1
|
Wang Q, Ma L, Wang Z, Chen Q, Wang Q, Qi Q. Construction and yield optimization of a cinnamylamine biosynthesis route in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:100. [PMID: 36175923 PMCID: PMC9524069 DOI: 10.1186/s13068-022-02199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022]
Abstract
Background With the development of metabolic engineering and synthetic biology, the biosynthesis of aromatic compounds has attracted much attention. Cinnamylamine is an aromatic compound derived from l-phenylalanine, which is used in the synthesis of biologically active molecules, including drugs, and energetic materials. Cinnamylamine has been mainly synthesized by chemical methods to date, and few reports have focused on the biosynthesis of cinnamylamine. Therefore, it is desirable to establish an efficient biosynthesis method for cinnamylamine. Results The ω-aminotransferase Cv-ωTA from Chromobacterium violaceum has been demonstrated to have high enzyme activity in the conversion of cinnamaldehyde to cinnamylamine. To prevent the preferable conversion of cinnamaldehyde to cinnamyl alcohol in wild-type Escherichia coli, the E. coli MG1655 strain with reduced aromatic aldehyde reduction (RARE) in which six aldehyde ketone reductase and alcohol dehydrogenase genes have been knocked out was employed. Then, the carboxylic acid reductase from Neurospora crassa (NcCAR) and phosphopantetheinyl transferase (PPTase) from E. coli were screened for a high conversion rate of cinnamic acid to cinnamaldehyde. To shift the equilibrium of the reaction toward cinnamylamine, saturation mutagenesis of Cv-ωTA at key amino acid residues was performed, and Cv-ωTA Y168G had the highest conversion rate with 88.56 mg/L cinnamylamine obtained after 4 h of fermentation. Finally, by optimizing the substrates and the supply of the cofactors, PLP and NADPH, in the fermentation, the yield of cinnamylamine in engineered E. coli reached 523.15 mg/L. Conclusion We achieved the first biosynthesis of cinnamylamine using cinnamic acid as the precursor in E. coli using a combinatorial metabolic engineering strategy. This study provides a reference for the biosynthesis of other amine compounds and lays a foundation for the de novo synthesis of cinnamylamine. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02199-7.
Collapse
|
2
|
Huang C, Liu J, Fang J, Jia X, Zheng Z, You S, Qin B. Ketoreductase Catalyzed (Dynamic) Kinetic Resolution for Biomanufacturing of Chiral Chemicals. Front Bioeng Biotechnol 2022; 10:929784. [PMID: 35845398 PMCID: PMC9280296 DOI: 10.3389/fbioe.2022.929784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Biocatalyzed asymmetric reduction of ketones is an environmentally friendly approach and one of the most cost-effective routes for producing chiral alcohols. In comparison with the well-studied reduction of prochiral ketones to generate chiral alcohols with one chiral center, resolution of racemates by ketoreductases (KREDs) to produce chiral compounds with at least two chiral centers is also an important strategy in asymmetric synthesis. The development of protein engineering and the combination with chemo-catalysts further enhanced the application of KREDs in the efficient production of chiral alcohols with high stereoselectivity. This review discusses the advances in the research area of KRED catalyzed asymmetric synthesis for biomanufacturing of chiral chemicals with at least two chiral centers through the kinetic resolution (KR) approach and the dynamic kinetic resolution (DKR) approach.
Collapse
Affiliation(s)
- Chenming Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Junling Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jiali Fang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xian Jia
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
3
|
Okada CY, dos Santos CY, Jurberg ID. Blue light-promoted N–H insertion of amides, isatins, sulfonamides and imides into aryldiazoacetates: Synthesis of unnatural α-aryl amino acid derivatives. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Zhou H, Meng L, Yin X, Liu Y, Xu G, Wu J, Wu M, Yang L. Artificial Biocatalytic Cascade with Three Enzymes in One Pot for Asymmetric Synthesis of Chiral Unnatural Amino Acids. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haisheng Zhou
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Lijun Meng
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Xinjian Yin
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Yayun Liu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Gang Xu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Jianping Wu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Mianbin Wu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Lirong Yang
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| |
Collapse
|
6
|
Cong X, Li X, Li S. Crystal structure of the aromatic-amino-acid aminotransferase from Streptococcus mutans. Acta Crystallogr F Struct Biol Commun 2019; 75:141-146. [PMID: 30713166 PMCID: PMC6360443 DOI: 10.1107/s2053230x18018472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/31/2018] [Indexed: 11/10/2022] Open
Abstract
Streptococcus mutans, a facultatively aerobic and Gram-positive bacterium, is the primary causative agent of dental caries and contributes to the multispecies biofilm known as dental plaque. In this study, the aromatic-amino-acid aminotransferase from Streptococcus mutans (SmAroAT) was recombinantly expressed in Escherichia coli. An effective purification protocol was established. The recombinant protein was crystallized using the hanging-drop vapor-diffusion method with PEG 3350 as the primary precipitant. The crystal structure of SmAroAT was solved at 2.2 Å resolution by the molecular-replacement method. Structural analysis indicated that the proteins of the aromatic-amino-acid aminotransferase family have conserved structural elements that might play a role in substrate binding. These results may help in obtaining a better understanding of the catabolism and biosynthesis of aromatic amino acids.
Collapse
Affiliation(s)
- Xuzhen Cong
- Central Laboratory, Capital Medical University, Beijing 100069, People’s Republic of China
- Shandong Mental Health Center, Jinan, Shandong 250014, People’s Republic of China
| | - Xiaolu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing 100005, People’s Republic of China
| | - Shentao Li
- Central Laboratory, Capital Medical University, Beijing 100069, People’s Republic of China
| |
Collapse
|
7
|
Won Y, Jeon H, Pagar AD, Patil MD, Nadarajan SP, Flood DT, Dawson PE, Yun H. In vivo biosynthesis of tyrosine analogs and their concurrent incorporation into a residue-specific manner for enzyme engineering. Chem Commun (Camb) 2019; 55:15133-15136. [DOI: 10.1039/c9cc08503c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A cellular system for the in vivo biosynthesis of Tyr-analogs and their concurrent incorporation into target proteins is reported.
Collapse
Affiliation(s)
- Yumi Won
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | - Amol D. Pagar
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | - Mahesh D. Patil
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | | | - Dillon T. Flood
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - Philip E. Dawson
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - Hyungdon Yun
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| |
Collapse
|
8
|
Chen S, Berglund P, Humble MS. The effect of phosphate group binding cup coordination on the stability of the amine transaminase from Chromobacterium violaceum. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.12.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Kelly SA, Pohle S, Wharry S, Mix S, Allen CCR, Moody TS, Gilmore BF. Application of ω-Transaminases in the Pharmaceutical Industry. Chem Rev 2017; 118:349-367. [PMID: 29251912 DOI: 10.1021/acs.chemrev.7b00437] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral amines are valuable building blocks for the pharmaceutical industry. ω-TAms have emerged as an exciting option for their synthesis, offering a potential "green alternative" to overcome the drawbacks associated with conventional chemical methods. In this review, we explore the application of ω-TAms for pharmaceutical production. We discuss the diverse array of reactions available involving ω-TAms and process considerations of their use in both kinetic resolution and asymmetric synthesis. With the aid of specific drug intermediates and APIs, we chart the development of ω-TAms using protein engineering and their contribution to elegant one-pot cascades with other enzymes, including carbonyl reductases (CREDs), hydrolases and monoamine oxidases (MAOs), providing a comprehensive overview of their uses, beginning with initial applications through to the present day.
Collapse
Affiliation(s)
- Stephen A Kelly
- School of Pharmacy, Queen's University Belfast , Belfast BT9 7BL, N. Ireland, U.K
| | - Stefan Pohle
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K
| | - Scott Wharry
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K
| | - Stefan Mix
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K
| | - Christopher C R Allen
- School of Biological Sciences, Queen's University Belfast , Belfast BT9 7BL, N. Ireland, U.K
| | - Thomas S Moody
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K.,Arran Chemical Company Limited , Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast , Belfast BT9 7BL, N. Ireland, U.K
| |
Collapse
|
10
|
Gruber P, Carvalho F, Marques MPC, O'Sullivan B, Subrizi F, Dobrijevic D, Ward J, Hailes HC, Fernandes P, Wohlgemuth R, Baganz F, Szita N. Enzymatic synthesis of chiral amino-alcohols by coupling transketolase and transaminase-catalyzed reactions in a cascading continuous-flow microreactor system. Biotechnol Bioeng 2017; 115:586-596. [PMID: 28986983 PMCID: PMC5813273 DOI: 10.1002/bit.26470] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 11/12/2022]
Abstract
Rapid biocatalytic process development and intensification continues to be challenging with currently available methods. Chiral amino‐alcohols are of particular interest as they represent key industrial synthons for the production of complex molecules and optically pure pharmaceuticals. (2S,3R)‐2‐amino‐1,3,4‐butanetriol (ABT), a building block for the synthesis of protease inhibitors and detoxifying agents, can be synthesized from simple, non‐chiral starting materials, by coupling a transketolase‐ and a transaminase‐catalyzed reaction. However, until today, full conversion has not been shown and, typically, long reaction times are reported, making process modifications and improvement challenging. In this contribution, we present a novel microreactor‐based approach based on free enzymes, and we report for the first time full conversion of ABT in a coupled enzyme cascade for both batch and continuous‐flow systems. Using the compartmentalization of the reactions afforded by the microreactor cascade, we overcame inhibitory effects, increased the activity per unit volume, and optimized individual reaction conditions. The transketolase‐catalyzed reaction was completed in under 10 min with a volumetric activity of 3.25 U ml−1. Following optimization of the transaminase‐catalyzed reaction, a volumetric activity of 10.8 U ml−1 was attained which led to full conversion of the coupled reaction in 2 hr. The presented approach illustrates how continuous‐flow microreactors can be applied for the design and optimization of biocatalytic processes.
Collapse
Affiliation(s)
- Pia Gruber
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Filipe Carvalho
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Marco P C Marques
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Brian O'Sullivan
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Fabiana Subrizi
- Department of Chemistry, University College London, London, United Kingdom
| | - Dragana Dobrijevic
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - John Ward
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Helen C Hailes
- Department of Chemistry, University College London, London, United Kingdom
| | - Pedro Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Faculty of Engineering, Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | | | - Frank Baganz
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, London, United Kingdom
| |
Collapse
|
11
|
Han SW, Kim J, Cho HS, Shin JS. Active Site Engineering of ω-Transaminase Guided by Docking Orientation Analysis and Virtual Activity Screening. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03242] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sang-Woo Han
- Department
of Biotechnology and ‡Department of Systems Biology, Yonsei University, Yonsei-Ro 50, Seodaemun-Gu, Seoul 03722, South Korea
| | - Juyeon Kim
- Department
of Biotechnology and ‡Department of Systems Biology, Yonsei University, Yonsei-Ro 50, Seodaemun-Gu, Seoul 03722, South Korea
| | - Hyun-Soo Cho
- Department
of Biotechnology and ‡Department of Systems Biology, Yonsei University, Yonsei-Ro 50, Seodaemun-Gu, Seoul 03722, South Korea
| | - Jong-Shik Shin
- Department
of Biotechnology and ‡Department of Systems Biology, Yonsei University, Yonsei-Ro 50, Seodaemun-Gu, Seoul 03722, South Korea
| |
Collapse
|
12
|
Andreeßen C, Gerlt V, Steinbüchel A. Conversion of cysteine to 3‐mercaptopyruvic acid by bacterial aminotransferases. Enzyme Microb Technol 2017; 99:38-48. [DOI: 10.1016/j.enzmictec.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
|
13
|
Covalent immobilization of Candida methylica formate dehydrogenase on short spacer arm aldehyde group containing supports. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Binay B, Alagöz D, Yildirim D, Çelik A, Tükel SS. Highly stable and reusable immobilized formate dehydrogenases: Promising biocatalysts for in situ regeneration of NADH. Beilstein J Org Chem 2016; 12:271-7. [PMID: 26977186 PMCID: PMC4778513 DOI: 10.3762/bjoc.12.29] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/05/2016] [Indexed: 11/23/2022] Open
Abstract
This study aimed to prepare robust immobilized formate dehydrogenase (FDH) preparations which can be used as effective biocatalysts along with functional oxidoreductases, in which in situ regeneration of NADH is required. For this purpose, Candida methylica FDH was covalently immobilized onto Immobead 150 support (FDHI150), Immobead 150 support modified with ethylenediamine and then activated with glutaraldehyde (FDHIGLU), and Immobead 150 support functionalized with aldehyde groups (FDHIALD). The highest immobilization yield and activity yield were obtained as 90% and 132%, respectively when Immobead 150 functionalized with aldehyde groups was used as support. The half-life times (t1/2) of free FDH, FDHI150, FDHIGLU and FDHIALD were calculated as 10.6, 28.9, 22.4 and 38.5 h, respectively at 35 °C. FDHI150, FDHIGLU and FDHIALD retained 69, 38 and 51% of their initial activities, respectively after 10 reuses. The results show that the FDHI150, FDHIGLU and FDHIALD offer feasible potentials for in situ regeneration of NADH.
Collapse
Affiliation(s)
- Barış Binay
- Istanbul AREL University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, Tepekent, Büyükcekmece, Istanbul, Turkey
| | - Dilek Alagöz
- University of Cukurova, Vocational School of Imamoglu, Adana, Turkey
| | - Deniz Yildirim
- University of Cukurova, Vocational School of Ceyhan, Adana, Turkey
| | - Ayhan Çelik
- Gebze Technical University, Department of Chemistry, Gebze, Kocaeli, Turkey
| | - S Seyhan Tükel
- University of Cukurova, Faculty of Arts and Sciences, Department of Chemistry, 01330, Adana, Turkey
| |
Collapse
|
15
|
de Miranda AS, Miranda LS, de Souza RO. Lipases: Valuable catalysts for dynamic kinetic resolutions. Biotechnol Adv 2015; 33:372-93. [DOI: 10.1016/j.biotechadv.2015.02.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/10/2015] [Accepted: 02/25/2015] [Indexed: 12/22/2022]
|
16
|
Active-Site Engineering of ω-Transaminase for Production of Unnatural Amino Acids Carrying a Side Chain Bulkier than an Ethyl Substituent. Appl Environ Microbiol 2015; 81:6994-7002. [PMID: 26231640 DOI: 10.1128/aem.01533-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/23/2015] [Indexed: 12/26/2022] Open
Abstract
ω-Transaminase (ω-TA) is a promising enzyme for use in the production of unnatural amino acids from keto acids using cheap amino donors such as isopropylamine. The small substrate-binding pocket of most ω-TAs permits entry of substituents no larger than an ethyl group, which presents a significant challenge to the preparation of structurally diverse unnatural amino acids. Here we report on the engineering of an (S)-selective ω-TA from Ochrobactrum anthropi (OATA) to reduce the steric constraint and thereby allow the small pocket to readily accept bulky substituents. On the basis of a docking model in which L-alanine was used as a ligand, nine active-site residues were selected for alanine scanning mutagenesis. Among the resulting variants, an L57A variant showed dramatic activity improvements in activity for α-keto acids and α-amino acids carrying substituents whose bulk is up to that of an n-butyl substituent (e.g., 48- and 56-fold increases in activity for 2-oxopentanoic acid and L-norvaline, respectively). An L57G mutation also relieved the steric constraint but did so much less than the L57A mutation did. In contrast, an L57V substitution failed to induce the improvements in activity for bulky substrates. Molecular modeling suggested that the alanine substitution of L57, located in a large pocket, induces an altered binding orientation of an α-carboxyl group and thereby provides more room to the small pocket. The synthetic utility of the L57A variant was demonstrated by carrying out the production of optically pure L- and D-norvaline (i.e., enantiomeric excess [ee]>99%) by asymmetric amination of 2-oxopantanoic acid and kinetic resolution of racemic norvaline, respectively.
Collapse
|
17
|
Biedermann F, Hathazi D, Nau WM. Associative chemosensing by fluorescent macrocycle–dye complexes – a versatile enzyme assay platform beyond indicator displacement. Chem Commun (Camb) 2015; 51:4977-80. [DOI: 10.1039/c4cc10227d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enzymatic reactions of aromatic substrates can be monitored by fluorescence with μM sensitivity in real time by using self-assembled fluorescent receptors.
Collapse
Affiliation(s)
- Frank Biedermann
- Department of Life Sciences and Chemistry
- Jacobs University Bremen
- 28759 Bremen
- Germany
| | - Denisa Hathazi
- Department of Life Sciences and Chemistry
- Jacobs University Bremen
- 28759 Bremen
- Germany
| | - Werner M. Nau
- Department of Life Sciences and Chemistry
- Jacobs University Bremen
- 28759 Bremen
- Germany
| |
Collapse
|
18
|
Sayer C, Martinez-Torres RJ, Richter N, Isupov MN, Hailes HC, Littlechild JA, Ward JM. The substrate specificity, enantioselectivity and structure of the (R)-selective amine : pyruvate transaminase from Nectria haematococca. FEBS J 2014; 281:2240-53. [PMID: 24618038 PMCID: PMC4255305 DOI: 10.1111/febs.12778] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 11/30/2022]
Abstract
During the last decade the use of transaminases for the production of pharmaceutical and fine chemical intermediates has attracted a great deal of attention. Transaminases are versatile biocatalysts for the efficient production of amine intermediates and many have (S)-enantiospecificity. Transaminases with (R)-specificity are needed to expand the applications of these enzymes in biocatalysis. In this work we have identified a fungal putative (R)-specific transaminase from the Eurotiomycetes Nectria haematococca, cloned a synthetic version of this gene, demonstrated (R)-selective deamination of several substrates including (R)-α-methylbenzylamine, as well as production of (R)-amines, and determined its crystal structure. The crystal structures of the holoenzyme and the complex with an inhibitor gabaculine offer the first detailed insight into the structural basis for substrate specificity and enantioselectivity of the industrially important class of (R)-selective amine : pyruvate transaminases.
Collapse
Affiliation(s)
- Christopher Sayer
- Henry Wellcome Building for Biocatalysis, College of Life and Environmental Sciences, University of Exeter, EX4 4QD, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Schrewe M, Julsing MK, Bühler B, Schmid A. Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification. Chem Soc Rev 2014; 42:6346-77. [PMID: 23475180 DOI: 10.1039/c3cs60011d] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the last decades, biocatalysis became of increasing importance for chemical and pharmaceutical industries. Regarding regio- and stereospecificity, enzymes have shown to be superior compared to traditional chemical synthesis approaches, especially in C-O functional group chemistry. Catalysts established on a process level are diverse and can be classified along a functional continuum starting with single-step biotransformations using isolated enzymes or microbial strains towards fermentative processes with recombinant microorganisms containing artificial synthetic pathways. The complex organization of respective enzymes combined with aspects such as cofactor dependency and low stability in isolated form often favors the use of whole cells over that of isolated enzymes. Based on an inventory of the large spectrum of biocatalytic C-O functional group chemistry, this review focuses on highlighting the potentials, limitations, and solutions offered by the application of self-regenerating microbial cells as biocatalysts. Different cellular functionalities are discussed in the light of their (possible) contribution to catalyst efficiency. The combined achievements in the areas of protein, genetic, metabolic, and reaction engineering enable the development of whole-cell biocatalysts as powerful tools in organic synthesis.
Collapse
Affiliation(s)
- Manfred Schrewe
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | | | | | | |
Collapse
|
20
|
Halouska S, Fenton RJ, Zinniel DK, Marshall DD, Barletta RG, Powers R. Metabolomics analysis identifies d-Alanine-d-Alanine ligase as the primary lethal target of d-Cycloserine in mycobacteria. J Proteome Res 2013; 13:1065-76. [PMID: 24303782 DOI: 10.1021/pr4010579] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
d-Cycloserine is an effective second line antibiotic used as a last resort to treat multi (MDR)- and extensively (XDR) drug resistant strains of Mycobacterium tuberculosis . d-Cycloserine interferes with the formation of peptidoglycan biosynthesis by competitive inhibition of alanine racemase (Alr) and d-alanine-d-alanine ligase (Ddl). Although the two enzymes are known to be inhibited, the in vivo lethal target is still unknown. Our NMR metabolomics work has revealed that Ddl is the primary target of DCS, as cell growth is inhibited when the production of d-alanyl-d-alanine is halted. It is shown that inhibition of Alr may contribute indirectly by lowering the levels of d-alanine, thus allowing DCS to outcompete d-alanine for Ddl binding. The NMR data also supports the possibility of a transamination reaction to produce d-alanine from pyruvate and glutamate, thereby bypassing Alr inhibition. Furthermore, the inhibition of peptidoglycan synthesis results in a cascading effect on cellular metabolism as there is a shift toward the catabolic routes to compensate for accumulation of peptidoglycan precursors.
Collapse
Affiliation(s)
- Steven Halouska
- Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0304, United States
| | | | | | | | | | | |
Collapse
|
21
|
Kudina O, Zakharchenko A, Trotsenko O, Tokarev A, Ionov L, Stoychev G, Puretskiy N, Pryor SW, Voronov A, Minko S. Highly Efficient Phase Boundary Biocatalysis with Enzymogel Nanoparticles. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Kudina O, Zakharchenko A, Trotsenko O, Tokarev A, Ionov L, Stoychev G, Puretskiy N, Pryor SW, Voronov A, Minko S. Highly Efficient Phase Boundary Biocatalysis with Enzymogel Nanoparticles. Angew Chem Int Ed Engl 2013; 53:483-7. [DOI: 10.1002/anie.201306831] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Indexed: 11/06/2022]
|
23
|
Meadows RE, Mulholland KR, Schürmann M, Golden M, Kierkels H, Meulenbroeks E, Mink D, May O, Squire C, Straatman H, Wells AS. Efficient Synthesis of (S)-1-(5-Fluoropyrimidin-2-yl)ethylamine Using an ω-Transaminase Biocatalyst in a Two-Phase System. Org Process Res Dev 2013. [DOI: 10.1021/op400131h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rebecca E. Meadows
- Pharmaceutical
Development, AstraZeneca, Silk Road Business Park, Macclesfield, SK10 2NA, United Kingdom
| | - Keith R. Mulholland
- Pharmaceutical
Development, AstraZeneca, Silk Road Business Park, Macclesfield, SK10 2NA, United Kingdom
| | - Martin Schürmann
- DSM Innovative Synthesis B.V., Urmonderbaan 22, NL6167RD Geleen, The Netherlands
| | - Michael Golden
- Pharmaceutical
Development, AstraZeneca, Silk Road Business Park, Macclesfield, SK10 2NA, United Kingdom
| | - Hans Kierkels
- DSM Innovative Synthesis B.V., Urmonderbaan 22, NL6167RD Geleen, The Netherlands
| | - Elise Meulenbroeks
- DSM Innovative Synthesis B.V., Urmonderbaan 22, NL6167RD Geleen, The Netherlands
| | - Daniel Mink
- DSM Innovative Synthesis B.V., Urmonderbaan 22, NL6167RD Geleen, The Netherlands
| | - Oliver May
- DSM Innovative Synthesis B.V., Urmonderbaan 22, NL6167RD Geleen, The Netherlands
| | - Christopher Squire
- Pharmaceutical
Development, AstraZeneca, Silk Road Business Park, Macclesfield, SK10 2NA, United Kingdom
| | - Harrie Straatman
- DSM Innovative Synthesis B.V., Urmonderbaan 22, NL6167RD Geleen, The Netherlands
| | - Andrew S. Wells
- Pharmaceutical
Development, AstraZeneca, Silk Road Business Park, Macclesfield, SK10 2NA, United Kingdom
| |
Collapse
|
24
|
Kroutil W, Fischereder EM, Fuchs C, Lechner H, Mutti FG, Pressnitz D, Rajagopalan A, Sattler JH, Simon RC, Siirola E. Asymmetric Preparation of prim-, sec-, and tert-Amines Employing Selected Biocatalysts. Org Process Res Dev 2013; 17:751-759. [PMID: 23794796 PMCID: PMC3688330 DOI: 10.1021/op4000237] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Indexed: 01/12/2023]
Abstract
This account focuses on the application of ω-transaminases, lyases, and oxidases for the preparation of amines considering mainly work from our own lab. Examples are given to access α-chiral primary amines from the corresponding ketones as well as terminal amines from primary alcohols via a two-step biocascade. 2,6-Disubstituted piperidines, as examples for secondary amines, are prepared by biocatalytical regioselective asymmetric monoamination of designated diketones followed by spontaneous ring closure and a subsequent diastereoselective reduction step. Optically pure tert-amines such as berbines and N-methyl benzylisoquinolines are obtained by kinetic resolution via an enantioselective aerobic oxidative C-C bond formation.
Collapse
Affiliation(s)
- Wolfgang Kroutil
- Department of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz,
Austria
- ACIB
GmbH c/o Department of Chemistry, University of Graz,
Heinrichstrasse
28, A-8010 Graz, Austria
| | - Eva-Maria Fischereder
- Department of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz,
Austria
| | - Christine
S. Fuchs
- ACIB
GmbH c/o Department of Chemistry, University of Graz,
Heinrichstrasse
28, A-8010 Graz, Austria
| | - Horst Lechner
- Department of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz,
Austria
| | - Francesco G. Mutti
- Department of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz,
Austria
| | - Desiree Pressnitz
- ACIB
GmbH c/o Department of Chemistry, University of Graz,
Heinrichstrasse
28, A-8010 Graz, Austria
| | - Aashrita Rajagopalan
- Department of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz,
Austria
| | - Johann H. Sattler
- Department of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz,
Austria
| | - Robert C. Simon
- Department of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz,
Austria
| | - Elina Siirola
- Department of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz,
Austria
| |
Collapse
|
25
|
Genome-wide identification of the class III aminotransferase gene family in rice and expression analysis under abiotic stress. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0108-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Park ES, Dong JY, Shin JS. Active site model of (R)-selective ω-transaminase and its application to the production of D-amino acids. Appl Microbiol Biotechnol 2013; 98:651-60. [PMID: 23576035 DOI: 10.1007/s00253-013-4846-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 11/26/2022]
Abstract
ω-Transaminase (ω-TA) is one of the important biocatalytic toolkits owing to its unique enzyme property which enables the transfer of an amino group between primary amines and carbonyl compounds. In addition to preparation of chiral amines, ω-TA reactions have been exploited for the asymmetric synthesis of L-amino acids using (S)-selective ω-TAs. However, despite the availability of (R)-selective ω-TAs, catalytic utility of the ω-TAs has not been explored for the production of D-amino acids. Here, we investigated the substrate specificity of (R)-selective ω-TAs from Aspergillus terreus and Aspergillus fumigatus and demonstrated the asymmetric synthesis of D-amino acids from α-keto acids. Substrate specificity toward D-amino acids and α-keto acids revealed that the two (R)-selective ω-TAs possess strict steric constraints in the small binding pocket that precludes the entry of a substituent larger than an ethyl group, which is reminiscent of (S)-selective ω-TAs. Molecular models of the active site bound to an external aldimine were constructed and used to explain the observed substrate specificity and stereoselectivity. α-Methylbenzylamine (α-MBA) showed the highest amino donor reactivity among five primary amines (benzylamine, α-MBA, α-ethylbenzylamine, 1-aminoindan, and isopropylamine), leading us to employ α-MBA as an amino donor for the amination of 5 reactive α-keto acids (pyruvate, 2-oxobutyrate, fluoropyruvate, hydroxypyruvate, and 2-oxopentanoate) among 17 ones tested. Unlike the previously characterized (S)-selective ω-TAs, the enzyme activity of the (R)-selective ω-TAs was not inhibited by acetophenone (i.e., a deamination product of α-MBA). Using racemic α-MBA as an amino donor, five D-amino acids (D-alanine, D-homoalanine, D-fluoroalanine, D-serine, and D-norvaline) were synthesized with excellent product enantiopurity (enantiomeric excess >99.7 %).
Collapse
Affiliation(s)
- Eul-Soo Park
- Department of Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul, 120-749, South Korea
| | | | | |
Collapse
|
27
|
A 1-step microplate method for assessing the substrate range of l-α-amino acid aminotransferase. Enzyme Microb Technol 2013; 52:218-25. [DOI: 10.1016/j.enzmictec.2013.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 11/20/2022]
|
28
|
Rios-Solis L, Bayir N, Halim M, Du C, Ward J, Baganz F, Lye G. Non-linear kinetic modelling of reversible bioconversions: Application to the transaminase catalyzed synthesis of chiral amino-alcohols. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Kaswurm V, Hecke WV, Kulbe KD, Ludwig R. Guidelines for the Application of NAD(P)H Regenerating Glucose Dehydrogenase in Synthetic Processes. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201200959] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Influence of Site-Directed Mutagenesis in Coenzyme-Binding Domain of Car-bonyl Reductase on Its Catalytic Performance for Asymmetric Reduction. CHINESE JOURNAL OF CATALYSIS 2013. [DOI: 10.3724/sp.j.1088.2012.10851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Talekar S, Joshi A, Joshi G, Kamat P, Haripurkar R, Kambale S. Parameters in preparation and characterization of cross linked enzyme aggregates (CLEAs). RSC Adv 2013. [DOI: 10.1039/c3ra40818c] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
32
|
Vogl M, Brecker L. Substrate binding to Candida tenuis xylose reductase during catalysis. RSC Adv 2013. [DOI: 10.1039/c3ra41448e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Biochemical properties and crystal structure of a β-phenylalanine aminotransferase from Variovorax paradoxus. Appl Environ Microbiol 2012; 79:185-95. [PMID: 23087034 DOI: 10.1128/aem.02525-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By selective enrichment, we isolated a bacterium that can use β-phenylalanine as a sole nitrogen source. It was identified by 16S rRNA gene sequencing as a strain of Variovorax paradoxus. Enzyme assays revealed an aminotransferase activity. Partial genome sequencing and screening of a cosmid DNA library resulted in the identification of a 1,302-bp aminotransferase gene, which encodes a 46,416-Da protein. The gene was cloned and overexpressed in Escherichia coli. The recombinant enzyme was purified and showed a specific activity of 17.5 U mg(-1) for (S)-β-phenylalanine at 30°C and 33 U mg(-1) at the optimum temperature of 55°C. The β-specific aminotransferase exhibits a broad substrate range, accepting ortho-, meta-, and para-substituted β-phenylalanine derivatives as amino donors and 2-oxoglutarate and pyruvate as amino acceptors. The enzyme is highly enantioselective toward (S)-β-phenylalanine (enantioselectivity [E], >100) and derivatives thereof with different substituents on the phenyl ring, allowing the kinetic resolution of various racemic β-amino acids to yield (R)-β-amino acids with >95% enantiomeric excess (ee). The crystal structures of the holoenzyme and of the enzyme in complex with the inhibitor 2-aminooxyacetate revealed structural similarity to the β-phenylalanine aminotransferase from Mesorhizobium sp. strain LUK. The crystal structure was used to rationalize the stereo- and regioselectivity of V. paradoxus aminotransferase and to define a sequence motif with which new aromatic β-amino acid-converting aminotransferases may be identified.
Collapse
|
34
|
A novel meso-Diaminopimelate dehydrogenase from Symbiobacterium thermophilum: overexpression, characterization, and potential for D-amino acid synthesis. Appl Environ Microbiol 2012; 78:8595-600. [PMID: 23023754 DOI: 10.1128/aem.02234-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
meso-Diaminopimelate dehydrogenase (meso-DAPDH) is an NADP(+)-dependent enzyme which catalyzes the reversible oxidative deamination on the d-configuration of meso-2,6-diaminopimelate to produce l-2-amino-6-oxopimelate. In this study, the gene encoding a meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum was cloned and expressed in Escherichia coli. In addition to the native substrate meso-2,6-diaminopimelate, the purified enzyme also showed activity toward d-alanine, d-valine, and d-lysine. This enzyme catalyzed the reductive amination of 2-keto acids such as pyruvic acid to generate d-amino acids in up to 99% conversion and 99% enantiomeric excess. Since meso-diaminopimelate dehydrogenases are known to be specific to meso-2,6-diaminopimelate, this is a unique wild-type meso-diaminopimelate dehydrogenase with a more relaxed substrate specificity and potential for d-amino acid synthesis. The enzyme is the most stable meso-diaminopimelate dehydrogenase reported to now. Two amino acid residues (F146 and M152) in the substrate binding sites of S. thermophilum meso-DAPDH different from the sequences of other known meso-DAPDHs were replaced with the conserved amino acids in other meso-DAPDHs, and assay of wild-type and mutant enzyme activities revealed that F146 and M152 are not critical in determining the enzyme's substrate specificity. The high thermostability and relaxed substrate profile of S. thermophilum meso-DAPDH warrant it as an excellent starting enzyme for creating effective d-amino acid dehydrogenases by protein engineering.
Collapse
|
35
|
Fuchs M, Koszelewski D, Tauber K, Sattler J, Banko W, Holzer AK, Pickl M, Kroutil W, Faber K. Improved chemoenzymatic asymmetric synthesis of (S)-Rivastigmine. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.06.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Affiliation(s)
| | - Man Bock Gu
- College of Life Sciences and Biotechnology; Korea University; Seoul; Republic of Korea
| |
Collapse
|
37
|
Vogl M, Kratzer R, Nidetzky B, Brecker L. Candida tenuis
Xylose Reductase Catalyzed Reduction of Aryl Ketones for Enantioselective Synthesis of Active Oxetine Derivatives. Chirality 2012; 24:847-53. [DOI: 10.1002/chir.22082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/16/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Vogl
- Department of Organic Chemistry; University of Vienna; Wien Austria
| | - Regina Kratzer
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology; Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology; Graz Austria
| | - Lothar Brecker
- Department of Organic Chemistry; University of Vienna; Wien Austria
| |
Collapse
|
38
|
|
39
|
Mathew S, Yun H. ω-Transaminases for the Production of Optically Pure Amines and Unnatural Amino Acids. ACS Catal 2012. [DOI: 10.1021/cs300116n] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sam Mathew
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 712-749, Korea
| | - Hyungdon Yun
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 712-749, Korea
| |
Collapse
|
40
|
Abdel-Aziz AAM, Al-Badr AA, Hafez GA. Flurbiprofen. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2012; 37:113-81. [PMID: 22469318 DOI: 10.1016/b978-0-12-397220-0.00004-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | | |
Collapse
|
41
|
Abrahamson MJ, Vázquez-Figueroa E, Woodall NB, Moore JC, Bommarius AS. Entwicklung einer Amindehydrogenase zur Synthese von chiralen Aminen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107813] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Abrahamson MJ, Vázquez-Figueroa E, Woodall NB, Moore JC, Bommarius AS. Development of an Amine Dehydrogenase for Synthesis of Chiral Amines. Angew Chem Int Ed Engl 2012; 51:3969-72. [DOI: 10.1002/anie.201107813] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Indexed: 01/14/2023]
|
43
|
Humble MS, Cassimjee KE, Håkansson M, Kimbung YR, Walse B, Abedi V, Federsel HJ, Berglund P, Logan DT. Crystal structures of the Chromobacterium violaceumω-transaminase reveal major structural rearrangements upon binding of coenzyme PLP. FEBS J 2012; 279:779-92. [PMID: 22268978 DOI: 10.1111/j.1742-4658.2012.08468.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED The bacterial ω-transaminase from Chromobacterium violaceum (Cv-ωTA, EC2.6.1.18) catalyses industrially important transamination reactions by use of the coenzyme pyridoxal 5'-phosphate (PLP). Here, we present four crystal structures of Cv-ωTA: two in the apo form, one in the holo form and one in an intermediate state, at resolutions between 1.35 and 2.4 Å. The enzyme is a homodimer with a molecular mass of ∼ 100 kDa. Each monomer has an active site at the dimeric interface that involves amino acid residues from both subunits. The apo-Cv-ωTA structure reveals unique 'relaxed' conformations of three critical loops involved in structuring the active site that have not previously been seen in a transaminase. Analysis of the four crystal structures reveals major structural rearrangements involving elements of the large and small domains of both monomers that reorganize the active site in the presence of PLP. The conformational change appears to be triggered by binding of the phosphate group of PLP. Furthermore, one of the apo structures shows a disordered 'roof ' over the PLP-binding site, whereas in the other apo form and the holo form the 'roof' is ordered. Comparison with other known transaminase crystal structures suggests that ordering of the 'roof' structure may be associated with substrate binding in Cv-ωTA and some other transaminases. DATABASE The atomic coordinates and structure factors for the Chromobacterium violaceumω-transaminase crystal structures can be found in the RCSB Protein Data Bank (http://www.rcsb.org) under the accession codes 4A6U for the holoenzyme, 4A6R for the apo1 form, 4A6T for the apo2 form and 4A72 for the mixed form STRUCTURED DIGITAL ABSTRACT • -transaminases and -transaminases bind by dynamic light scattering (View interaction) • -transaminase and -transaminase bind by x-ray crystallography (View interaction) • -transaminase and -transaminase bind by x-ray crystallography (View interaction).
Collapse
Affiliation(s)
- Maria S Humble
- Division of Biochemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Seo YM, Kim A, Bea HS, Lee SH, Yun H. Asymmetric synthesis ofl-6-hydroxynorleucine from 2-keto-6-hydroxyhexanoic acid using a branched-chain aminotransferase. BIOCATAL BIOTRANSFOR 2011. [DOI: 10.3109/10242422.2011.638373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Mutti FG, Fuchs CS, Pressnitz D, Sattler JH, Kroutil W. Stereoselectivity of Four (R)-Selective Transaminases for the Asymmetric Amination of Ketones. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100558] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
|
47
|
Wong OY, Mulcrone AE, Silverman SK. DNA-catalyzed reductive amination. Angew Chem Int Ed Engl 2011; 50:11679-84. [PMID: 21994131 DOI: 10.1002/anie.201104976] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/22/2011] [Indexed: 11/12/2022]
Affiliation(s)
- On Yi Wong
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
48
|
Brenna E, Gatti FG, Manfredi A, Monti D, Parmeggiani F. Biocatalyzed Enantioselective Reduction of Activated C=C Bonds: Synthesis of Enantiomerically Enriched α-Halo-β-arylpropionic Acids. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100537] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
|
50
|
Kinetic mechanism of 3-ketoacyl-(acyl-carrier-protein) reductase from Synechococcus sp. strain PCC 7942: A useful enzyme for the production of chiral alcohols. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2010.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|