1
|
Dansereau SJ, Sheng J. Heavy Chalcogen Properties of Sulfur and Selenium Enhance Nucleic Acid-Based Therapeutics. Biomolecules 2025; 15:218. [PMID: 40001521 PMCID: PMC11853670 DOI: 10.3390/biom15020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
The Group 16 elements of the periodic table have a characteristic valence shell configuration instrumental to their chemical properties and reactivities. The electrostatic potentials of these so-called chalcogens have been exploited in the design of materials that require the efficient passage of electrons including supermagnets, photocatalytic dyes, and solar panels. Likewise, the incorporation of the heavy chalcogen selenium into organic frameworks has been shown to increase the reactivities of double bonds and heterocyclic rings, while its interactions with aromatic side chains in the hydrophobic core of proteins via selenomethionine impart a stabilizing effect. Typically present in the active site, the hypervalence of selenocysteine enables it to further stabilize the folded protein and mediate electron transfer. Selenium's native occurrence in bacterial tRNA maintains base pair fidelity, most notably during oxidative stress, through its electronic and steric effects. Such native modifications at the positions 2 and 5 of uridine render these sites relevant in the design of RNA-based therapeutics. Innocuous selenium substitution for oxygen in the former and the standard methods of selenium-derivatized oligonucleotide synthesis and detection have led to the establishment of a novel class of therapeutics. In this review, we summarize some progress in this area.
Collapse
Affiliation(s)
| | - Jia Sheng
- Department of Chemistry and the RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
2
|
Affiliation(s)
- Brian A. Collins
- Physics and Astronomy Washington State University Pullman Washington USA
| | - Eliot Gann
- Material Measurement Laboratory National Institute of Standards and Technology Gaithersburg Maryland USA
| |
Collapse
|
3
|
Cesium based phasing of macromolecules: a general easy to use approach for solving the phase problem. Sci Rep 2021; 11:17038. [PMID: 34426585 PMCID: PMC8382735 DOI: 10.1038/s41598-021-95186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/16/2021] [Indexed: 11/09/2022] Open
Abstract
Over the last decades the phase problem in macromolecular x-ray crystallography has become more controllable as methods and approaches have diversified and improved. However, solving the phase problem is still one of the biggest obstacles on the way of successfully determining a crystal structure. To overcome this caveat, we have utilized the anomalous scattering properties of the heavy alkali metal cesium. We investigated the introduction of cesium in form of cesium chloride during the three major steps of protein treatment in crystallography: purification, crystallization, and cryo-protection. We derived a step-wise procedure encompassing a “quick-soak”-only approach and a combined approach of CsCl supplement during purification and cryo-protection. This procedure was successfully applied on two different proteins: (i) Lysozyme and (ii) as a proof of principle, a construct consisting of the PH domain of the TFIIH subunit p62 from Chaetomium thermophilum for de novo structure determination. Usage of CsCl thus provides a versatile, general, easy to use, and low cost phasing strategy.
Collapse
|
4
|
Guo S, Campbell R, Davies PL, Allingham JS. Phasing with calcium at home. Acta Crystallogr F Struct Biol Commun 2019; 75:377-384. [PMID: 31045567 PMCID: PMC6497102 DOI: 10.1107/s2053230x19004151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
With better tools for data processing and with synchrotron beamlines that are capable of collecting data at longer wavelengths, sulfur-based native single-wavelength anomalous dispersion (SAD) phasing has become the `first-choice' method for de novo protein structure determination. However, for many proteins native SAD phasing can be simplified by taking advantage of their interactions with natural metal cofactors that are stronger anomalous scatterers than sulfur. This is demonstrated here for four unique domains of a 1.5 MDa calcium-dependent adhesion protein using the anomalous diffraction of the chelated calcium ions. In all cases, low anomalous multiplicity X-ray data were collected on a home-source diffractometer equipped with a chromium rotating anode (λ = 2.2909 Å). In all but one case, calcium SAD phasing alone was sufficient to allow automated model building and refinement of the protein model after the calcium substructure had been determined. Given that Ca atoms will be present in a significant percentage of proteins that remain uncharacterized, many aspects of the data-collection and processing methods described here could be broadly applied for routine de novo structure elucidation.
Collapse
Affiliation(s)
- Shuaiqi Guo
- Protein Function Discovery Group and The Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Robert Campbell
- Protein Function Discovery Group and The Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Peter L. Davies
- Protein Function Discovery Group and The Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - John S. Allingham
- Protein Function Discovery Group and The Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
5
|
Bijelic A, Rompel A. Polyoxometalates: more than a phasing tool in protein crystallography. CHEMTEXTS 2018; 4:10. [PMID: 30596006 PMCID: PMC6294228 DOI: 10.1007/s40828-018-0064-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/06/2018] [Indexed: 01/18/2023]
Abstract
Protein crystallography is the most widely used method for determining the molecular structure of proteins and obtaining structural information on protein–ligand complexes at the atomic level. As the structure determines the functions and properties of a protein, crystallography is of immense importance for nearly all research fields related to biochemistry. However, protein crystallography suffers from some major drawbacks, whereby the unpredictability of the crystallization process represents the main bottleneck. Crystallization is still more or less a ‘trial and error’ based procedure, and therefore, very time and resource consuming. Many strategies have been developed in the past decades to improve or enable the crystallization of proteins, whereby the use of so-called additives, which are mostly small molecules that make proteins more amenable to crystallization, is one of the most convenient and successful methods. Most of the commonly used additives are, however, restricted to particular crystallization conditions or groups of proteins. Therefore, a more universal additive addressing a wider range of proteins and being applicable to a broad spectrum of crystallization conditions would represent a significant advance in the field of protein crystallography. In recent years, polyoxometalates (POMs) emerged as a promising group of crystallization additives due to their unique structures and properties. In this regard, the tellurium-centered Anderson–Evans polyoxotungstate [TeW6O24]6− (TEW) showed its high potential as crystallization additive. In this lecture text, the development of POMs as tools in protein crystallography are discussed with a special focus on the so far most successful cluster TEW.
Collapse
Affiliation(s)
- Aleksandar Bijelic
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Vienna, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
6
|
Russo Krauss I, Ferraro G, Pica A, Márquez JA, Helliwell JR, Merlino A. Principles and methods used to grow and optimize crystals of protein-metallodrug adducts, to determine metal binding sites and to assign metal ligands. Metallomics 2018; 9:1534-1547. [PMID: 28967006 DOI: 10.1039/c7mt00219j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The characterization of the interactions between biological macromolecules (proteins and nucleic acids) and metal-based drugs is a fundamental prerequisite for understanding their mechanisms of action. X-ray crystallography enables the structural analysis of such complexes with atomic level detail. However, this approach requires the preparation of highly diffracting single crystals, the measurement of diffraction patterns and the structural analysis and interpretation of macromolecule-metal interactions from electron density maps. In this review, we describe principles and methods used to grow and optimize crystals of protein-metallodrug adducts, to determine metal binding sites and to assign and validate metal ligands. Examples from the literature and experience in our own laboratory are provided and key challenges are described, notably crystallization and molecular model refinement against the X-ray diffraction data.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Bijelic A, Rompel A. Ten Good Reasons for the Use of the Tellurium-Centered Anderson-Evans Polyoxotungstate in Protein Crystallography. Acc Chem Res 2017; 50:1441-1448. [PMID: 28562014 PMCID: PMC5480232 DOI: 10.1021/acs.accounts.7b00109] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Protein crystallography represents at present the most productive and most widely used method to obtain structural information on target proteins and protein-ligand complexes within the atomic resolution range. The knowledge obtained in this way is essential for understanding the biology, chemistry, and biochemistry of proteins and their functions but also for the development of compounds of high pharmacological and medicinal interest. Here, we address the very central problem in protein crystallography: the unpredictability of the crystallization process. Obtaining protein crystals that diffract to high resolutions represents the essential step to perform any structural study by X-ray crystallography; however, this method still depends basically on trial and error making it a very time- and resource-consuming process. The use of additives is an established process to enable or improve the crystallization of proteins in order to obtain high quality crystals. Therefore, a more universal additive addressing a wider range of proteins is desirable as it would represent a huge advance in protein crystallography and at the same time drastically impact multiple research fields. This in turn could add an overall benefit for the entire society as it profits from the faster development of novel or improved drugs and from a deeper understanding of biological, biochemical, and pharmacological phenomena. With this aim in view, we have tested several compounds belonging to the emerging class of polyoxometalates (POMs) for their suitability as crystallization additives and revealed that the tellurium-centered Anderson-Evans polyoxotungstate [TeW6O24]6- (TEW) was the most suitable POM-archetype. After its first successful application as a crystallization additive, we repeatedly reported on TEW's positive effects on the crystallization behavior of proteins with a particular focus on the protein-TEW interactions. As electrostatic interactions are the main force for TEW binding to proteins, TEW with its highly negative charge addresses in principle all proteins possessing positively charged patches. Furthermore, due to its high structural and chemical diversity, TEW exhibits major advantages over some commonly used crystallization additives. Therefore, we summarized all features of TEW, which are beneficial for protein crystallization, and present ten good reasons to promote the use of TEW in protein crystallography as a powerful additive. Our results demonstrate that TEW is a compound that is, in many respects, predestined as a crystallization additive. We assume that many crystallographers and especially researchers, who are not experts in this field but willing to crystallize their structurally unknown target protein, could benefit from the use of TEW as it is able to promote both the crystallization process itself and the subsequent structure elucidation by providing valuable anomalous signals, which are helpful for the phasing step.
Collapse
Affiliation(s)
- Aleksandar Bijelic
- University of Vienna, Faculty of Chemistry, Department of Biophysical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Annette Rompel
- University of Vienna, Faculty of Chemistry, Department of Biophysical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
8
|
Anosova I, Kowal EA, Dunn MR, Chaput JC, Van Horn WD, Egli M. The structural diversity of artificial genetic polymers. Nucleic Acids Res 2015; 44:1007-21. [PMID: 26673703 PMCID: PMC4756832 DOI: 10.1093/nar/gkv1472] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson-Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space.
Collapse
Affiliation(s)
- Irina Anosova
- The Biodesign Institute, Virginia G. Piper Center for Personalized Diagnostics, School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Ewa A Kowal
- Department of Biochemistry, Center for Structural Biology, and Vanderbilt Ingram Cancer Center, Vanderbilt University, School of Medicine, Nashville, TN 37232-0146, USA
| | - Matthew R Dunn
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - Wade D Van Horn
- The Biodesign Institute, Virginia G. Piper Center for Personalized Diagnostics, School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Martin Egli
- Department of Biochemistry, Center for Structural Biology, and Vanderbilt Ingram Cancer Center, Vanderbilt University, School of Medicine, Nashville, TN 37232-0146, USA
| |
Collapse
|
9
|
Bijelic A, Rompel A. The use of polyoxometalates in protein crystallography - An attempt to widen a well-known bottleneck. Coord Chem Rev 2015; 299:22-38. [PMID: 26339074 PMCID: PMC4504029 DOI: 10.1016/j.ccr.2015.03.018] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/23/2015] [Indexed: 02/01/2023]
Abstract
Polyoxometalates (POMs) are discrete polynuclear metal-oxo anions with a fascinating variety of structures and unique chemical and physical properties. Their application in various fields is well covered in the literature, however little information about their usage in protein crystallization is available. This review summarizes the impact of the vast class of POMs on the formation of protein crystals, a well-known (frustrating) bottleneck in macromolecular crystallography, with the associated structure elucidation and a particular emphasis focused on POM's potential as a powerful crystallization additive for future research. The Protein Data Bank (PDB) was scanned for protein structures with incorporated POMs which were assigned a PDB ligand ID resulting in 30 PDB entries. These structures have been analyzed with regard to (i) the structure of POM itself in the immediate protein environment, (ii) the kind of interaction and position of the POM within the protein structure and (iii) the beneficial effects of POM on protein crystallography apparent so far.
Collapse
Affiliation(s)
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstraße 14, 1090 Wien, Austria1
| |
Collapse
|
10
|
Bijelic A, Molitor C, Mauracher SG, Al-Oweini R, Kortz U, Rompel A. Hen egg-white lysozyme crystallisation: protein stacking and structure stability enhanced by a Tellurium(VI)-centred polyoxotungstate. Chembiochem 2015; 16:233-41. [PMID: 25521080 PMCID: PMC4498469 DOI: 10.1002/cbic.201402597] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 01/24/2023]
Abstract
As synchrotron radiation becomes more intense, detectors become faster and structure-solving software becomes more elaborate, obtaining single crystals suitable for data collection is now the bottleneck in macromolecular crystallography. Hence, there is a need for novel and advanced crystallisation agents with the ability to crystallise proteins that are otherwise challenging. Here, an Anderson-Evans-type polyoxometalate (POM), specifically Na6 [TeW6 O24 ]⋅22 H2 O (TEW), is employed as a crystallisation additive. Its effects on protein crystallisation are demonstrated with hen egg-white lysozyme (HEWL), which co-crystallises with TEW in the vicinity (or within) the liquid-liquid phase separation (LLPS) region. The X-ray structure (PDB ID: 4PHI) determination revealed that TEW molecules are part of the crystal lattice, thus demonstrating specific binding to HEWL with electrostatic interactions and hydrogen bonds. The negatively charged TEW polyoxotungstate binds to sites with a positive electrostatic potential located between two (or more) symmetry-related protein chains. Thus, TEW facilitates the formation of protein-protein interfaces of otherwise repulsive surfaces, and thereby the realisation of a stable crystal lattice. In addition to retaining the isomorphicity of the protein structure, the anomalous scattering of the POMs was used for macromolecular phasing. The results suggest that hexatungstotellurate(VI) has great potential as a crystallisation additive to promote both protein crystallisation and structure elucidation.
Collapse
Affiliation(s)
- Aleksandar Bijelic
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität WienAlthanstrasse 14, 1090 Wien (Austria) E-mail:
| | - Christian Molitor
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität WienAlthanstrasse 14, 1090 Wien (Austria) E-mail:
| | - Stephan G Mauracher
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität WienAlthanstrasse 14, 1090 Wien (Austria) E-mail:
| | - Rami Al-Oweini
- School of Engineering and Science, Jacobs UniversityP. O. Box 750 561, 28725 Bremen (Germany)
| | - Ulrich Kortz
- School of Engineering and Science, Jacobs UniversityP. O. Box 750 561, 28725 Bremen (Germany)
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität WienAlthanstrasse 14, 1090 Wien (Austria) E-mail:
| |
Collapse
|
11
|
Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C. Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Borfecchia ELISA, Gianolio DIEGO, Agostini GIOVANNI, Bordiga SILVIA, Lamberti CARLO. Characterization of MOFs. 2. Long and Local Range Order Structural Determination of MOFs by Combining EXAFS and Diffraction Techniques. METAL ORGANIC FRAMEWORKS AS HETEROGENEOUS CATALYSTS 2013. [DOI: 10.1039/9781849737586-00143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This chapter provides an elementary introduction to X‐ray and neutron scattering theory, written with a didactic perspective. At the beginning, the scattering process is introduced in a general way and then a differentiation between crystalline samples and amorphous samples is made, leading to the Bragg equation or to the Debye equation and to the Pair Distribution Function (PDF) approach, respectively. Advantages and disadvantages of the use of X‐rays or neutrons for scattering experiments are underlined. The basics of Extended X‐ray Absorption Fine Structure (EXAFS) spectroscopy are also reported. Starting from these basics, five examples have been selected from the recent literature where the concepts described in the first didactic part have been applied to the understanding of the structure of different MOFs materials.
Collapse
Affiliation(s)
- ELISA Borfecchia
- Department of Chemistry NIS Centre of Excellence and INSTM Reference Center, Via Giuria 7, University of Turin 10125 Torino Italy
| | - DIEGO Gianolio
- Department of Chemistry NIS Centre of Excellence and INSTM Reference Center, Via Giuria 7, University of Turin 10125 Torino Italy
- Diamond Light Source Ltd Harwell Science and Innovation Campus, Didcot, OX11 0DE United Kingdom
| | - GIOVANNI Agostini
- Department of Chemistry NIS Centre of Excellence and INSTM Reference Center, Via Giuria 7, University of Turin 10125 Torino Italy
| | - SILVIA Bordiga
- Department of Chemistry NIS Centre of Excellence and INSTM Reference Center, Via Giuria 7, University of Turin 10125 Torino Italy
| | - CARLO Lamberti
- Department of Chemistry NIS Centre of Excellence and INSTM Reference Center, Via Giuria 7, University of Turin 10125 Torino Italy
| |
Collapse
|
13
|
Zheng S, Kwon I. Manipulation of enzyme properties by noncanonical amino acid incorporation. Biotechnol J 2011; 7:47-60. [PMID: 22121038 DOI: 10.1002/biot.201100267] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/22/2011] [Accepted: 09/22/2011] [Indexed: 11/07/2022]
Abstract
Since wild-type enzymes do not always have the properties needed for various applications, enzymes are often engineered to obtain desirable properties through protein engineering techniques. In the past decade, complementary to the widely used rational protein design and directed evolution techniques, noncanonical amino acid incorporation (NCAAI) has become a new and effective protein engineering technique. Recently, NCAAI has been used to improve intrinsic functions of proteins, such as enzymes and fluorescent proteins, beyond the capacities obtained with natural amino acids. Herein, recent progress on improving enzyme properties through NCAAI in vivo is reviewed and the challenges of current approaches and future directions are also discussed. To date, both NCAAI methods-residue- and site-specific incorporation-have been primarily used to improve the catalytic turnover number and substrate binding affinity of enzymes. Numerous strategies used to minimize structural perturbation and stability loss of a target enzyme upon NCAAI are also explored. Considering the generality of NCAAI incorporation, we expect its application could be expanded to improve other enzyme properties, such as substrate specificity and solvent resistance in the near future.
Collapse
Affiliation(s)
- Shun Zheng
- Department of Chemical Engineering University of Virginia, Charlottesville, VA 22904, USA
| | | |
Collapse
|
14
|
Lin L, Sheng J, Huang Z. Nucleic acid X-ray crystallography via direct selenium derivatization. Chem Soc Rev 2011; 40:4591-602. [PMID: 21666919 DOI: 10.1039/c1cs15020k] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
X-ray crystallography has proven to be an essential tool for structural studies of bio-macromolecules at the atomic level. There are two major bottle-neck problems in the macromolecular crystal structure determination: phasing and crystallization. Although the selenium derivatization is routinely used for solving novel protein structures through the MAD phasing technique, the phase problem is still a critical issue in nucleic acid crystallography. The background and current progress of using direct selenium-derivatization of nucleic acids (SeNA) to solve the phase problem and to facilitate nucleic acid crystallization for X-ray crystallography are summarized in this tutorial review.
Collapse
Affiliation(s)
- Lina Lin
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | | | | |
Collapse
|
15
|
Liu Q, Zhang Z, Hendrickson WA. Multi-crystal anomalous diffraction for low-resolution macromolecular phasing. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:45-59. [PMID: 21206061 PMCID: PMC3016016 DOI: 10.1107/s0907444910046573] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/10/2010] [Indexed: 11/10/2022]
Abstract
Multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) are the two most commonly used methods for de novo determination of macromolecular structures. Both methods rely on the accurate extraction of anomalous signals; however, because of factors such as poor intrinsic order, radiation damage, inadequate anomalous scatterers, poor diffraction quality and other noise-causing factors, the anomalous signal from a single crystal is not always good enough for structure solution. In this study, procedures for extracting more accurate anomalous signals by merging data from multiple crystals are devised and tested. SAD phasing tests were made with a relatively large (1456 ordered residues) poorly diffracting (d(min) = 3.5 Å) selenomethionyl protein (20 Se). It is quantified that the anomalous signal, success in substructure determination and accuracy of phases and electron-density maps all improve with an increase in the number of crystals used in merging. Structure solutions are possible when no single crystal can support structural analysis. It is proposed that such multi-crystal strategies may be broadly useful when only weak anomalous signals are available.
Collapse
Affiliation(s)
- Qun Liu
- New York Structural Biology Center, NSLS X4, Building 725, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Zhen Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Wayne A. Hendrickson
- New York Structural Biology Center, NSLS X4, Building 725, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
16
|
Wang X, Tipton JD, Emmett MR, Marshall AG. Sites and extent of selenomethionine incorporation into recombinant Cas6 protein by top-down and bottom-up proteomics with 14.5 T Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2386-2392. [PMID: 20635341 DOI: 10.1002/rcm.4655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Selenomethionine-modified proteins can improve X-ray crystallographic structural resolution by multi-wavelength anomalous diffraction (MAD) phasing. However, the specificity and extent of selenomethionine incorporation must first be assessed. Bottom-up and top-down proteomics with a modified 14.5 T LTQ Fourier transform ion cyclotron resonance mass spectrometer offer a quick, accurate, and robust method to locate and quantify selenomethionine incorporation after auxotrophic expression. Selenomethionine (methionine with sulfur replaced by selenium) has a different natural-abundance isotopic distribution and a mass increase of 47.94 Da relative to wild-type methionine. Here, both wild-type and selenomethionine-substituted forms of the Cas6 protein containing 'clustered regularly interspaced short palindromic repeats' (CRISPRs) were expressed and purified. Comparative bottom-up and top-down proteomics confirmed that all six methionines were fully replaced by selenomethionines in Se-Cas6.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, USA
| | | | | | | |
Collapse
|
17
|
Ye J, Ajees AA, Yang J, Rosen BP. The 1.4 A crystal structure of the ArsD arsenic metallochaperone provides insights into its interaction with the ArsA ATPase. Biochemistry 2010; 49:5206-12. [PMID: 20507177 PMCID: PMC2909130 DOI: 10.1021/bi100571r] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arsenic is a carcinogen that tops the Superfund list of hazardous chemicals. Bacterial resistance to arsenic is facilitated by ArsD, which delivers As(III) to the ArsA ATPase, the catalytic subunit of the ArsAB pump. Here we report the structure of the arsenic metallochaperone ArsD at 1.4 A and a model for its binding of metalloid. There are two ArsD molecules in the asymmetric unit. The overall structure of the ArsD monomer has a thioredoxin fold, with a core of four beta-strands flanked by four alpha-helices. Based on data from structural homologues, ArsD was modeled with and without bound As(III). ArsD binds one arsenic per monomer coordinated with the three sulfur atoms of Cys12, Cys13, and Cys18. Using this structural model, an algorithm was used to dock ArsD and ArsA. The resulting docking model provides testable predictions of the contact points of the two proteins and forms the basis for future experiments.
Collapse
Affiliation(s)
- Jun Ye
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, MI 48201
| | - A. Abdul Ajees
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199
| | - Jianbo Yang
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, MI 48201
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199
| |
Collapse
|
18
|
Pabst G, Kucerka N, Nieh MP, Rheinstädter MC, Katsaras J. Applications of neutron and X-ray scattering to the study of biologically relevant model membranes. Chem Phys Lipids 2010; 163:460-79. [PMID: 20361949 DOI: 10.1016/j.chemphyslip.2010.03.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 11/19/2022]
Abstract
Scattering techniques, in particular electron, neutron and X-ray scattering have played a major role in elucidating the static and dynamic structure of biologically relevant membranes. Importantly, neutron and X-ray scattering have evolved to address new sample preparations that better mimic biological membranes. In this review, we will report on some of the latest model membrane results, and the neutron and X-ray techniques that were used to obtain them.
Collapse
Affiliation(s)
- G Pabst
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, A-8042 Graz, Austria
| | | | | | | | | |
Collapse
|
19
|
Abstract
The large-scale structural biology projects that target human proteins focus predominantly on the catalytic domains of potential therapeutic targets and the domains of human proteins that mediate protein-protein and protein-small-molecule interactions. Their main scientific objective is to elucidate the molecular basis for specificity and selectivity of function within large protein families of therapeutic interest, such as kinases, phosphatases, and proteins involved in epigenetic regulation. Half of the unique human protein structures determined in the past three years derive from these initiatives.
Collapse
Affiliation(s)
- Aled Edwards
- Banting and Best Department of Medical Research, University of Toronto, Ontario M5G 1L6, Canada
| |
Collapse
|
20
|
Wieczorek B, Dijkstra HP, Egmond MR, Klein Gebbink RJ, van Koten G. Incorporating ECE-pincer metal complexes as functional building blocks in semisynthetic metalloenzymes, supramolecular polypeptide hybrids, tamoxifen derivatives, biomarkers and sensors. J Organomet Chem 2009. [DOI: 10.1016/j.jorganchem.2008.12.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Papanikolopoulou K, van Raaij MJ, Mitraki A. Creation of hybrid nanorods from sequences of natural trimeric fibrous proteins using the fibritin trimerization motif. Methods Mol Biol 2008; 474:15-33. [PMID: 19031058 DOI: 10.1007/978-1-59745-480-3_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, beta-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple beta-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.
Collapse
|
22
|
Minor DL. The neurobiologist's guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data. Neuron 2007; 54:511-33. [PMID: 17521566 PMCID: PMC3011226 DOI: 10.1016/j.neuron.2007.04.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Structural biology now plays a prominent role in addressing questions central to understanding how excitable cells function. Although interest in the insights gained from the definition and dissection of macromolecular anatomy is high, many neurobiologists remain unfamiliar with the methods employed. This primer aims to help neurobiologists understand approaches for probing macromolecular structure and where the limits and challenges remain. Using examples of macromolecules with neurobiological importance, the review covers X-ray crystallography, electron microscopy (EM), small-angle X-ray scattering (SAXS), and nuclear magnetic resonance (NMR) and biophysical methods with which these approaches are often paired: isothermal titration calorimetry (ITC), equilibrium analytical ultracentifugation, and molecular dynamics (MD).
Collapse
Affiliation(s)
- Daniel L Minor
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158-2330, USA.
| |
Collapse
|
23
|
Malkowski MG, Quartley E, Friedman AE, Babulski J, Kon Y, Wolfley J, Said M, Luft JR, Phizicky EM, DeTitta GT, Grayhack EJ. Blocking S-adenosylmethionine synthesis in yeast allows selenomethionine incorporation and multiwavelength anomalous dispersion phasing. Proc Natl Acad Sci U S A 2007; 104:6678-83. [PMID: 17426150 PMCID: PMC1850019 DOI: 10.1073/pnas.0610337104] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae is an ideal host from which to obtain high levels of posttranslationally modified eukaryotic proteins for x-ray crystallography. However, extensive replacement of methionine by selenomethionine for anomalous dispersion phasing has proven intractable in yeast. We report a general method to incorporate selenomethionine into proteins expressed in yeast based on manipulation of the appropriate metabolic pathways. sam1(-) sam2(-) mutants, in which the conversion of methionine to S-adenosylmethionine is blocked, exhibit reduced selenomethionine toxicity compared with wild-type yeast, increased production of protein during growth in selenomethionine, and efficient replacement of methionine by selenomethionine, based on quantitative mass spectrometry and x-ray crystallography. The structure of yeast tryptophanyl-tRNA synthetase was solved to 1.8 A by using multiwavelength anomalous dispersion phasing with protein that was expressed and purified from the sam1(-) sam2(-) strain grown in selenomethionine. Six of eight selenium residues were located in the structure.
Collapse
Affiliation(s)
- Michael G. Malkowski
- *Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203; and
- Department of Structural Biology, State University of New York, 700 Ellicott Street, Buffalo, NY 14203
| | | | | | | | - Yoshiko Kon
- Center for Pediatric Biomedical Research and
- Biochemistry and Biophysics, University of Rochester Medical School, Rochester, NY 14642
| | - Jennifer Wolfley
- *Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203; and
| | - Meriem Said
- *Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203; and
| | - Joseph R. Luft
- *Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203; and
- Department of Structural Biology, State University of New York, 700 Ellicott Street, Buffalo, NY 14203
| | - Eric M. Phizicky
- Center for Pediatric Biomedical Research and
- Biochemistry and Biophysics, University of Rochester Medical School, Rochester, NY 14642
| | - George T. DeTitta
- *Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203; and
- Department of Structural Biology, State University of New York, 700 Ellicott Street, Buffalo, NY 14203
| | - Elizabeth J. Grayhack
- Center for Pediatric Biomedical Research and
- Biochemistry and Biophysics, University of Rochester Medical School, Rochester, NY 14642
| |
Collapse
|
24
|
Carrasco N, Caton-Williams J, Brandt G, Wang S, Huang Z. Efficient enzymatic synthesis of phosphoroselenoate RNA by using adenosine 5'-(alpha-P-seleno)triphosphate. Angew Chem Int Ed Engl 2006; 45:94-7. [PMID: 16304655 DOI: 10.1002/anie.200502215] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nicolas Carrasco
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | |
Collapse
|
25
|
Jackson C, Carr P, Kim HK, Liu JW, Herrald P, Mitić N, Schenk G, Smith C, Ollis D. Anomalous scattering analysis of Agrobacterium radiobacter phosphotriesterase: the prominent role of iron in the heterobinuclear active site. Biochem J 2006; 397:501-8. [PMID: 16686603 PMCID: PMC1533316 DOI: 10.1042/bj20060276] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial phosphotriesterases are binuclear metalloproteins for which the catalytic mechanism has been studied with a variety of techniques, principally using active sites reconstituted in vitro from apoenzymes. Here, atomic absorption spectroscopy and anomalous X-ray scattering have been used to determine the identity of the metals incorporated into the active site in vivo. We have recombinantly expressed the phosphotriesterase from Agrobacterium radiobacter (OpdA) in Escherichia coli grown in medium supplemented with 1 mM CoCl2 and in unsupplemented medium. Anomalous scattering data, collected from a single crystal at the Fe-K, Co-K and Zn-K edges, indicate that iron and cobalt are the primary constituents of the two metal-binding sites in the catalytic centre (alpha and beta) in the protein expressed in E. coli grown in supplemented medium. Comparison with OpdA expressed in unsupplemented medium demonstrates that the cobalt present in the supplemented medium replaced zinc at the beta-position of the active site, which results in an increase in the catalytic efficiency of the enzyme. These results suggest an essential role for iron in the catalytic mechanism of bacterial phosphotriesterases, and that these phosphotriesterases are natively heterobinuclear iron-zinc enzymes.
Collapse
Affiliation(s)
- Colin J. Jackson
- *Research School of Chemistry, Building 35, Australian National University, Canberra, ACT 0200, Australia
| | - Paul D. Carr
- *Research School of Chemistry, Building 35, Australian National University, Canberra, ACT 0200, Australia
| | - Hye-Kyung Kim
- *Research School of Chemistry, Building 35, Australian National University, Canberra, ACT 0200, Australia
| | - Jian-Wei Liu
- *Research School of Chemistry, Building 35, Australian National University, Canberra, ACT 0200, Australia
| | - Paul Herrald
- †School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia
| | - Nataša Mitić
- †School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia
| | - Gerhard Schenk
- †School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia
| | - Clyde A. Smith
- ‡Stanford Linear Accelerator Center/Stanford Synchrotron Radiation Laboratory (SLAC/SSRL), MS:99, 2575 Sand Hill Road, Menlo Park, CA 94025, U.S.A
| | - David L. Ollis
- *Research School of Chemistry, Building 35, Australian National University, Canberra, ACT 0200, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
26
|
Abstract
The vast majority of mammalian glycosyltransferases are endoplasmic reticulum (ER) and Golgi resident type II membrane proteins. As such, producing large quantities of properly folded and active enzymes for X-ray crystallographic analysis is a challenge. Described here are the methods that we have developed to facilitate the structural characterization of these enzymes. The approach involves the production of a soluble Protein A-tagged form of the catalytic domain in a mammalian cell expression system. Production is scaled up in a perfusion-fed bioreactor with media flow rates of 3-5 liters/day. Expression levels are typically in the 1- to 4-mg/liter range and a simple and efficient purification method based on immunoglobulin G (IgG)-Sepharose affinity chromatography has been developed. Our approach to delimiting the catalytic domain and deglycosylating it when necessary is also discussed. Finally, we describe the selenomethionine labeling protocol used in our X-ray crystal structure determination of leukocyte-type Core 2 beta1,6-N-acetylglucosaminyltransferase.
Collapse
Affiliation(s)
- John E Pak
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
27
|
Carrasco N, Caton-Williams J, Brandt G, Wang S, Huang Z. Efficient Enzymatic Synthesis of Phosphoroselenoate RNA by Using Adenosine 5′-(α-P-Seleno)triphosphate. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Jönsson TJ, Murray MS, Johnson LC, Poole LB, Lowther WT. Structural basis for the retroreduction of inactivated peroxiredoxins by human sulfiredoxin. Biochemistry 2005; 44:8634-42. [PMID: 15952770 PMCID: PMC3928543 DOI: 10.1021/bi050131i] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sufiredoxins (Srx) repair the inactivated forms of typical two-Cys peroxiredoxins (Prx) implicated in hydrogen peroxide-mediated cell signaling. The reduction of the cysteine sulfinic acid moiety within the active site of the Prx by Srx involves novel sulfur chemistry and the use of ATP and Mg(2+). The 1.65 A crystal structure of human Srx (hSrx) exhibits a new protein fold and a unique nucleotide binding motif containing the Gly98-Cys99-His100-Arg101 sequence at the N-terminus of an alpha-helix. HPLC analysis of the reaction products has confirmed that the site of ATP cleavage is between the beta- and gamma-phosphate groups. Cys99 and the gamma-phosphate of ATP, modeled within the active site of the 2.0 A ADP product complex structure, are adjacent to large surface depressions containing additional conserved residues. These features and the necessity for significant remodeling of the Prx structure suggest that the interactions between hSrx and typical two-Cys Prxs are specific. Moreover, the concave shape of the hSrx active site surface appears to be ideally suited to interacting with the convex surface of the toroidal Prx decamer.
Collapse
Affiliation(s)
| | | | | | | | - W. Todd Lowther
- To whom correspondence should be addressed. . Telephone: (336) 716-7230. Fax: (336) 777-3242
| |
Collapse
|
29
|
Liu HL, Hsu JP. Recent developments in structural proteomics for protein structure determination. Proteomics 2005; 5:2056-68. [PMID: 15846841 DOI: 10.1002/pmic.200401104] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The major challenges in structural proteomics include identifying all the proteins on the genome-wide scale, determining their structure-function relationships, and outlining the precise three-dimensional structures of the proteins. Protein structures are typically determined by experimental approaches such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. However, the knowledge of three-dimensional space by these techniques is still limited. Thus, computational methods such as comparative and de novo approaches and molecular dynamic simulations are intensively used as alternative tools to predict the three-dimensional structures and dynamic behavior of proteins. This review summarizes recent developments in structural proteomics for protein structure determination; including instrumental methods such as X-ray crystallography and NMR spectroscopy, and computational methods such as comparative and de novo structure prediction and molecular dynamics simulations.
Collapse
Affiliation(s)
- Hsuan-Liang Liu
- Department of Chemical Engineering, National Taipei University of Technology, Taiwan.
| | | |
Collapse
|
30
|
Strub MP, Hoh F, Sanchez JF, Strub JM, Böck A, Aumelas A, Dumas C. Selenomethionine and selenocysteine double labeling strategy for crystallographic phasing. Structure 2004; 11:1359-67. [PMID: 14604526 DOI: 10.1016/j.str.2003.09.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A protocol for the quantitative incorporation of both selenomethionine and selenocysteine into recombinant proteins overexpressed in Escherichia coli is described. This methodology is based on the use of a suitable cysteine auxotrophic strain and a minimal medium supplemented with selenium-labeled methionine and cysteine. The proteins chosen for these studies are the cathelin-like motif of protegrin-3 and a nucleoside-diphosphate kinase. Analysis of the purified proteins by electrospray mass spectrometry and X-ray crystallography revealed that both cysteine and methionine residues were isomorphously replaced by selenocysteine and selenomethionine. Moreover, selenocysteines allowed the formation of unstrained and stable diselenide bridges in place of the canonical disulfide bonds. In addition, we showed that NDP kinase contains a selenocysteine adduct on Cys122. This novel selenium double-labeling method is proposed as a general approach to increase the efficiency of the MAD technique used for phase determination in protein crystallography.
Collapse
Affiliation(s)
- Marie Paule Strub
- Centre de Biochimie Structurale, UMR CNRS 5048, UMR 554 INSERM, Université Montpellier I, 34090 Cedex, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Carrasco N, Buzin Y, Tyson E, Halpert E, Huang Z. Selenium derivatization and crystallization of DNA and RNA oligonucleotides for X-ray crystallography using multiple anomalous dispersion. Nucleic Acids Res 2004; 32:1638-46. [PMID: 15007109 PMCID: PMC390325 DOI: 10.1093/nar/gkh325] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report here the solid phase synthesis of RNA and DNA oligonucleotides containing the 2'-selenium functionality for X-ray crystallography using multiwavelength anomalous dispersion. We have synthesized the novel 2'-methylseleno cytidine phosphoramidite and improved the accessibility of the 2'-methylseleno uridine phosphoramidite for the synthesis of many selenium-derivatized DNAs and RNAs in large scales. The yields of coupling these Se-nucleoside phosphoramidites into DNA or RNA oligonucleotides were over 99% when 5-(benzylmercapto)-1H-tetrazole was used as the coupling reagent. The UV melting study of A-form dsDNAs indicated that the 2'-selenium derivatization had no effect on the stability of the duplexes with the 3'-endo sugar pucker. Thus, the stems of functional RNA molecules with the same 3'-endo sugar pucker appear to be the ideal sites for the selenium derivatization with 2'-Se-C and 2'-Se-U. Crystallization of the selenium-derivatized oligonucleotides is also reported here. The results demonstrate that this 2'-selenium functionality is suitable for RNA and A-form DNA derivatization in X-ray crystallography.
Collapse
Affiliation(s)
- Nicolas Carrasco
- Department of Chemistry, Brooklyn College, and Program of Biochemistry and Chemistry, The Graduate School, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
The pharmaceutical industry has embraced genomics as a means to identify new biological targets for target-based drug discovery approaches. Now, genomics is driving a substantial effort in protein structure determination and structure prediction. These structures will provide the opportunity to undertake structure-guided drug discovery programs in the search for new classes of broad-spectrum antibiotics. In addition, these structures could provide structure-based criteria to prioritize certain targets for focused drug discovery programs.
Collapse
Affiliation(s)
- Molly B Schmid
- Affinium Pharmaceuticals, 100 University Avenue, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Abbamonte P, Venema L, Rusydi A, Sawatzky GA, Logvenov G, Bozovic I. A structural probe of the doped holes in cuprate superconductors. Science 2002; 297:581-4. [PMID: 12142531 DOI: 10.1126/science.1070903] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
An unresolved issue concerning cuprate superconductors is whether the distribution of carriers in the CuO2 plane is uniform or inhomogeneous. Because the carriers comprise a small fraction of the total charge density and may be rapidly fluctuating, modulations are difficult to detect directly. We demonstrate that in anomalous x-ray scattering at the oxygen K edge of the cuprates, the contribution of carriers to the scattering amplitude is selectively magnified 82 times. This enhances diffraction from the doped holes by more than 10(3), permitting direct structural analysis of the superconducting ground state. Scattering from thin films of La2CuO4+delta (superconducting transition temperature = 39 K) at temperature = 50 +/- 5 kelvin on the reciprocal space intervals (0,0,0.21) --> (0,0,1.21) and (0,0,0.6) --> (0.3,0,0.6) shows a rounding of the carrier density near the substrate suggestive of a depletion zone or similar effect. The structure factor for off-specular scattering was less than 3 x 10(-7) electrons, suggesting an absence of in-plane hole ordering in this material.
Collapse
Affiliation(s)
- P Abbamonte
- Materials Science Centre, University of Groningen, 9747 AG Groningen, Netherlands.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Following the complete genome sequencing of an increasing number of organisms, structural biology is engaging in a systematic approach of high-throughput structure determination called structural genomics to create a complete inventory of protein folds/structures that will help predict functions for all proteins. First results show that structural genomics will be highly effective in finding functional annotations for proteins of unknown function.
Collapse
Affiliation(s)
- P R Mittl
- Institute of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
35
|
|
36
|
Ruprecht J, Nield J. Determining the structure of biological macromolecules by transmission electron microscopy, single particle analysis and 3D reconstruction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 75:121-64. [PMID: 11376797 DOI: 10.1016/s0079-6107(01)00004-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Single particle analysis and 3D reconstruction of molecules imaged by transmission electron microscopy have provided a wealth of medium to low resolution structures of biological molecules and macromolecular complexes, such as the ribosome, viruses, molecular chaperones and photosystem II. In this review, the principles of these techniques are introduced in a non-mathematical way, and single particle analysis is compared to other methods used for structural studies. In particular, the recent X-ray structures of the ribosome and of ribosomal subunits allow a critical comparison of single particle analysis and X-ray crystallography. This has emphasised the rapidity with which single particle analysis can produce medium resolution structures of complexes that are difficult to crystallise. Once crystals are available, X-ray crystallography can produce structures at a much higher resolution. The great similarities now seen between the structures obtained by the two techniques reinforce confidence in the use of single particle analysis and 3D reconstruction, and show that for electron cryo-microscopy structure distortion during sample preparation and imaging has not been a significant problem. The ability to analyse conformational flexibility and the ease with which time-resolved studies can be performed are significant advantages for single particle analysis. Future improvements in single particle analysis and electron microscopy should increase the attainable resolution. Combining single particle analysis of macromolecular complexes and electron tomography of subcellular structures with high-resolution X-ray structures may enable us to realise the ultimate dream of structural biology-a complete description of the macromolecular complexes of the cell in their different functional states.
Collapse
Affiliation(s)
- J Ruprecht
- University of Cambridge, Department of Biochemistry, Hopkins Building, CB2 1QW, Cambridge, UK.
| | | |
Collapse
|