxygenase (CAO). Brcao sequencing results showed that the last nucleotide of its first intron changed from G to A, causing the deletion of the first nucleotide in its second CDS and termination of the protein translation. The expression of BrCAO in pgm was upregulated, and the enzyme activity of CAO in pgm was significantly decreased. These results provide an approach to explore the function of BrCAO and create a pale green variation in Chinese cabbage.
Collapse
|
21
|
Chennakesavulu K, Singh H, Trivedi PK, Jain M, Yadav SR. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants. PLANT CELL REPORTS 2022; 41:815-831. [PMID: 33742256 DOI: 10.1007/s00299-021-02681-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/04/2021] [Indexed: 05/28/2023]
Abstract
Our review has described principles and functional importance of CRISPR-Cas9 with emphasis on the recent advancements, such as CRISPR-Cpf1, base editing (BE), prime editing (PE), epigenome editing, tissue-specific (CRISPR-TSKO), and inducible genome editing and their potential applications in generating stress-tolerant plants. Improved agricultural practices and enhanced food crop production using innovative crop breeding technology is essential for increasing access to nutritious foods across the planet. The crop plants play a pivotal role in energy and nutrient supply to humans. The abiotic stress factors, such as drought, heat, and salinity cause a substantial yield loss in crop plants and threaten food security. The most sustainable and eco-friendly way to overcome these challenges are the breeding of crop cultivars with improved tolerance against abiotic stress factors. The conventional plant breeding methods have been highly successful in developing abiotic stress-tolerant crop varieties, but usually cumbersome and time-consuming. Alternatively, the CRISPR/Cas genome editing has emerged as a revolutionary tool for making efficient and precise genetic manipulations in plant genomes. Here, we provide a comprehensive review of the CRISPR/Cas genome editing (GE) technology with an emphasis on recent advances in the plant genome editing, including base editing (BE), prime editing (PE), epigenome editing, tissue-specific (CRISPR-TSKO), and inducible genome editing (CRISPR-IGE), which can be used for obtaining cultivars with enhanced tolerance to various abiotic stress factors. We also describe tissue culture-free, DNA-free GE technology, and some of the CRISPR-based tools that can be modified for their use in crop plants.
Collapse
Affiliation(s)
- Kunchapu Chennakesavulu
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Harshita Singh
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Prabodh Kumar Trivedi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shri Ram Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
22
|
Yan T, Heng Y, Wang W, Li J, Deng XW. SWELLMAP 2, a phyB-Interacting Splicing Factor, Negatively Regulates Seedling Photomorphogenesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:836519. [PMID: 35222493 PMCID: PMC8867171 DOI: 10.3389/fpls.2022.836519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Light-triggered transcriptome reprogramming is critical for promoting photomorphogenesis in Arabidopsis seedlings. Nonetheless, recent studies have shed light on the importance of alternative pre-mRNA splicing (AS) in photomorphogenesis. The splicing factors splicing factor for phytochrome signaling (SFPS) and reduced red-light responses in cry1cry2 background1 (RRC1) are involved in the phytochrome B (phyB) signaling pathway and promote photomorphogenesis by controlling pre-mRNA splicing of light- and clock-related genes. However, splicing factors that serve as repressors in phyB signaling pathway remain unreported. Here, we report that the splicing factor SWELLMAP 2 (SMP2) suppresses photomorphogenesis in the light. SMP2 physically interacts with phyB and colocalizes with phyB in photobodies after light exposure. Genetic analyses show that SMP2 antagonizes phyB signaling to promote hypocotyl elongation in the light. The homologs of SMP2 in yeast and human belong to second-step splicing factors required for proper selection of the 3' splice site (3'SS) of an intron. Notably, SMP2 reduces the abundance of the functional REVEILLE 8 a (RVE8a) form, probably by determining the 3'SS, and thereby inhibits RVE8-mediated transcriptional activation of clock genes containing evening elements (EE). Finally, SMP2-mediated reduction of functional RVE8 isoform promotes phytochrome interacting factor 4 (PIF4) expression to fine-tune hypocotyl elongation in the light. Taken together, our data unveil a phyB-interacting splicing factor that negatively regulates photomorphogenesis, providing additional information for further mechanistic investigations regarding phyB-controlled AS of light- and clock-related genes.
Collapse
Affiliation(s)
- Tingting Yan
- Harbin Institute of Technology, Harbin, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yueqin Heng
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenwei Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jian Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xing Wang Deng
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
23
|
To JPC, Davis IW, Marengo MS, Shariff A, Baublite C, Decker K, Galvão RM, Gao Z, Haragutchi O, Jung JW, Li H, O'Brien B, Sant A, Elich TD. Expression Elements Derived From Plant Sequences Provide Effective Gene Expression Regulation and New Opportunities for Plant Biotechnology Traits. FRONTIERS IN PLANT SCIENCE 2021; 12:712179. [PMID: 34745155 PMCID: PMC8569612 DOI: 10.3389/fpls.2021.712179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Plant biotechnology traits provide a means to increase crop yields, manage weeds and pests, and sustainably contribute to addressing the needs of a growing population. One of the key challenges in developing new traits for plant biotechnology is the availability of expression elements for efficacious and predictable transgene regulation. Recent advances in genomics, transcriptomics, and computational tools have enabled the generation of new expression elements in a variety of model organisms. In this study, new expression element sequences were computationally generated for use in crops, starting from native Arabidopsis and maize sequences. These elements include promoters, 5' untranslated regions (5' UTRs), introns, and 3' UTRs. The expression elements were demonstrated to drive effective transgene expression in stably transformed soybean plants across multiple tissues types and developmental stages. The expressed transcripts were characterized to demonstrate the molecular function of these expression elements. The data show that the promoters precisely initiate transcripts, the introns are effectively spliced, and the 3' UTRs enable predictable processing of transcript 3' ends. Overall, our results indicate that these new expression elements can recapitulate key functional properties of natural sequences and provide opportunities for optimizing the expression of genes in future plant biotechnology traits.
Collapse
Affiliation(s)
- Jennifer P. C. To
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
| | - Ian W. Davis
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
| | - Matthew S. Marengo
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
| | - Aabid Shariff
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
- Pairwise Plants, Durham, NC, United States
| | | | - Keith Decker
- Bayer Crop Science, Chesterfield, MO, United States
| | - Rafaelo M. Galvão
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
| | - Zhihuan Gao
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
| | - Olivia Haragutchi
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
| | - Jee W. Jung
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
- Duke University, Office for Translation and Commercialization, Durham, NC, United States
| | - Hong Li
- Bayer Crop Science, Chesterfield, MO, United States
| | - Brent O'Brien
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
| | - Anagha Sant
- Bayer Crop Science, Chesterfield, MO, United States
| | - Tedd D. Elich
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
- LifeEDIT Therapeutics, Durham, NC, United States
| |
Collapse
|
24
|
Alternative splicing in plant abiotic stress responses. Biochem Soc Trans 2021; 48:2117-2126. [PMID: 32869832 DOI: 10.1042/bst20200281] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Modifications of the cellular proteome pool upon stress allow plants to tolerate environmental changes. Alternative splicing is the most significant mechanism responsible for the production of multiple protein isoforms from a single gene. The spliceosome, a large ribonucleoprotein complex, together with several associated proteins, controls this pre-mRNA processing, adding an additional level of regulation to gene expression. Deep sequencing of transcriptomes revealed that this co- or post-transcriptional mechanism is highly induced by abiotic stress, and concerns vast numbers of stress-related genes. Confirming the importance of splicing in plant stress adaptation, key players of stress signaling have been shown to encode alternative transcripts, whereas mutants lacking splicing factors or associated components show a modified sensitivity and defective responses to abiotic stress. Here, we examine recent literature on alternative splicing and splicing alterations in response to environmental stresses, focusing on its role in stress adaptation and analyzing the future perspectives and directions for research.
Collapse
|
25
|
Lin J, Zhu Z. Plant responses to high temperature: a view from pre-mRNA alternative splicing. PLANT MOLECULAR BIOLOGY 2021; 105:575-583. [PMID: 33550520 DOI: 10.1007/s11103-021-01117-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/09/2021] [Indexed: 05/14/2023]
Abstract
This review focused on the recent breakthroughs in plant high temperature responses from an alternative splicing angle. With the inevitable global warming, high temperature triggers plants to change their growth and developmental programs for adapting temperature increase. In the past decades, the signaling mechanisms from plant thermo-sensing to downstream transcriptional cascades have been extensively studied. Plenty of elegant review papers have summarized these breakthroughs from signal transduction to cross-talk within plant hormones and environmental cues. Precursor messenger RNA (pre-mRNA) splicing enables plants to produce a series of functional un-related proteins and thus enhances the regulation flexibility. Plants take advantage of this strategy to modulate their proteome diversity under high ambient temperature and elicit developmental plasticity. In this review, we particularly focus on pre-mRNA splicing regulation underlying plant high temperature responses, and will shed new light on the understanding of post-transcriptional regulation on plant growth and development.
Collapse
Affiliation(s)
- Jingya Lin
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
26
|
Wong DK, Stark MS, Rader SD, Fast NM. Characterization of Pre-mRNA Splicing and Spliceosomal Machinery in Porphyridium purpureum and Evolutionary Implications for Red Algae. J Eukaryot Microbiol 2021; 68:e12844. [PMID: 33569840 DOI: 10.1111/jeu.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Pre-mRNA splicing is a highly conserved eukaryotic process, but our understanding of it is limited by a historical focus on well-studied organisms such as humans and yeast. There is considerable diversity in mechanisms and components of pre-mRNA splicing, especially in lineages that have evolved under the pressures of genome reduction. The ancestor of red algae is thought to have undergone genome reduction prior to the lineage's radiation, resulting in overall gene and intron loss in extant groups. Previous studies on the extremophilic red alga Cyanidioschyzon merolae revealed an intron-sparse genome with a highly reduced spliceosome. To determine whether these features applied to other red algae, we investigated multiple aspects of pre-mRNA splicing in the mesophilic red alga Porphyridium purpureum. Through strand-specific RNA-Seq, we observed high levels of intron retention across a large number of its introns, and nearly half of the transcripts for these genes are not spliced at all. We also discovered a relationship between variability of 5' splice site sequences and levels of splicing. To further investigate the connections between intron retention and splicing machinery, we bioinformatically assembled the P. purpureum spliceosome, and biochemically verified the presence of snRNAs. While most other core spliceosomal components are present, our results suggest highly divergent or missing U1 snRNP proteins, despite the presence of an uncharacteristically long U1 snRNA. These unusual aspects highlight the diverse nature of pre-mRNA splicing that can be seen in lesser-studied eukaryotes, raising the importance of investigating fundamental eukaryotic processes outside of model organisms.
Collapse
Affiliation(s)
- Donald K Wong
- Department of Botany, University of British Columbia, 3156-6270 University Boulevard, Vancouver, BC, Canada
| | - Martha S Stark
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada
| | - Stephen D Rader
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada
| | - Naomi M Fast
- Department of Botany, University of British Columbia, 3156-6270 University Boulevard, Vancouver, BC, Canada
| |
Collapse
|
27
|
Chen MX, Zhang KL, Zhang M, Das D, Fang YM, Dai L, Zhang J, Zhu FY. Alternative splicing and its regulatory role in woody plants. TREE PHYSIOLOGY 2020; 40:1475-1486. [PMID: 32589747 DOI: 10.1093/treephys/tpaa076] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 05/22/2023]
Abstract
Alternative splicing (AS) is an important post-transcriptional process to enhance proteome diversity in eukaryotic organisms. In plants, numerous reports have primarily focused on AS analysis in model plant species or herbaceous plants, leading to a notable lack of research on AS in woody plants. More importantly, emerging evidence indicates that many important traits, including wood formation and stress resistance, in woody plants are controlled by AS. In this review article, we summarize the current progress of all kinds of AS studies in different tree species at various stages of development and in response to various stresses, revealing the significant role played by AS in woody plants, as well as the similar properties and differential regulation within their herbaceous counterparts. Furthermore, we propose several potential strategies to facilitate the functional characterization of splicing factors in woody plants and evaluate a general pipeline for the systematic characterization of splicing isoforms in a complex AS regulatory network. The utilization of genetic studies and high-throughput omics integration approaches to analyze AS genes and splicing factors is likely to further advance our understanding of AS modulation in woody plants.
Collapse
Affiliation(s)
- Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China
| | - Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Debatosh Das
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Yan-Ming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Dai
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
28
|
Zhang KL, Feng Z, Yang JF, Yang F, Yuan T, Zhang D, Hao GF, Fang YM, Zhang J, Wu C, Chen MX, Zhu FY. Systematic characterization of the branch point binding protein, splicing factor 1, gene family in plant development and stress responses. BMC PLANT BIOLOGY 2020; 20:379. [PMID: 32811430 PMCID: PMC7433366 DOI: 10.1186/s12870-020-02570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/22/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Among eukaryotic organisms, alternative splicing is an important process that can generate multiple transcripts from one same precursor messenger RNA, which greatly increase transcriptome and proteome diversity. This process is carried out by a super-protein complex defined as the spliceosome. Specifically, splicing factor 1/branchpoint binding protein (SF1/BBP) is a single protein that can bind to the intronic branchpoint sequence (BPS), connecting the 5' and 3' splice site binding complexes during early spliceosome assembly. The molecular function of this protein has been extensively investigated in yeast, metazoa and mammals. However, its counterpart in plants has been seldomly reported. RESULTS To this end, we conducted a systematic characterization of the SF1 gene family across plant lineages. In this work, a total of 92 sequences from 59 plant species were identified. Phylogenetic relationships of these sequences were constructed, and subsequent bioinformatic analysis suggested that this family likely originated from an ancient gene transposition duplication event. Most plant species were shown to maintain a single copy of this gene. Furthermore, an additional RNA binding motif (RRM) existed in most members of this gene family in comparison to their animal and yeast counterparts, indicating that their potential role was preserved in the plant lineage. CONCLUSION Our analysis presents general features of the gene and protein structure of this splicing factor family and will provide fundamental information for further functional studies in plants.
Collapse
Affiliation(s)
- Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Zhen Feng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 China
| | - Feng Yang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Tian Yuan
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Di Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 China
| | - Yan-Ming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Mo-Xian Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 PR China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| |
Collapse
|
29
|
Yu E, Yamaji N, Ma JF. Altered Root Structure Affects Both Expression and Cellular Localization of Transporters for Mineral Element Uptake in Rice. PLANT & CELL PHYSIOLOGY 2020; 61:481-491. [PMID: 31747007 DOI: 10.1093/pcp/pcz213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
One of the most important roles of plant roots is to take up mineral elements for their growth. Although several genes involved in root growth have been identified, the association between root structure and mineral element uptake is less investigated. In this study, we isolated a rice mutant (dice1, defective in cell elongation 1) with short-root phenotype. This mutant was characterized by partial defect in the formation of root outer cell layers. Mapping of the responsible gene revealed that the short-root phenotype in the mutant was caused by a single-nucleotide substitution of a gene encoding a membrane-anchored endo-1,4-beta-glucanase (OsGlu3). The growth of both the roots and shoots was partially recovered with increasing strength of nutrient solution and glucose in the mutant. The mutant showed a decreased uptake (normalized by root dry weight) for Mg, Mn, Fe, Cu, Zn, Cd, As and Ge but increased uptake for K and Ca. The expression level of some transporter genes including OsLsi1 and OsLsi2 for Si uptake and OsNramp5 for Mn uptake was significantly decreased in the mutant compared with the wild-type (WT) rice. Furthermore, the cellular localization of OsLsi1 was altered; OsLsi1 localized at the root exodermis of the WT rice was changed to be localized to other cell layers of the mutant roots. However, this localization became normal in the presence of exogenous glucose in the mutant. Our results indicate that a normal root structure is required for maintaining the expression and localization of transporters involved in the mineral element uptake.
Collapse
Affiliation(s)
- En Yu
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| |
Collapse
|
30
|
Tanaka Y, Asano T, Kanemitsu Y, Goto T, Yoshida Y, Yasuba K, Misawa Y, Nakatani S, Kobata K. Positional differences of intronic transposons in pAMT affect the pungency level in chili pepper through altered splicing efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:693-705. [PMID: 31323150 DOI: 10.1111/tpj.14462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Capsaicinoids are unique compounds that give chili pepper fruits their pungent taste. Capsaicinoid levels vary widely among pungent cultivars, which range from low pungency to extremely pungent. However, the molecular mechanisms underlying this quantitative variation have not been elucidated. Our previous study identified various loss-of-function alleles of the pAMT gene which led to low pungency. The mutations in these alleles are commonly defined by Tcc transposon insertion and its footprint. In this study, we identified two leaky pamt alleles (pamtL1 and pamtL2 ) with different levels of putative aminotransferase (pAMT) activity. Notably, both alleles had a Tcc transposon insertion in intron 3, but the locations of the insertions within the intron were different. Genetic analysis revealed that pamtL1 , pamtL2 and a loss-of-function pamt allele reduced capsaicinoid levels to about 50%, 10% and less than 1%, respectively. pamtL1 and pamtL2 encoded functional pAMT proteins, but they exhibited lower transcript levels than the functional type. RNA sequencing analysis showed that intronic transposons disrupted splicing in intron 3, which resulted in simultaneous expression of functional pAMT mRNA and non-functional splice variants containing partial sequences of Tcc. The non-functional splice variants were more dominant in pamtL2 than in pamtL1 . This suggested that the difference in position of the intronic transposons could alter splicing efficiency, leading to different pAMT activities and reducing capsaicinoid content to different levels. Our results provide a striking example of allelic variations caused by intronic transposons; these variations contribute to quantitative differences in secondary metabolite contents.
Collapse
Affiliation(s)
- Yoshiyuki Tanaka
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Takaya Asano
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yorika Kanemitsu
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Tanjuro Goto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yuichi Yoshida
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Kenichiro Yasuba
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yuki Misawa
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Sachie Nakatani
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Kenji Kobata
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| |
Collapse
|
31
|
Yeap WC, Namasivayam P, Ooi TEK, Appleton DR, Kulaveerasingam H, Ho CL. EgRBP42 from oil palm enhances adaptation to stress in Arabidopsis through regulation of nucleocytoplasmic transport of stress-responsive mRNAs. PLANT, CELL & ENVIRONMENT 2019; 42:1657-1673. [PMID: 30549047 DOI: 10.1111/pce.13503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Abiotic stress reduces plant growth and crop productivity. However, the mechanism underlying posttranscriptional regulations of stress response remains elusive. Herein, we report the posttranscriptional mechanism of nucleocytoplasmic RNA transport of stress-responsive transcripts mediated by EgRBP42, a heterogeneous nuclear ribonucleoprotein-like RNA-binding protein from oil palm, which could be necessary for rapid protein translation to confer abiotic stress tolerance in plants. Transgenic Arabidopsis overexpressing EgRBP42 showed early flowering through alteration of gene expression of flowering regulators and exhibited tolerance towards heat, cold, drought, flood, and salinity stresses with enhanced poststress recovery response by increasing the expression of its target stress-responsive genes. EgRBP42 harbours nucleocytoplasmic shuttling activity mediated by the nuclear localization signal and the M9-like domain of EgRBP42 and interacts directly with regulators in the nucleus, membrane, and the cytoplasm. EgRBP42 regulates the nucleocytoplasmic RNA transport of target stress-responsive transcripts through direct binding to their AG-rich motifs. Additionally, EgRBP42 transcript and protein induction by environmental stimuli are regulated at the transcriptional and posttranscriptional levels. Taken together, the posttranscriptional regulation of RNA transport mediated by EgRBP42 may change the stress-responsive protein profiles under abiotic stress conditions leading to a better adaptation of plants to environmental changes.
Collapse
Affiliation(s)
- Wan-Chin Yeap
- Sime Darby Plantation Berhad, Research and Development, Biotechnology and Breeding, Sime Darby Technology Centre Sdn. Bhd., Serdang, Malaysia
| | - Parameswari Namasivayam
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Tony Eng Keong Ooi
- Sime Darby Plantation Berhad, Research and Development, Biotechnology and Breeding, Sime Darby Technology Centre Sdn. Bhd., Serdang, Malaysia
| | - David Ross Appleton
- Sime Darby Plantation Berhad, Research and Development, Biotechnology and Breeding, Sime Darby Technology Centre Sdn. Bhd., Serdang, Malaysia
| | - Harikrishna Kulaveerasingam
- Sime Darby Plantation Berhad, Research and Development, Sime Darby Research Sdn Bhd, R&D Centre-Upstream, Kuala Langat, Malaysia
| | - Chai-Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
32
|
Gu J, Li W, Wang S, Zhang X, Coules A, Ding G, Xu F, Ren J, Lu C, Shi L. Differential Alternative Splicing Genes in Response to Boron Deficiency in Brassica napus. Genes (Basel) 2019; 10:genes10030224. [PMID: 30889858 PMCID: PMC6471828 DOI: 10.3390/genes10030224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing (AS) can increase transcriptome diversity, protein diversity and protein yield, and is an important mechanism to regulate plant responses to stress. Oilseed rape (Brassica napus L.), one of the main oil crops in China, shows higher sensitivity to boron (B) deficiency than other species. Here, we demonstrated AS changes that largely increased the diversity of the mRNA expressed in response to B deficiency in B. napus. Each gene had two or more transcripts on average. A total of 33.3% genes in both Qingyou10 (QY10, B-efficient cultivar) and Westar10 (W10, B-inefficient cultivar) showed AS in both B conditions. The types of AS events were mainly intron retention, 3′ alternative splice site, 5′ alternative splice site and exon skipping. The tolerance ability of QY10 was higher than that of W10, possibly because there were far more differential alternative splicing (DAS) genes identified in QY10 at low B conditions than in W10. The number of genes with both DAS and differentially expressed (DE) was far lower than that of the genes that were either with DAS or DE in QY10 and W10, suggesting that the DAS and DE genes were independent. Four Serine/Arginine-rich (SR) splicing factors, BnaC06g14780D, BnaA01g14750D, BnaA06g15930D and BnaC01g41640D, underwent differentially alternative splicing in both cultivars. There existed gene–gene interactions between BnaC06g14780D and the genes associated with the function of B in oilseed rape at low B supply. This suggests that oilseed rape could regulate the alterative pre-mRNA splicing of SR protein related genes to increase the plant tolerance to B deficiency.
Collapse
Affiliation(s)
- Jin Gu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wei Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoyan Zhang
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK.
| | - Anne Coules
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK.
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK.
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
33
|
Filiz E, Saracoglu IA, Ozyigit II, Yalcin B. Comparative analyses of phytochelatin synthase (PCS) genes in higher plants. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1559096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Duzce, Turkey
| | | | - Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, Istanbul, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Bahattin Yalcin
- Department of Chemistry, Faculty of Science and Arts, Marmara University, Istanbul, Turkey
| |
Collapse
|
34
|
De la Rosa C, Covarrubias AA, Reyes JL. A dicistronic precursor encoding miR398 and the legume-specific miR2119 coregulates CSD1 and ADH1 mRNAs in response to water deficit. PLANT, CELL & ENVIRONMENT 2019; 42:133-144. [PMID: 29626361 DOI: 10.1111/pce.13209] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 05/07/2023]
Abstract
Plant microRNAs are commonly encoded in transcripts containing a single microRNA precursor. Processing by DICER-LIKE 1 and associated factors results in the production of a small RNA, followed by its incorporation into an AGO-containing protein complex to guide silencing of an mRNA possessing a complementary target sequence. Certain microRNA loci contain more than one precursor stem-loop structure, thus encoding more than one microRNA in the same transcript. Here, we describe a unique case where the evolutionary conserved miR398a is encoded in the same transcript as the legume-specific miR2119. The dicistronic arrangement found in common bean was also observed in other legumes. In Phaseolus vulgaris, mature miR398 and miR2119 are repressed in response to water deficit, and we demonstrate that both are functional as they target the mRNAs for CSD1 and ADH1, respectively. Our results indicate that the repression of miR398 and miR2119 leads to coordinated up-regulation of CSD1 and ADH1 mRNAs in response to water deficit in common bean and possibly in other legumes. Furthermore, we show that miRNA directed CSD1 and ADH1 mRNAs up-regulation also occurs when common bean plants are exposed to flooding, suggesting that plant redox status and fermentation metabolism must be closely coordinated under different adverse conditions.
Collapse
Affiliation(s)
- Carlos De la Rosa
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Alejandra Alicia Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - José Luis Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| |
Collapse
|
35
|
He P, Wang X, Zhang X, Jiang Y, Tian W, Zhang X, Li Y, Sun Y, Xie J, Ni J, He G, Sang X. Short and narrow flag leaf1, a GATA zinc finger domain-containing protein, regulates flag leaf size in rice (Oryza sativa). BMC PLANT BIOLOGY 2018; 18:273. [PMID: 30413183 PMCID: PMC6230254 DOI: 10.1186/s12870-018-1452-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 09/27/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND The flag leaf of rice (Oryza sativa L.) is an important determinant of plant type characteristics and grain yield. Identification of flag leaf mutants of rice is crucial to elucidate the molecular mechanism of flag-leaf development, and for exploitation of rice germplasm resources. RESULTS In this study, we describe a mutant designated short and narrow flag leaf 1 (snfl1). Histological analysis showed that the length of epidermal cells and number of longitudinal veins were decreased in the flag leaf of the snfl1 mutant. Map-based cloning indicated that a member of the GATA family of transcription factors is a candidate gene for SNFL1. A single-nucleotide transition at the last base in the single intron of snfl1 led to variation in alternative splicing and early termination of translation. Complemented transgenic plants harbouring the candidate SNFL1 gene rescued the snfl1 mutant. Analysis of RT-PCR and the SNFL1 promoter by means of a GUS fusion expression assay showed that abundance of SNFL1 transcripts was higher in the culm, leaf sheath, and root. Expression of the SNFL1-GFP fusion protein in rice protoplasts showed that SNFL1 was localized in nucleus. CONCLUSIONS We conclude that SNFL1 is an important regulator of leaf development, the identification of which might have important implications for future research on GATA transcription factors.
Collapse
Affiliation(s)
- Peilong He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaowen Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaobo Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yudong Jiang
- Key Laboratory of Southwest Rice Biology and Genetic Breeding, Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences, Deyang, China
| | - Weijiang Tian
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaoqiong Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yangyang Li
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ying Sun
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jia Xie
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jile Ni
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Xianchun Sang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
36
|
Abstract
Alternative splicing (AS) is a fundamental regulatory process in all higher eukaryotes. However, AS landscapes for a number of animals, including goats, have not been explored to date. Here, we sequenced 60 samples representing 5 tissues from 4 developmental stages in triplicate using RNA-seq to elucidate the goat AS landscape. In total, 14,521 genes underwent AS (AS genes), accounting for 85.53% of intron-containing genes (16,697). Among these AS genes, 6,342 were differentially expressed in different tissues. Of the AS events identified, retained introns were most prevalent (37.04% of total AS events). Functional enrichment analysis of differential and specific AS genes indicated goat AS mainly involved in organ function and development. Particularly, AS genes identified in leg muscle were associated with the “regulation of skeletal muscle tissue development” GO term. Given genes were associated with this term, four of which (NRG4, IP6K3, AMPD1, and DYSF) might play crucial roles in skeletal muscle development. Further investigation indicated these five genes, harbored 13 ASs, spliced exclusively in leg muscle, likely played a role in goat leg muscle development. These results provide novel insights into goat AS landscapes and a valuable resource for investigation of goat transcriptome complexity and gene regulation.
Collapse
|
37
|
Nguyen H, Das U, Wang B, Xie J. The matrices and constraints of GT/AG splice sites of more than 1000 species/lineages. Gene 2018; 660:92-101. [PMID: 29588184 DOI: 10.1016/j.gene.2018.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
To provide a resource for the splice sites (SS) of different species, we calculated the matrices of nucleotide compositions of about 38 million splice sites from >1000 species/lineages. The matrices are enriched of aGGTAAGT (5'SS) or (Y)6N(C/t)AG(g/a)t (3'SS) overall; however, they are quite diverse among hundreds of species. The diverse matrices remain prominent even under sequence selection pressures, suggesting the existence of diverse constraints as well as U snRNAs and other spliceosomal factors and/or their interactions with the splice sites. Using an algorithm to measure and compare the splice site constraints across all species, we demonstrate their distinct differences quantitatively. As an example of the resource's application to answering specific questions, we confirm that high constraints of particular positions are significantly associated with transcriptome-wide, increased occurrences of alternative splicing when uncommon nucleotides are present. More interestingly, the abundance of alternative splicing in 16 species correlates with the average constraint index of splice sites in a bell curve. This resource will allow users to assess specific sequences/splice sites against the consensus of every Ensembl-annotated species, and to explore the evolutionary changes or relationship to alternative splicing and transcriptome diversity. Web-search or update features are also included.
Collapse
Affiliation(s)
- Hai Nguyen
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Urmi Das
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Benjamin Wang
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; University of Illinois Urbana-Champaign, IL, USA
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
38
|
Identification and characterization of evolutionarily conserved alternative splicing events in a mangrove genus Sonneratia. Sci Rep 2018. [PMID: 29535339 PMCID: PMC5849712 DOI: 10.1038/s41598-018-22406-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing (AS), which produces multiple mRNA transcripts from a single gene, plays crucial roles in plant growth, development and environmental stress responses. Functional significances of conserved AS events among congeneric species have not been well characterized. In this study, we performed transcriptome sequencing to characterize AS events in four common species of Sonneratia, a mangrove genus excellently adaptive to intertidal zones. 7,248 to 12,623 AS events were identified in approximately 25% to 35% expressed genes in the roots of the four species. The frequency of AS events in Sonneratia was associated with genomic features, including gene expression level and intron/exon number and length. Among the four species, 1,355 evolutionarily conserved AS (ECAS) events were identified from 1,170 genes. Compared with non-ECAS events, ECAS events are of shorter length and less possibility to introduce premature stop codons (PTCs) and frameshifts. Functional annotations of the genes containing ECAS events showed that four of the 26 enriched Gene Ontology (GO) terms are involved in proton transport, signal transduction and carbon metabolism, and 60 genes from another three GO terms are implicated in responses to osmotic, oxidative and heat stresses, which may contribute to the adaptation of Sonneratia species to harsh intertidal environments.
Collapse
|
39
|
Albaqami M, Reddy ASN. Development of an in vitro pre-mRNA splicing assay using plant nuclear extract. PLANT METHODS 2018; 14:1. [PMID: 29321806 PMCID: PMC5757305 DOI: 10.1186/s13007-017-0271-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/21/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Pre-mRNA splicing is an essential post-transcriptional process in all eukaryotes. In vitro splicing systems using nuclear or cytoplasmic extracts from mammalian cells, yeast, and Drosophila have provided a wealth of mechanistic insights into assembly and composition of the spliceosome, splicing regulatory proteins and mechanisms of pre-mRNA splicing in non-plant systems. The lack of an in vitro splicing system prepared from plant cells has been a major limitation in splicing research in plants. RESULTS Here we report an in vitro splicing assay system using plant nuclear extract. Several lines of evidence indicate that nuclear extract derived from Arabidopsis seedlings can convert pre-mRNA substrate (LHCB3) into a spliced product. These include: (1) generation of an RNA product that corresponds to the size of expected mRNA, (2) a junction-mapping assay using S1 nuclease revealed that the two exons are spliced together, (3) the reaction conditions are similar to those found with non-plant extracts and (4) finally mutations in conserved donor and acceptor sites abolished the production of the spliced product. CONCLUSIONS This first report on the plant in vitro splicing assay opens new avenues to investigate plant spliceosome assembly and composition, and splicing regulatory mechanisms specific to plants.
Collapse
Affiliation(s)
- Mohammed Albaqami
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| |
Collapse
|
40
|
Brant EJ, Budak H. Plant Small Non-coding RNAs and Their Roles in Biotic Stresses. FRONTIERS IN PLANT SCIENCE 2018; 9:1038. [PMID: 30079074 PMCID: PMC6062887 DOI: 10.3389/fpls.2018.01038] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 05/04/2023]
Abstract
Non-coding RNAs (ncRNAs) have emerged as critical components of gene regulatory networks across a plethora of plant species. In particular, the 20-30 nucleotide small ncRNAs (sRNAs) play important roles in mediating both developmental processes and responses to biotic stresses. Based on variation in their biogenesis pathways, a number of different sRNA classes have been identified, and their specific functions have begun to be characterized. Here, we review the current knowledge of the biogenesis of the primary sRNA classes, microRNA (miRNA) and small nuclear RNA (snRNA), and their respective secondary classes, and discuss the roles of sRNAs in plant-pathogen interactions. sRNA mobility between species is also discussed along with potential applications of sRNA-plant-pathogen interactions in crop improvement technologies.
Collapse
|
41
|
Pai AA, Henriques T, McCue K, Burkholder A, Adelman K, Burge CB. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture. eLife 2017; 6:32537. [PMID: 29280736 PMCID: PMC5762160 DOI: 10.7554/elife.32537] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning (‘intron definition’) or exon-spanning (‘exon definition’) pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60–70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly low variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing.
Collapse
Affiliation(s)
- Athma A Pai
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Telmo Henriques
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Kayla McCue
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Adam Burkholder
- Center for Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle, United States
| | - Karen Adelman
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Christopher B Burge
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
42
|
Genome-wide identification and phylogenetic, comparative genomic, alternative splicing, and expression analyses of TCP genes in plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Lee KC, Jang YH, Kim SK, Park HY, Thu MP, Lee JH, Kim JK. RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes. PLANT CELL REPORTS 2017; 36:1083-1095. [PMID: 28401337 DOI: 10.1007/s00299-017-2140-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/04/2017] [Indexed: 05/20/2023]
Abstract
The RNA recognition motif of Arabidopsis splicing factor SF1 affects the alternative splicing of FLOWERING LOCUS M pre-mRNA and a heat shock transcription factor HsfA2 pre-mRNA. Splicing factor 1 (SF1) plays a crucial role in 3' splice site recognition by binding directly to the intron branch point. Although plant SF1 proteins possess an RNA recognition motif (RRM) domain that is absent in its fungal and metazoan counterparts, the role of the RRM domain in SF1 function has not been characterized. Here, we show that the RRM domain differentially affects the full function of the Arabidopsis thaliana AtSF1 protein under different experimental conditions. For example, the deletion of RRM domain influences AtSF1-mediated control of flowering time, but not the abscisic acid sensitivity response during seed germination. The alternative splicing of FLOWERING LOCUS M (FLM) pre-mRNA is involved in flowering time control. We found that the RRM domain of AtSF1 protein alters the production of alternatively spliced FLM-β transcripts. We also found that the RRM domain affects the alternative splicing of a heat shock transcription factor HsfA2 pre-mRNA, thereby mediating the heat stress response. Taken together, our results suggest the importance of RRM domain for AtSF1-mediated alternative splicing of a subset of genes involved in the regulation of flowering and adaptation to heat stress.
Collapse
Affiliation(s)
- Keh Chien Lee
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yun Hee Jang
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soon-Kap Kim
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Hyo-Young Park
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - May Phyo Thu
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong Hwan Lee
- Department of Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| | - Jeong-Kook Kim
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
44
|
Baltes NJ, Gil-Humanes J, Voytas DF. Genome Engineering and Agriculture: Opportunities and Challenges. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:1-26. [PMID: 28712492 PMCID: PMC8409219 DOI: 10.1016/bs.pmbts.2017.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, plant biotechnology has witnessed unprecedented technological change. Advances in high-throughput sequencing technologies have provided insight into the location and structure of functional elements within plant DNA. At the same time, improvements in genome engineering tools have enabled unprecedented control over genetic material. These technologies, combined with a growing understanding of plant systems biology, will irrevocably alter the way we create new crop varieties. As the first wave of genome-edited products emerge, we are just getting a glimpse of the immense opportunities the technology provides. We are also seeing its challenges and limitations. It is clear that genome editing will play an increased role in crop improvement and will help us to achieve food security in the coming decades; however, certain challenges and limitations must be overcome to realize the technology's full potential.
Collapse
|
45
|
Liang S, Qi Y, Zhao J, Li Y, Wang R, Shao J, Liu X, An L, Yu F. Mutations in the Arabidopsis AtMRS2-11/ AtMGT10/ VAR5 Gene Cause Leaf Reticulation. FRONTIERS IN PLANT SCIENCE 2017; 8:2007. [PMID: 29234332 PMCID: PMC5712471 DOI: 10.3389/fpls.2017.02007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/10/2017] [Indexed: 05/20/2023]
Abstract
In higher plants, the development of functional chloroplasts is essential for photosynthesis and many other physiological processes. With a long-term goal of elucidating the genetic regulation of chloroplast development, we identified two allelic leaf variegation mutants, variegated5-1 (var5-1) and var5-2. Both mutants showed a distinct leaf reticulation phenotype of yellow paraveinal regions and green interveinal regions, and the leaf reticulation phenotype correlated with photosynthetic defects. Through the identification of mutation sites in the two mutant alleles and the molecular complementation, we confirmed that VAR5 encodes a CorA family of Mg2+ transporters also known as AtMRS2-11/AtMGT10. Using protoplast transient expression and biochemical fractionation assays, we demonstrated that AtMRS2-11/AtMGT10/VAR5 likely localizes to the chloroplast envelope. Moreover, we established that AtMRS2-11/AtMGT10/VAR5 forms large molecular weight complexes in the chloroplast and the sizes of these complexes clearly exceed those of their bacterial counterparts, suggesting the compositions of CorA Mg2+ transporter complex is different between the chloroplast and bacteria. Our findings indicate that AtMRS2-11/AtMGT10/VAR5 plays an important role in the tissue specific regulation of chloroplast development.
Collapse
|
46
|
Wang Y, Ren Y, Zhou K, Liu L, Wang J, Xu Y, Zhang H, Zhang L, Feng Z, Wang L, Ma W, Wang Y, Guo X, Zhang X, Lei C, Cheng Z, Wan J. WHITE STRIPE LEAF4 Encodes a Novel P-Type PPR Protein Required for Chloroplast Biogenesis during Early Leaf Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1116. [PMID: 28694820 PMCID: PMC5483476 DOI: 10.3389/fpls.2017.01116] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/09/2017] [Indexed: 05/18/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins comprise a large family in higher plants and perform diverse functions in organellar RNA metabolism. Despite the rice genome encodes 477 PRR proteins, the regulatory effects of PRR proteins on chloroplast development remains unknown. In this study, we report the functional characterization of the rice white stripe leaf4 (wsl4) mutant. The wsl4 mutant develops white-striped leaves during early leaf development, characterized by decreased chlorophyll content and malformed chloroplasts. Positional cloning of the WSL4 gene, together with complementation and RNA-interference tests, reveal that it encodes a novel P-family PPR protein with 12 PPR motifs, and is localized to chloroplast nucleoids. Quantitative RT-PCR analyses demonstrate that WSL4 is a low temperature response gene abundantly expressed in young leaves. Further expression analyses show that many nuclear- and plastid-encoded genes in the wsl4 mutant are significantly affected at the RNA and protein levels. Notably, the wsl4 mutant causes defects in the splicing of atpF, ndhA, rpl2, and rps12. Our findings identify WSL4 as a novel P-family PPR protein essential for chloroplast RNA group II intron splicing during early leaf development in rice.
Collapse
Affiliation(s)
- Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Kunneng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Linglong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Long Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhiming Feng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Liwei Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yunlong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Jianmin Wan, ;,
| |
Collapse
|
47
|
Liu H, Ma X, Han HN, Hao YJ, Zhang XS. AtPRMT5 Regulates Shoot Regeneration through Mediating Histone H4R3 Dimethylation on KRPs and Pre-mRNA Splicing of RKP in Arabidopsis. MOLECULAR PLANT 2016; 9:1634-1646. [PMID: 27780782 DOI: 10.1016/j.molp.2016.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 05/25/2023]
Abstract
Protein arginine methylation plays important roles in diverse biological processes, but its role in regulating shoot regeneration remains elusive. In this study, we characterized the function of the protein arginine methyltransferase AtPRMT5 during de novo shoot regeneration in Arabidopsis. AtPRMT5 encodes a type II protein arginine methyltransferase that methylates proteins, including histones and RNA splicing factors. The frequency of shoot regeneration and the number of shoots per callus were decreased in the atprmt5 mutant compared with those in the wild type. Chromatin immunoprecipitation analysis revealed that AtPRMT5 targets KIP-RELATED PROTEINs (KRPs), which encode the cyclin-dependent kinase inhibitors that repress the cell cycle. During shoot regeneration, the KRP transcript level increased in the atprmt5 mutant, which resulted from reduced histone H4R3 methylation in the KRP promoter. Overexpression of KRP significantly reduced the frequency of shoot regeneration and shoot number per callus. Furthermore, abnormal pre-mRNA splicing in the gene RELATED TO KPC1 (RKP), which encodes an ubiquitin E3 ligase, was detected in the atprmt5 mutant. RKP functions in regulating KRP protein degradation, and mutation in RKP inhibited shoot regeneration. Thus, AtPRMT5 regulated shoot regeneration through histone modification-mediated KRP transcription and RKP pre-mRNA splicing. Our findings provide new insights into the function of protein arginine methylation in de novo shoot regeneration.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xu Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Hua Nan Han
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yu Jin Hao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China.
| |
Collapse
|
48
|
Cheng L, Liu X, Yin J, Yang J, Li Y, Hui L, Li S, Li L. Activity and expression of ADP-glucose pyrophosphorylase during rhizome formation in lotus (Nelumbo nucifera Gaertn.). BOTANICAL STUDIES 2016; 57:26. [PMID: 28597436 PMCID: PMC5432948 DOI: 10.1186/s40529-016-0140-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/20/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lotus root is a traditional and popular aquatic vegetable in China. Starch is an important component of the rhizome and directly affects the quality of processed products. ADP -glucose pyrophosphorylase (AGPase) is a rate-limiting enzyme associated with starch biosynthesis in plants. Therefore, in the present study, AGPase activity and NnAGP expression during rhizome development of lotus were analyzed. RESULTS Among 15 cultivars analyzed, the contents of amylose and total starch in the rhizome were highest in 'Mei Ren Hong'. 'Su Zhou' and 'Zhen Zhu' showed the lowest amylose, amylopectin and total starch contents. In the rhizome, activity of AGPase was highest at the middle swelling stage of development, and higher activity was observed in the 'Hou ba' leaf and terminational leaf at the same stage. Three AGPase genes, comprising two large subunit genes (NnAGPL1 and NnAGPL2) and one small subunit gene (NnAGPS), were isolated and identified. The deduced amino acid sequences showed 40.5 % similarity among the three genes. Full-length genomic DNA sequences of NnAGPL1, NnAGPL2, and NnAGPS were 4841, 11,346 and 4169 bp, respectively. Analysis of the temporal and spatial expression patterns revealed that the transcription levels of NnAGPL1 and NnAGPS were higher in the rhizome, followed by the 'Hou ba' leaf, whereas NnAGPL2 was significantly detected in the 'Hou ba' leaf and terminational leaf. The initial swelling stage of rhizome development was accompanied by the highest accumulation of mRNAs of NnAGPL1, whereas expression of NnAGPL2 was not detected during rhizome development. The transcript level of NnAGPS was highest at the initial swelling stage compared with the other rhizome developmental stages. Transcription of NnAGPL1, NnAGPL2, and NnAGPS was induced within 24 h after treatment with exogenous sucrose. The mRNA level of NnAGPL1 and NnAGPS was increased by exogenous ABA, whereas transcription of NnAGPL2 was not affected by ABA. CONCLUSIONS The three AGPase genes display marked differences in spatial and temporal expression patterns. Regulation of AGPase in relation to starch synthesis in lotus is indicated to be complex.
Collapse
Affiliation(s)
- Libao Cheng
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou, Jiangsu China
| | - Xian Liu
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou, Jiangsu China
| | - Jingjing Yin
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou, Jiangsu China
| | - Jianqiu Yang
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou, Jiangsu China
| | - Yan Li
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou, Jiangsu China
| | - Linchong Hui
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou, Jiangsu China
| | - Shuyan Li
- College of Guangling, Yangzhou University, Yangzhou, Jiangsu China
| | - Liangjun Li
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou, Jiangsu China
| |
Collapse
|
49
|
Burgess A, David R, Searle IR. Deciphering the epitranscriptome: A green perspective. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:822-835. [PMID: 27172004 PMCID: PMC5094531 DOI: 10.1111/jipb.12483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/10/2016] [Indexed: 05/13/2023]
Abstract
The advent of high-throughput sequencing technologies coupled with new detection methods of RNA modifications has enabled investigation of a new layer of gene regulation - the epitranscriptome. With over 100 known RNA modifications, understanding the repertoire of RNA modifications is a huge undertaking. This review summarizes what is known about RNA modifications with an emphasis on discoveries in plants. RNA ribose modifications, base methylations and pseudouridylation are required for normal development in Arabidopsis, as mutations in the enzymes modifying them have diverse effects on plant development and stress responses. These modifications can regulate RNA structure, turnover and translation. Transfer RNA and ribosomal RNA modifications have been mapped extensively and their functions investigated in many organisms, including plants. Recent work exploring the locations, functions and targeting of N6 -methyladenosine (m6 A), 5-methylcytosine (m5 C), pseudouridine (Ψ), and additional modifications in mRNAs and ncRNAs are highlighted, as well as those previously known on tRNAs and rRNAs. Many questions remain as to the exact mechanisms of targeting and functions of specific modified sites and whether these modifications have distinct functions in the different classes of RNAs.
Collapse
Affiliation(s)
- Alice Burgess
- School of Biological Sciences, The University of Adelaide, South Australia,, 5005, Australia
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, South Australia,, 5005, Australia
| | - Rakesh David
- School of Biological Sciences, The University of Adelaide, South Australia,, 5005, Australia
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, South Australia,, 5005, Australia
| | - Iain Robert Searle
- School of Biological Sciences, The University of Adelaide, South Australia,, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, South Australia,, 5005, Australia.
- The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic & Developmental Sciences, Adelaide, Australia.
| |
Collapse
|
50
|
Chen M, Wei M, Dong Z, Bao H, Wang Y. Genomic identification of microRNA promoters and their cis-acting elements in Populus. Genes Genomics 2016. [DOI: 10.1007/s13258-015-0378-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|