1
|
Fang H, Gao J, Yu L, Shi P, Zhao C. Engineering Pichia pastoris for Efficient De Novo Synthesis of 2'-Fucosyllactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8555-8566. [PMID: 40152696 DOI: 10.1021/acs.jafc.5c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
2'-Fucosyllactose (2'-FL), the most abundant in human milk oligosaccharides (HMOs), is a nutrient of great importance. As a safe organism widely used in industries, Pichia pastoris was tested here for 2'-FL production. The de novo biosynthesis pathway of 2'-FL was constructed using genome-editing technology based on CRISPR-Cas9 with an initial titer of 1.01 g/L. Introducing N-terminal SUMO or Ub tag to FucT2 and the transporter CDT2 from Neurospora crassa into P. pastoris was found to improve 2'-FL production. Then, modular metabolic engineering was conducted to improve 2'-FL production, enhancing the GTP supply module, NADPH regeneration module, and precursor supply module. Subsequently, the key enzyme FucT2 was semirationally designed to further increase 2'-FL production. Finally, the 2'-FL production by engineered P. pastoris was scaled up to the 3 L fermenter in fed-batch mode, resulting in a titer of 22.35 g/L that is the highest by P. pastoris. The results prove the effectiveness of the metabolic engineering strategies and demonstrate that P. pastoris could be a potential chassis to produce HMOs.
Collapse
Affiliation(s)
- Hao Fang
- Center for Future Foods, Muyuan Laboratory, 110 Shangding Road, Zhengzhou 450016, Henan Province, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Jialun Gao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Liang Yu
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Peng Shi
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Chen Zhao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Cao Y, Xia P, Zhu Y, Zhao Q, Li H. The Physical Driving Forces of Conformational Transition for TTR 91-96 with Proline Mutations. J Chem Inf Model 2024; 64:8604-8615. [PMID: 39513968 DOI: 10.1021/acs.jcim.4c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Pathological aggregation of essentially dissociated Transthyretin (TTR) monomer proteins, driven by misfolding and self-interaction, is associated with Transthyretin amyloidosis (ATTR) disease. The TTR monomer proteins consist of several fragments that tend to self-aggregate. Recent experimental studies showed that the sequence of residues TTR91-96 plays an important role in self-aggregation. However, the mechanisms underlying the misfolding and aggregation of the TTR91-96 monomers are still unknown. In this study, we used microsecond molecular dynamics simulations to investigate the misfolding and self-assembly of TTR91-96 Octamers. We also investigated E92P and V94P mutants for comparative analysis. The analysis indicates that hydrophobic interactions and π-π stacking patterns play important roles in reducing the β-sheet content in the V94P and E92P mutants. Additionally, our findings reveal the conformational transition of TTR91-96 octamer from closed β-barrel, open β-barrel to the β-bilayer aggregation. We further elucidate the dynamic mechanism of the transition from intermediate states to stable states. Overall, our research may contribute to the development of drug design to combat fibrous amyloid fibrous diseases.
Collapse
Affiliation(s)
- Yuanming Cao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Pengxuan Xia
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yanyan Zhu
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Qingjie Zhao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huiyu Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
3
|
Travis CR, Henriksen HC, Wilkinson JR, Schomburg NK, Treacy JW, Kean KM, Houk KN, Waters ML. WDR5 Binding to Histone Serotonylation Is Driven by an Edge-Face Aromatic Interaction with Unexpected Electrostatic Effects. J Am Chem Soc 2024; 146:27451-27459. [PMID: 39321462 DOI: 10.1021/jacs.4c07277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Histone serotonylation has emerged as a key post-translational modification. WDR5 preferentially binds to serotonylated histone 3 (H3), and this binding event has been associated with tumorigenesis. Herein, we utilize genetic code expansion, structure-activity relationship studies, and computation to study an edge-face aromatic interaction between WDR5 Phe149 and serotonin on H3 that is key to this protein-protein interaction. We find experimentally that this edge-face aromatic interaction is unaffected by modulating the electrostatics of the face component but is weakened by electron-withdrawing substituents on the edge component. Overall, these results elucidate that this interaction is governed by van der Waals forces as well as electrostatics of the edge ring, a result that clarifies discrepancies among previous theoretical models and model system studies of this interaction type. This is the first evaluation of the driving force of an edge-face aromatic interaction at a protein-protein interface and provides a key benchmark for the nature of these understudied interactions that are abundant in the proteome.
Collapse
Affiliation(s)
- Christopher R Travis
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hanne C Henriksen
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jake R Wilkinson
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Noah K Schomburg
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph W Treacy
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, United States
| | - Kelsey M Kean
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, United States
| | - Marcey L Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Robeson L, Casanova‐Morales N, Burgos‐Bravo F, Alfaro‐Valdés HM, Lesch R, Ramírez‐Álvarez C, Valdivia‐Delgado M, Vega M, Matute RA, Schekman R, Wilson CAM. Characterization of the interaction between the Sec61 translocon complex and ppαF using optical tweezers. Protein Sci 2024; 33:e4996. [PMID: 38747383 PMCID: PMC11094780 DOI: 10.1002/pro.4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/19/2024]
Abstract
The Sec61 translocon allows the translocation of secretory preproteins from the cytosol to the endoplasmic reticulum lumen during polypeptide biosynthesis. These proteins possess an N-terminal signal peptide (SP) which docks at the translocon. SP mutations can abolish translocation and cause diseases, suggesting an essential role for this SP/Sec61 interaction. However, a detailed biophysical characterization of this binding is still missing. Here, optical tweezers force spectroscopy was used to characterize the kinetic parameters of the dissociation process between Sec61 and the SP of prepro-alpha-factor. The unbinding parameters including off-rate constant and distance to the transition state were obtained by fitting rupture force data to Dudko-Hummer-Szabo models. Interestingly, the translocation inhibitor mycolactone increases the off-rate and accelerates the SP/Sec61 dissociation, while also weakening the interaction. Whereas the translocation deficient mutant containing a single point mutation in the SP abolished the specificity of the SP/Sec61 binding, resulting in an unstable interaction. In conclusion, we characterize quantitatively the dissociation process between the signal peptide and the translocon, and how the unbinding parameters are modified by a translocation inhibitor.
Collapse
Affiliation(s)
- Luka Robeson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Nathalie Casanova‐Morales
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
- Facultad de Artes LiberalesUniversidad Adolfo IbáñezSantiagoChile
| | - Francesca Burgos‐Bravo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
- California Institute for Quantitative Biosciences, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Hilda M. Alfaro‐Valdés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Robert Lesch
- Department of Molecular and Cellular Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Carolina Ramírez‐Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Mauricio Valdivia‐Delgado
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Marcela Vega
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Ricardo A. Matute
- Centro Integrativo de Biología y Química Aplicada (CIBQA)Universidad Bernardo O'HigginsSantiagoChile
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Randy Schekman
- Department of Molecular and Cellular Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Christian A. M. Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| |
Collapse
|
5
|
Samui S, Biswas S, Basak S, Ghosh S, Muniyappa K, Naskar J. De novo designed aliphatic and aromatic peptides assemble into amyloid-like cytotoxic supramolecular nanofibrils. RSC Adv 2024; 14:4382-4388. [PMID: 38304566 PMCID: PMC10831423 DOI: 10.1039/d3ra07869h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Peptides are very interesting biomolecules that upon self-association form a variety of thermodynamically stable supramolecular structures of nanometric dimension e.g. nanotubes, nanorods, nanovesicles, nanofibrils, nanowires and many others. Herein, we report six peptide molecules having a general chemical structure, H-Gaba-X-X-OH (Gaba: γ-aminobutyric acid, X: amino acid). Out of these six peptides, three are aromatic and the others are aliphatic. Atomic force microscopic (AFM) studies reveal that except peptide 6 (H-Gaba-Trp-Trp-OH), all the reported peptides adopt nanofibrillar morphology upon aggregation in aqueous medium. These supramolecular assemblies can recognize amyloid-specific molecular probe congo red (CR) and thioflavine t (ThT) and exhibit all the characteristic properties of amyloids. The MTT cell viability assay reveals that the toxicity of both aliphatic and aromatic peptides increases with increasing concentration of the peptides to both cancer (HeLa) and non-cancer (HEK 293) cells. Of note, the aromatic peptides show a slightly higher cytotoxic effect compared to the aliphatic peptides. Overall, the studies highlight the self-assembling nature of the de novo designed aliphatic and aromatic peptides and pave the way towards elucidating the intricacies of pathogenic amyloid assemblies.
Collapse
Affiliation(s)
- Satyabrata Samui
- Department of Biochemistry and Biophysics, University of Kalyani Nadia WB 741235 India
| | - Soumi Biswas
- Department of Biochemistry and Biophysics, University of Kalyani Nadia WB 741235 India
| | - Shubhanwita Basak
- Department of Biochemistry and Biophysics, University of Kalyani Nadia WB 741235 India
| | - Shreya Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani Nadia WB 741235 India
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science Bangalore Karnataka 560 012 India
| | - Jishu Naskar
- Department of Biochemistry and Biophysics, University of Kalyani Nadia WB 741235 India
| |
Collapse
|
6
|
Orozco-Ic M, Sundholm D. On the antiaromatic-aromatic-antiaromatic transition of the stacked cyclobutadiene dimer. Phys Chem Chem Phys 2023; 25:12777-12782. [PMID: 37128984 DOI: 10.1039/d3cp01350b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have studied the changes in the aromatic nature of two cyclobutadiene (C4H4) molecules on decreasing the intermolecular distance and approaching the cubane structure in a face-to-face fashion. The analysis based on the calculations of the magnetically induced current density and the induced magnetic field shows that the aromaticity of the two C4H4 rings changes from a strongly antiaromatic character at long distances to an aromatic transition state of stacked C4H4 rings at intermediate internuclear distances when approaching the antiaromatic state of cubane.
Collapse
Affiliation(s)
- Mesías Orozco-Ic
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland.
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland.
| |
Collapse
|
7
|
Liu W, Tang S, Peng J, Zhu Y, Pan L, Wang J, Peng X, Cheng H, Chen Z, Wang Y, Zhou H. Enhancing lactose recognition of a key enzyme in 2'-fucosyllactose synthesis: α-1,2-fucosyltransferase. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1303-1314. [PMID: 36116126 DOI: 10.1002/jsfa.12224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND 2'-Fucosyllactose, a representative oligosaccharide in human milk, is an emerging and promising food and pharmaceutical ingredient due to its powerful health benefits, such as participating in immune regulation, regulation of intestinal flora, etc. To enable economically viable production of 2'-fucosyllactose, different biosynthesis strategies using precursors and pathway enzymes have been developed. The α-1,2-fucosyltransferases are an essential part involved in these strategies, but their strict substrate selectivity and unsatisfactory substrate tolerance are one of the key roadblocks limiting biosynthesis. RESULTS To tackle this issue, a semi-rational manipulation combining computer-aided designing and screening with biochemical experiments were adopted. The mutant had a 100-fold increase in catalytic efficiency compared to the wild-type. The highest 2'-fucosyllactose yield was up to 0.65 mol mol-1 lactose with a productivity of 2.56 g mL-1 h-1 performed by enzymatic catalysis in vitro. Further analysis revealed that the interactions between the mutant and substrates were reduced. The crucial contributions of wild-type and mutant to substrate recognition ability were closely related to their distinct phylotypes in terms of amino acid preference. CONCLUSION It is envisioned that the engineered α-1,2-fucosyltransferase could be harnessed to relieve constraints imposed on the bioproduction of 2'-fucosyllactose and lay a theoretical foundation for elucidating the substrate recognition mechanisms of fucosyltransferases. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenxian Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
| | - Shizhe Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
| | - Jing Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
| | - Yuling Zhu
- Changsha Yunkang Biotechnology Co Ltd, Changsha, P. R. China
| | - Lina Pan
- Ausnutria Institute Food & Nutrition, Ausnutria Dairy China Co Ltd, Changsha, P. R. China
| | - Jiaqi Wang
- Ausnutria Institute Food & Nutrition, Ausnutria Dairy China Co Ltd, Changsha, P. R. China
| | - Xiaoyu Peng
- Ausnutria Institute Food & Nutrition, Ausnutria Dairy China Co Ltd, Changsha, P. R. China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, P. R. China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, P. R. China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, P. R. China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, P. R. China
| |
Collapse
|
8
|
Polypyridyl coordinated rhenium(I) tricarbonyl complexes as model devices for cancer diagnosis and treatment. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Alirezapour F, Keshavarz Y, Minaeifar AA, Khanmohammadi A. Structural analysis and electronic properties of transition metal ions (Ni2+, Fe2+, Mn+ and Co+) with psoralen biomolecule as an anticancer drug. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
The evolutionary advantage of an aromatic clamp in plant family 3 glycoside exo-hydrolases. Nat Commun 2022; 13:5577. [PMID: 36151080 PMCID: PMC9508125 DOI: 10.1038/s41467-022-33180-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/03/2022] [Indexed: 11/08/2022] Open
Abstract
In the barley β-D-glucan glucohydrolase, a glycoside hydrolase family 3 (GH3) enzyme, the Trp286/Trp434 clamp ensures β-D-glucosides binding, which is fundamental for substrate hydrolysis during plant growth and development. We employ mutagenesis, high-resolution X-ray crystallography, and multi-scale molecular modelling methods to examine the binding and conformational behaviour of isomeric β-D-glucosides during substrate-product assisted processive catalysis that operates in GH3 hydrolases. Enzyme kinetics reveals that the W434H mutant retains broad specificity, while W434A behaves as a strict (1,3)-β-D-glucosidase. Investigations of reactant movements on the nanoscale reveal that processivity is sensitive to mutation-specific alterations of the tryptophan clamp. While wild-type and W434H utilise a lateral cavity for glucose displacement and sliding of (1,3)-linked hydrolytic products through the catalytic site without dissociation, consistent with their high hydrolytic rates, W434A does not adopt processive catalysis. Phylogenomic analyses of GH3 hydrolases disclose the evolutionary advantage of the tryptophan clamp that confers broad specificity, high catalytic efficiency, and processivity.
Collapse
|
11
|
Misra R, Vijayakanth T, Shimon LJW, Adler-Abramovich L. Atomic insight into short helical peptide comprised of consecutive multiple aromatic residues. Chem Commun (Camb) 2022; 58:6445-6448. [PMID: 35548938 DOI: 10.1039/d2cc01038k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The occurrence of sequential multiple aromatic residues in a helical sequence is rare compared to the β-sheet rich structure. Here, using helix promoting α-aminoisobutyric acid (Aib) residues, we unravel atomistic details of the helical secondary structure formation and the super helical assembly of two heptapeptides composed of sequential five and six phenylalanine (Phe) residues.
Collapse
Affiliation(s)
- Rajkumar Misra
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, The Center for Physics & Chemistry of Living Systems, and the Center for Nanoscience and Nanotechnology, Tel-Aviv University, 69978, Israel. .,Dept. of Med. Chem, NIPER Mohali, S.A.S. Nagar, Mohali, 160062, India
| | - Thangavel Vijayakanth
- The Shmunis School of Biomedicine and Cancer Research George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, 761000, Rehovot, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, The Center for Physics & Chemistry of Living Systems, and the Center for Nanoscience and Nanotechnology, Tel-Aviv University, 69978, Israel.
| |
Collapse
|
12
|
Simionesie D, O’Callaghan G, Manning JRH, Düren T, Preece JA, Evans R, Zhang ZJ. Combined Experimental and Computational Study of Polycyclic Aromatic Compound Aggregation: The Impact of Solvent Composition. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2077777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dorin Simionesie
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - Joseph R. H. Manning
- Centre for Advanced Separations Engineering, Department of Chemical Engineering, University of Bath, Claverton Down, Bath, UK
| | - Tina Düren
- Centre for Advanced Separations Engineering, Department of Chemical Engineering, University of Bath, Claverton Down, Bath, UK
| | - Jon A. Preece
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Robert Evans
- Aston Institute of Materials Research, Aston University, Birmingham, UK
| | - Zhenyu J. Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
13
|
Busschaert N, Maity D, Samanta PK, English NJ, Hamilton AD. Improving structural stability and anticoagulant activity of a thrombin binding aptamer by aromatic modifications. Chembiochem 2022; 23:e202100670. [PMID: 34985829 DOI: 10.1002/cbic.202100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Indexed: 11/07/2022]
Abstract
The thrombin binding aptamer (TBA) is a 15-mer DNA oligonucleotide (5'-GGTTGGTGTGGTTGG-3'), that can form a stable intramolecular antiparallel chair-like G-quadruplex structure. This aptamer shows anticoagulant properties by interacting with one of the two anion binding sites of thrombin, namely the fibrinogen-recognition exosite. Here, we demonstrate that terminal modification of TBA with aromatic fragments such as coumarin, pyrene and perylene diimide (PDI), improves the G-quadruplex stability. The large aromatic surface of these dyes can π-π stack to the G-quadruplex or to each other, thereby stabilizing the aptamer. With respect to the original TBA, monoPDI-functionalized TBA exhibited the most remarkable improvement in melting temperature (ΔT m ≈ +18 °C) and displayed enhanced anticoagulant activity.
Collapse
Affiliation(s)
- Nathalie Busschaert
- Tulane University, Department of Chemistry, 6400 Freret St, 70118, New Orleans, UNITED STATES
| | | | - Pralok K Samanta
- University College Dublin, School of Chemical and Bioprocess engineering, IRELAND
| | - Niall J English
- University College Dublin, School of chemical and Bioprocess engineering, IRELAND
| | | |
Collapse
|
14
|
Lobanov MY, Pereyaslavets LB, Likhachev IV, Matkarimov BT, Galzitskaya OV. Is there an advantageous arrangement of aromatic residues in proteins? Statistical analysis of aromatic interactions in globular proteins. Comput Struct Biotechnol J 2021; 19:5960-5968. [PMID: 34849200 PMCID: PMC8604681 DOI: 10.1016/j.csbj.2021.10.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to evaluate the favorability of different conformations of aromatic residues in proteins by analysing the occurrence of particular conformations. The clustering of protein structures from the Protein Data Bank (PDB) was performed. Conformations of interacting aromatic residues were analyzed for 511 282 pairs in 35 493 protein structures sharing less than 50% identity. Pairs with a parallel arrangement of aromatic residues made up 6.2% of all possible ones, which was twice as much as expected. Pairs with a perpendicular arrangement of aromatic residues made up 25%. We demonstrate that the most favorable arrangement was at an angle of 60° between the interacting aromatic residues. Among all possible aromatic pairs, the His-His pair was twice as frequent as expected, and the His-Phe pair was less frequent than expected. A server (CARP - Contacts of Aromatic Residues in Proteins) has been created for calculating essential structural features of interacting aromatic residues in proteins: http://bioproteom.protres.ru/arom_q_prog/.
Collapse
Affiliation(s)
- Mikhail Yu. Lobanov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Leonid B. Pereyaslavets
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Ilya V. Likhachev
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Corresponding author at: Laboratory of Bioinformatics and Proteomics, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
15
|
Kudupoje MB, Vanzant ES, McLeod KR, Yiannikouris A. Synthesis, Evaluation, and Characterization of an Ergotamine Imprinted Styrene-Based Polymer for Potential Use as an Ergot Alkaloid Selective Adsorbent. ACS OMEGA 2021; 6:30260-30280. [PMID: 34805659 PMCID: PMC8600535 DOI: 10.1021/acsomega.1c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Alkaloid toxicities negatively impact livestock health and production. To assess alkaloid occurrences, adsorbent technologies may offer effective means to their extraction and isolation from a complex feed matrix. In this study, molecularly imprinted polymers (MIPs) were synthesized and evaluated for their specificity of binding to various ergot alkaloids. Co-polymers of styrene and hydroxyethyl methacrylate were synthesized in the absence or presence of an ergotamine (ETA) template, yielding non-imprinted polymer (NIP) and molecularly imprinted polymer (MIP), respectively. The influence of parameters such as pH, temperature, and initial concentration on the adsorption of ergot alkaloids was evaluated along with their application as solid phase extraction materials. Chemical and morphological properties were characterized. Adsorption was generally greater for MIP compared to NIP. Cross-reactivity with related alkaloids existed due to similarities in structure and functional groups and was dependent on the type and concentration of alkaloid and polymer type (alkaloid type × concentration × product; P < 0.05). The pH of the medium had no influence on the binding properties of polymers toward ETA within a pH range of 2-10. Binding was independent of temperature between 36 and 42 °C. When kinetics of adsorption were evaluated, the Langmuir isotherm had a better fit (R 2 > 0.95) to adsorption equilibrium data than the Freundlich equation. The maximum amounts adsorbed (Q o) from the Langmuir model were 8.68 and 7.55 μM/g for MIP and NIP, respectively. Fourier transform infrared, scanning and tandem electron microscopy, and Brunauer-Emmett-Teller analysis confirmed a highly porous MIP structure with a greater surface area compared to NIP. Binding characteristics evaluated with computational strategy using molecular docking experiments and in vitro in a complex media (rumen fluid) indicated a stronger ETA adsorption by the tested composition selected among other polymeric materials and affinity of MIP compared with NIP. This study suggested the possible utility of MIP as a solid phase extraction sorbent for applications in analytical chemistry or sensing devices tailored to track ergot alkaloid incidence and the fate of those alkaloids in complex ruminal digestive samples.
Collapse
Affiliation(s)
- Manoj B. Kudupoje
- Chemistry
and Toxicology Division, Center for animal Nutrigenomics & Applied
Animal Nutrition, Alltech Inc., 3031 Catnip Hill Road, Nicholasville, Kentucky 40356, United States
- Department
of Animal and Food Sciences, University
of Kentucky, W.P. Garrigus Building, Lexington, Kentucky 40546-0215, United States
| | - Eric S. Vanzant
- Department
of Animal and Food Sciences, University
of Kentucky, W.P. Garrigus Building, Lexington, Kentucky 40546-0215, United States
| | - Kyle R. McLeod
- Department
of Animal and Food Sciences, University
of Kentucky, W.P. Garrigus Building, Lexington, Kentucky 40546-0215, United States
| | - Alexandros Yiannikouris
- Chemistry
and Toxicology Division, Center for animal Nutrigenomics & Applied
Animal Nutrition, Alltech Inc., 3031 Catnip Hill Road, Nicholasville, Kentucky 40356, United States
| |
Collapse
|
16
|
Walther FJ, Sharma S, Gordon LM, Waring AJ. Structural and functional stability of the sulfur-free surfactant protein B peptide mimic B-YL in synthetic surfactant lipids. BMC Pulm Med 2021; 21:330. [PMID: 34686153 PMCID: PMC8540162 DOI: 10.1186/s12890-021-01695-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Optimal functionality of synthetic lung surfactant for treatment of respiratory distress syndrome in preterm infants largely depends on the quality and quantity of the surfactant protein B (SP-B) peptide mimic and the lipid mixture. B-YL peptide is a 41-residue sulfur-free SP-B mimic with its cysteine and methionine residues replaced by tyrosine and leucine, respectively, to enhance its oxidation resistance. AIM Testing the structural and functional stability of the B-YL peptide in synthetic surfactant lipids after long-term storage. METHODS The structural and functional properties of B-YL peptide in surfactant lipids were studied using three production runs of B-YL peptides in synthetic surfactant lipids. Each run was held at 5 °C ambient temperature for three years and analyzed with structural and computational techniques, i.e., MALDI-TOF mass spectrometry, ATR-Fourier Transform Infrared Spectroscopy (ATR-FTIR), secondary homology modeling of a preliminary B-YL structure, and tertiary Molecular Dynamic simulations of B-YL in surfactant lipids, and with functional methods, i.e., captive bubble surfactometry (CBS) and retesting in vivo surface activity in surfactant-deficient young adult rabbits. RESULTS MALDI-TOF mass spectrometry showed no degradation of the B-YL peptide as a function of stored time. ATR-FTIR studies demonstrated that the B-YL peptide still assumed stable alpha-helical conformations in synthetic surfactant lipids. These structural findings correlated with excellent in vitro surface activity during both quasi-static and dynamic cycling on CBS after three years of cold storage and in vivo surface activity of the aged formulations with improvements in oxygenation and dynamic lung compliance approaching those of the positive control surfactant Curosurf®. CONCLUSIONS The structure of the B-YL peptide and the in vitro and in vivo functions of the B-YL surfactant were each maintained after three years of refrigeration storage.
Collapse
Affiliation(s)
- Frans J Walther
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, 405 Hilgard Avenue, Los Angeles, CA, 90095, USA.
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA, 90502, USA.
| | - Shantanu Sharma
- Materials and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Larry M Gordon
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA, 90502, USA
| | - Alan J Waring
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA, 90502, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 405 Hilgard Avenue, Los Angeles, CA, 90095, USA
| |
Collapse
|
17
|
Oweis Y, El-Hadad A, Mezour M, Abdallah MN, Retrouvey J, El-Khoury R, Cerruti M, Tamimi F. Disclosing Agent for Resin Composite Based on Adsorption Surface Treatment. ACS APPLIED BIO MATERIALS 2021; 4:7222-7233. [DOI: 10.1021/acsabm.1c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yara Oweis
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
- School of Dentistry, University of Jordan, Amman 19328, Jordan
| | - Amir El-Hadad
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Mohamed Mezour
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Mohamed-Nur Abdallah
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Jean Retrouvey
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Roland El-Khoury
- McGill University Health Centre-Montreal General Hospital Montreal, Quebec H4A 3J1, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Faleh Tamimi
- College of Dental Medicine, QU Health, Qatar University, Doha 122104, Qatar
| |
Collapse
|
18
|
Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerg Top Life Sci 2021; 4:307-329. [PMID: 33078839 DOI: 10.1042/etls20190164] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Intrinsically disordered protein regions (IDRs) - regions that do not fold into a fixed three-dimensional structure but instead exist in a heterogeneous ensemble of conformations - have recently entered mainstream cell biology in the context of liquid-liquid phase separation (LLPS). IDRs are frequently found to be enriched in phase-separated compartments. Due to this observation, the presence of an IDR in a protein is frequently assumed to be diagnostic of its ability to phase separate. In this review, we clarify the role of IDRs in biological assembly and explore the physical principles through which amino acids can confer the attractive molecular interactions that underlie phase separation. While some disordered regions will robustly drive phase separation, many others will not. We emphasize that rather than 'disorder' driving phase separation, multivalency drives phase separation. As such, whether or not a disordered region is capable of driving phase separation will depend on the physical chemistry encoded within its amino acid sequence. Consequently, an in-depth understanding of that physical chemistry is a prerequisite to make informed inferences on how and why an IDR may be involved in phase separation or, more generally, in protein-mediated intermolecular interactions.
Collapse
|
19
|
|
20
|
Chiarucci M, Mazzanti A, Righi P, Bencivenni G, Mancinelli M. Noncovalent Interactions between Stacked Arenes in 1,8‐Bis‐(1‐naphthyl)‐naphthalenes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michel Chiarucci
- Polycrystalline S.p.A Via della Cooperazione 29 40059 Medicina Italy
| | - Andrea Mazzanti
- Department of Industrial Chemistry “Toso Montanari” and INSTM Research Unit Bologna University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Paolo Righi
- Department of Industrial Chemistry “Toso Montanari” and INSTM Research Unit Bologna University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Giorgio Bencivenni
- Department of Industrial Chemistry “Toso Montanari” and INSTM Research Unit Bologna University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Michele Mancinelli
- Department of Industrial Chemistry “Toso Montanari” and INSTM Research Unit Bologna University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
21
|
Shteingolts SA, Stash AI, Tsirelson VG, Fayzullin RR. Orbital-Free Quantum Crystallographic View on Noncovalent Bonding: Insights into Hydrogen Bonds, π⋅⋅⋅π and Reverse Electron Lone Pair⋅⋅⋅π Interactions. Chemistry 2021; 27:7789-7809. [PMID: 33769620 DOI: 10.1002/chem.202005497] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 01/16/2023]
Abstract
A detailed analysis of a complete set of the local potentials that appear in the Euler equation for electron density is carried out for noncovalent interactions in the crystal of a uracil derivative using experimental X-ray charge density. The interplay between the quantum theory of atoms in molecules and crystals and the local potentials and corresponding inner-crystal electronic forces of electrostatic and kinetic origin is explored. Partitioning of crystal space into atomic basins and atomic-like potential basins led us to the definite description of interatomic interaction and charge transfer. Novel physically grounded bonding descriptors derived within the orbital-free quantum crystallography provided the detailed examination of π-stacking and intricate C=O⋅⋅⋅π interactions and nonclassical hydrogen bonds present in the crystal. The donor-acceptor character of these interactions is revealed by analysis of Pauli and von Weizsäcker potentials together with well-known functions, e. g., deformation electron density and electron localization function. In this way, our analysis throws light on aspects of these closed-shell interactions hitherto hidden from the description.
Collapse
Affiliation(s)
- Sergey A Shteingolts
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan, 420088, Russian Federation
| | - Adam I Stash
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, 28 Vavilov Street, Moscow, 119991, Russian Federation
| | - Vladimir G Tsirelson
- D.I. Mendeleev University of Chemical Technology, 9 Miusskaya Square, Moscow, 125047, Russian Federation
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan, 420088, Russian Federation
| |
Collapse
|
22
|
Abstract
Analysis of the weak interactions within the crystal structures of 33 complexes of various 4′-aromatic derivatives of 2,2′:6′,2″-terpyridine (tpy) shows that interactions that exceed dispersion are dominated, as expected, by cation⋯anion contacts but are associated with both ligand–ligand and ligand–solvent contacts, sometimes multicentred, in generally complicated arrays, probably largely determined by dispersion interactions between stacked aromatic units. With V(V) as the coordinating cation, there is evidence that the polarisation of the ligand results in an interaction exceeding dispersion at a carbon bound to nitrogen with oxygen or fluorine, an interaction unseen in the structures of M(II) (M = Fe, Co, Ni, Cu, Zn, Ru and Cd) complexes, except when 1,2,3-trimethoxyphenyl substituents are present in the 4′-tpy.
Collapse
|
23
|
Gros Q, Molineau J, Noireau A, Duval J, Bamba T, Lesellier E, West C. Characterization of stationary phases in supercritical fluid chromatography including exploration of shape selectivity. J Chromatogr A 2021; 1639:461923. [PMID: 33524935 DOI: 10.1016/j.chroma.2021.461923] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/01/2022]
Abstract
Achiral packed column supercritical fluid chromatography (SFC) has shown an important regain of interest in academic and industrial laboratories in the recent years. In relation to this increased concern, major instrument manufacturers have designed some stationary phases specifically for SFC use. SFC stationary phases have been widely examined over the last two decades, based on the use of linear solvation energy relationships (LSER), which relate analyte retention to its properties and to the interaction capabilities of the chromatographic system. The method provides some understanding on retention mechanisms (normal phase, reversed phase or mixed-mode) and the possibility to compare stationary phases on a rational basis, especially through a spider diagram providing a visual classification. The latter can be used as a primary tool to select complementary stationary phases to be screened for any separation at early stages of method development, before optimization steps. In this context, the characterization of the 14 columns from the Shim-pack UC series (Shimadzu Corporation, Kyoto, Japan), which are dedicated to SFC and more broadly to unified chromatography (UC), was performed, using the LSER methodology. As in previous works, seven descriptors, including five Abraham descriptors (E, S, A, B, V) and two descriptors describing positive and negative charges (D- and D+) were first employed to describe interactions with neutral and charged analytes. Secondly, two more descriptors were introduced, which were previously employed solely for the characterization of enantioselective systems and expressing shape features of the analytes (flexibility F and globularity G). They brought additional insight into the retention mechanisms, showing how spatial insertion of the analytes in some stationary phases is contributing to shape separation capabilities and how folding possibilities in flexible molecules is unfavorable to retention in other stationary phases.
Collapse
Affiliation(s)
- Quentin Gros
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France; Shimadzu France, Le luzard 2, Bat A, Bd Salvador Allende Noisiel, 77448 Marne-la-Vallée, France
| | - Jeremy Molineau
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France
| | - Angeline Noireau
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France
| | - Johanna Duval
- Shimadzu France, Le luzard 2, Bat A, Bd Salvador Allende Noisiel, 77448 Marne-la-Vallée, France
| | - Takeshi Bamba
- Kyushu University, Division of Metabolomics, Medical Institute of Bioregulation, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eric Lesellier
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France
| | - Caroline West
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France.
| |
Collapse
|
24
|
Kowalik M, Brzeski J, Gawrońska M, Kazimierczuk K, Makowski M. Experimental and theoretical investigation of conformational states and noncovalent interactions in crystalline sulfonamides with a methoxyphenyl moiety. CrystEngComm 2021. [DOI: 10.1039/d1ce00869b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The conformational and noncovalent interaction properties of sulfonamides with a methoxyphenyl moiety were examined by both experimental and theoretical methods.
Collapse
Affiliation(s)
- Mateusz Kowalik
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jakub Brzeski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Małgorzata Gawrońska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Kazimierczuk
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
25
|
Chowdhary S, Moschner J, Mikolajczak DJ, Becker M, Thünemann AF, Kästner C, Klemczak D, Stegemann A, Böttcher C, Metrangolo P, Netz RR, Koksch B. The Impact of Halogenated Phenylalanine Derivatives on NFGAIL Amyloid Formation. Chembiochem 2020; 21:3544-3554. [PMID: 33405360 PMCID: PMC7756607 DOI: 10.1002/cbic.202000373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/31/2020] [Indexed: 12/12/2022]
Abstract
The hexapeptide hIAPP22-27 (NFGAIL) is known as a crucial amyloid core sequence of the human islet amyloid polypeptide (hIAPP) whose aggregates can be used to better understand the wild-type hIAPP's toxicity to β-cell death. In amyloid research, the role of hydrophobic and aromatic-aromatic interactions as potential driving forces during the aggregation process is controversially discussed not only in case of NFGAIL, but also for amyloidogenic peptides in general. We have used halogenation of the aromatic residue as a strategy to modulate hydrophobic and aromatic-aromatic interactions and prepared a library of NFGAIL variants containing fluorinated and iodinated phenylalanine analogues. We used thioflavin T staining, transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) to study the impact of side-chain halogenation on NFGAIL amyloid formation kinetics. Our data revealed a synergy between aggregation behavior and hydrophobicity of the phenylalanine residue. This study introduces systematic fluorination as a toolbox to further investigate the nature of the amyloid self-assembly process.
Collapse
Affiliation(s)
- Suvrat Chowdhary
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Johann Moschner
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Dorian J. Mikolajczak
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Maximilian Becker
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Andreas F. Thünemann
- Federal Institute for Materials Research and Testing (BAM)Unter den Eichen 8712205BerlinGermany
| | - Claudia Kästner
- Federal Institute for Materials Research and Testing (BAM)Unter den Eichen 8712205BerlinGermany
| | - Damian Klemczak
- Institute of PharmacyFreie Universität BerlinKönigin-Luise-Str. 2–414195BerlinGermany
| | - Anne‐Katrin Stegemann
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Christoph Böttcher
- Institute of Chemistry and Biochemistry and Core Facility BioSupraMolFreie Universität BerlinFabeckstraße 36a14195BerlinGermany
| | - Pierangelo Metrangolo
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanItaly
| | - Roland R. Netz
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Beate Koksch
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| |
Collapse
|
26
|
Phe-140 Determines the Catalytic Efficiency of Arylacetonitrilase from Alcaligenes faecalis. Int J Mol Sci 2020; 21:ijms21217859. [PMID: 33113984 PMCID: PMC7660301 DOI: 10.3390/ijms21217859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Arylacetonitrilase from Alcaligenes faecalis ATCC8750 (NitAF) hydrolyzes various arylacetonitriles to the corresponding carboxylic acids. A systematic strategy of amino acid residue screening through sequence alignment, followed by homology modeling and biochemical confirmation was employed to elucidate the determinant of NitAF catalytic efficiency. Substituting Phe-140 in NitAF (wild-type) to Trp did not change the catalytic efficiency toward phenylacetonitrile, an arylacetonitrile. The mutants with nonpolar aliphatic amino acids (Ala, Gly, Leu, or Val) at location 140 had lower activity, and those with charged amino acids (Asp, Glu, or Arg) exhibited nearly no activity for phenylacetonitrile. Molecular modeling showed that the hydrophobic benzene ring at position 140 supports a mechanism in which the thiol group of Cys-163 carries out a nucleophilic attack on a cyanocarbon of the substrate. Characterization of the role of the Phe-140 residue demonstrated the molecular determinant for the efficient formation of arylcarboxylic acids.
Collapse
|
27
|
Alirezapour F, Khanmohammadi A. The effect of cation-π interactions on the stability and electronic properties of anticancer drug Altretamine: a theoretical study. Acta Crystallogr C Struct Chem 2020; 76:982-991. [PMID: 33016269 DOI: 10.1107/s2053229620012589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/15/2020] [Indexed: 11/10/2022] Open
Abstract
The present work utilizes density functional theory (DFT) calculations to study the influence of cation-π interactions on the electronic properties of the complexes formed by Altretamine [2,4,6-tris(dimethylamino)-1,3,5-triazine], an anticancer drug, with mono- and divalent (Li+, Na+, K+, Be2+, Mg2+ and Ca2+) metal cations. The structures were optimized with the M06-2X method and the 6-311++G(d,p) basis set in the gas phase and in solution. The theory of `Atoms in Molecules' (AIM) was applied to study the nature of the interactions by calculating the electron density ρ(r) and its Laplacian at the bond critical points. The charge-transfer process during complexation was evaluated using natural bond orbital (NBO) analysis. The results of DFT calculations demonstrate that the strongest/weakest interactions belong to Be2+/K+ complexes. There are good correlations between the achieved densities and the amounts of charge transfer with the interaction energies. Finally, the stability and reactivity of the cation-π interactions can be determined by quantum chemical computation based on the molecular orbital (MO) theory.
Collapse
Affiliation(s)
- Fahimeh Alirezapour
- Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran
| | | |
Collapse
|
28
|
Hoque MA, Gil-Sepulcre M, de Aguirre A, Elemans JAAW, Moonshiram D, Matheu R, Shi Y, Benet-Buchholz J, Sala X, Malfois M, Solano E, Lim J, Garzón-Manjón A, Scheu C, Lanza M, Maseras F, Gimbert-Suriñach C, Llobet A. Water oxidation electrocatalysis using ruthenium coordination oligomers adsorbed on multiwalled carbon nanotubes. Nat Chem 2020; 12:1060-1066. [PMID: 32989272 DOI: 10.1038/s41557-020-0548-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 08/04/2020] [Indexed: 12/27/2022]
Abstract
Photoelectrochemical cells that utilize water as a source of electrons are one of the most attractive solutions for the replacement of fossil fuels by clean and sustainable solar fuels. To achieve this, heterogeneous water oxidation catalysis needs to be mastered and properly understood. The search continues for a catalyst that is stable at the surface of electro(photo)anodes and can efficiently perform this reaction at the desired neutral pH. Here, we show how oligomeric Ru complexes can be anchored on the surfaces of graphitic materials through CH-π interactions between the auxiliary ligands bonded to Ru and the hexagonal rings of the graphitic surfaces, providing control of their molecular coverage. These hybrid molecular materials behave as molecular electroanodes that catalyse water oxidation to dioxygen at pH 7 with high current densities. This strategy for the anchoring of molecular catalysts on graphitic surfaces can potentially be extended to other transition metals and other catalytic reactions.
Collapse
Affiliation(s)
- Md Asmaul Hoque
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | - Adiran de Aguirre
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | | | - Dooshaye Moonshiram
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid, Spain
| | - Roc Matheu
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | - Yuanyuan Shi
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona, Spain.,Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nanoscience and Technology, Suzhou, China
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | - Xavier Sala
- Departament de Química, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Marc Malfois
- NCD-SWEET beamline, ALBA synchrotron light source, Barcelona, Spain
| | - Eduardo Solano
- NCD-SWEET beamline, ALBA synchrotron light source, Barcelona, Spain
| | - Joohyun Lim
- Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | | | - Christina Scheu
- Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Mario Lanza
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nanoscience and Technology, Suzhou, China.
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona, Spain. .,Departament de Química, Universitat Autonoma de Barcelona, Barcelona, Spain.
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona, Spain.
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona, Spain. .,Departament de Química, Universitat Autonoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
29
|
Mari G, De Crescentini L, Benedetti S, Palma F, Santeusanio S, Mantellini F. Synthesis of new dihydroberberine and tetrahydroberberine analogues and evaluation of their antiproliferative activity on NCI-H1975 cells. Beilstein J Org Chem 2020; 16:1606-1616. [PMID: 32704327 PMCID: PMC7356317 DOI: 10.3762/bjoc.16.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/24/2020] [Indexed: 01/02/2023] Open
Abstract
Dihydroberberine (DHBER), the partially reduced form of the alkaloid berberine (BER), is known to exhibit important biological activities. Despite this fact, there have been only few studies that concern the biological properties of functionalized DHBER. Attracted by the potentiality of this latter compound, we have realized the preparation of new arylhydrazono-functionalized DHBERs, starting from BER and some α-bromohydrazones. On the other hand, also the fully reduced form of BER, namely tetrahydroberberine (THBER), and its derivatives have proven to present different biological activities. Therefore, the obtained arylhydrazono-functionalized DHBERs were reduced to the corresponding arylhydrazono-THBERs. The antiproliferative activity of both arylhydrazono-DHBERs and -THBERs has been evaluated on NCI-H1975 lung cancer cells.
Collapse
Affiliation(s)
- Giacomo Mari
- Section of Chemistry and Pharmaceutical Technologies, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, Italy
| | - Lucia De Crescentini
- Section of Chemistry and Pharmaceutical Technologies, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, Italy
| | - Serena Benedetti
- Section of Biochemistry and Molecular Biology, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Saffi 2, 61029 Urbino, Italy
| | - Francesco Palma
- Section of Biochemistry and Molecular Biology, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Saffi 2, 61029 Urbino, Italy
| | - Stefania Santeusanio
- Section of Chemistry and Pharmaceutical Technologies, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, Italy
| | - Fabio Mantellini
- Section of Chemistry and Pharmaceutical Technologies, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, Italy
| |
Collapse
|
30
|
Kalyanram P, Ma H, Marshall S, Goudreau C, Cartaya A, Zimmermann T, Stadler I, Nangia S, Gupta A. Interaction of amphiphilic coumarin with DPPC/DPPS lipid bilayer: effects of concentration and alkyl tail length. Phys Chem Chem Phys 2020; 22:15197-15207. [PMID: 32420558 DOI: 10.1039/d0cp00696c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this work, interactions between amphiphilic amino methyl coumarin and dipalmitoyl-sn-glycero-3-phosphocholine/dipalmitoyl-sn-glycero-3-phosphoserine (DPPC/DPPS) lipid bilayer were investigated. A combination of experimental techniques (zeta potential, fluorescence spectroscopy, and differential scanning calorimetry) along with molecular dynamics simulations was employed to examine the influence of alkyl tail length and concentration of the amphiphilic coumarin on the lipid bilayer. Alkyl tails comprising 5(C5), 9(C9), and 12(C12) carbon atoms were conjugated to amino methyl coumarin via a single-step process. The binding and insertion mechanisms of the amphiphilic coumarins were studied in increasing concentrations for short-tailed (C5) and long-tailed (C12) coumarins. The simulation results show that C5 coumarin molecules penetrate the lipid bilayer, but owing to the short alkyl tail, they interact primarily with the lipid head groups resulting in lipid bilayer thinning; however, at high concentrations, the C5 coumarins undergo continuous insertion-ejection from the outer leaflet of the lipid bilayer. In contrast, C12 coumarins interact favorably with the hydrophobic lipid tails and lack the ejection-reinsertion behavior. Instead, the C12 coumarin molecules undergo flip-flops between the outer and inner leaflets of the lipid bilayer. At high concentrations, the high-frequency flip-flops lead to lipid destabilization, causing the lipid bilayer to rupture. The simulation results are in excellent agreement with the toxicity of amphiphilic coumarin activity in cancer cells. The efficacy of amphiphilic coumarins in liposomal lipid bilayers demonstrates the promise of these molecules as a tool in the treatment of cancer.
Collapse
Affiliation(s)
- Poornima Kalyanram
- College of Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Monteiro KL, Alcântara MGDS, de Aquino TM, da Silva-Júnior EF. Tau Protein Aggregation in Alzheimer's Disease: Recent Advances in the Development of Novel Therapeutic Agents. Curr Pharm Des 2020; 26:1682-1692. [DOI: 10.2174/1381612826666200414164038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
:
Major research in Alzheimer’s disease (AD) related to disease-modifying agents is concentrated on
pharmacological approaches related to diagnostic markers, neurofibrillary tangles and amyloid plaques. Although
most studies focus on anti-amyloid strategies, investigations on tau protein have produced significant advances in
the modulation of the pathophysiology of several neurodegenerative diseases. Since the discovery of phenothiazines
as tau protein aggregation inhibitors (TAGIs), many additional small molecule inhibitors have been discovered
and characterized in biological model systems, which exert their interaction effects by covalent and noncovalent
means. In this paper, we summarize the latest advances in the discovery and development of tau aggregation
inhibitors using a specialized approach in their chemical classes. The design of new TAGIs and their encouraging
use in in vivo and clinical trials support their potential therapeutic use in AD.
Collapse
Affiliation(s)
- Kadja L.C. Monteiro
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Marcone G. dos S. Alcântara
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Thiago M. de Aquino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, Brazil
| | | |
Collapse
|
32
|
Rusmini P, Cristofani R, Tedesco B, Ferrari V, Messi E, Piccolella M, Casarotto E, Chierichetti M, Cicardi ME, Galbiati M, Geroni C, Lombardi P, Crippa V, Poletti A. Enhanced Clearance of Neurotoxic Misfolded Proteins by the Natural Compound Berberine and Its Derivatives. Int J Mol Sci 2020; 21:ijms21103443. [PMID: 32414108 PMCID: PMC7279252 DOI: 10.3390/ijms21103443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Accumulation of misfolded proteins is a common hallmark of several neurodegenerative disorders (NDs) which results from a failure or an impairment of the protein quality control (PQC) system. The PQC system is composed by chaperones and the degradative systems (proteasome and autophagy). Mutant proteins that misfold are potentially neurotoxic, thus strategies aimed at preventing their aggregation or at enhancing their clearance are emerging as interesting therapeutic targets for NDs. Methods: We tested the natural alkaloid berberine (BBR) and some derivatives for their capability to enhance misfolded protein clearance in cell models of NDs, evaluating which degradative pathway mediates their action. Results: We found that both BBR and its semisynthetic derivatives promote degradation of mutant androgen receptor (ARpolyQ) causative of spinal and bulbar muscular atrophy, acting mainly via proteasome and preventing ARpolyQ aggregation. Overlapping effects were observed on other misfolded proteins causative of amyotrophic lateral sclerosis, frontotemporal-lobar degeneration or Huntington disease, but with selective and specific action against each different mutant protein. Conclusions: BBR and its analogues induce the clearance of misfolded proteins responsible for NDs, representing potential therapeutic tools to counteract these fatal disorders.
Collapse
Affiliation(s)
- Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Cristina Geroni
- Naxospharma srl, Novate Milanese, 20026 Milan, Italy; (C.G.); (P.L.)
| | - Paolo Lombardi
- Naxospharma srl, Novate Milanese, 20026 Milan, Italy; (C.G.); (P.L.)
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
- Correspondence:
| |
Collapse
|
33
|
Khalilinia E, Ebrahimi A. π-Stacking effects on acid capacity of p-aminobenzoic acid. Struct Chem 2020. [DOI: 10.1007/s11224-020-01530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116152] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Papi F, Bazzicalupi C, Ferraroni M, Ciolli G, Lombardi P, Khan AY, Kumar GS, Gratteri P. Pyridine Derivative of the Natural Alkaloid Berberine as Human Telomeric G 4-DNA Binder: A Solution and Solid-State Study. ACS Med Chem Lett 2020; 11:645-650. [PMID: 32435365 DOI: 10.1021/acsmedchemlett.9b00516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
Telomerase is an enzyme deputed to the maintenance of eukaryotic chromosomes; however, its overexpression is a recognized hallmark of many cancer forms. A viable route for the inhibition of telomerase in malignant cells is the stabilization of G-quadruplex structures (G4) at the 3' overhang of telomeres. Berberine has shown in this regard valuable G4 binding properties together with a significant anticancer activity and telomerase inhibition effects. Here, we focused on a berberine derivative featuring a pyridine containing side group at the 13th position. Such modification actually improves the binding toward telomeric G-quadruplexes and establishes a degree of selectivity in the interaction with different sequences. Moreover, the X-ray crystal structure obtained for the complex formed by the ligand and a bimolecular human telomeric quadruplex affords a better understanding of the 13-berberine derivatives behavior with telomeric G4 and allows to draw useful insights for the future design of derivatives with remarkable anticancer properties.
Collapse
Affiliation(s)
- Francesco Papi
- Department of Chemistry ’Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Carla Bazzicalupi
- Department of Chemistry ’Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Marta Ferraroni
- Department of Chemistry ’Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Giulia Ciolli
- Department of Chemistry ’Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Paolo Lombardi
- Naxospharma srl, Via G. Di Vittorio 70, 20026 Novate Milanese (MI), Italy
| | - Asma Yasmeen Khan
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Paola Gratteri
- Department NEUROFARBA − Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
36
|
Raghunathan S, Jaganade T, Priyakumar UD. Urea-aromatic interactions in biology. Biophys Rev 2020; 12:65-84. [PMID: 32067192 PMCID: PMC7040157 DOI: 10.1007/s12551-020-00620-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Noncovalent interactions are key determinants in both chemical and biological processes. Among such processes, the hydrophobic interactions play an eminent role in folding of proteins, nucleic acids, formation of membranes, protein-ligand recognition, etc.. Though this interaction is mediated through the aqueous solvent, the stability of the above biomolecules can be highly sensitive to any small external perturbations, such as temperature, pressure, pH, or even cosolvent additives, like, urea-a highly soluble small organic molecule utilized by various living organisms to regulate osmotic pressure. A plethora of detailed studies exist covering both experimental and theoretical regimes, to understand how urea modulates the stability of biological macromolecules. While experimentalists have been primarily focusing on the thermodynamic and kinetic aspects, theoretical modeling predominantly involves mechanistic information at the molecular level, calculating atomistic details applying the force field approach to the high level electronic details using the quantum mechanical methods. The review focuses mainly on examples with biological relevance, such as (1) urea-assisted protein unfolding, (2) urea-assisted RNA unfolding, (3) urea lesion interaction within damaged DNA, (4) urea conduction through membrane proteins, and (5) protein-ligand interactions those explicitly address the vitality of hydrophobic interactions involving exclusively the urea-aromatic moiety.
Collapse
Affiliation(s)
- Shampa Raghunathan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Tanashree Jaganade
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
37
|
Fujiwara T, Takashika M, Hasegawa M, Ie Y, Aso Y, Aoyagi S, Otani H, Iyoda M. Small Structural Changes in the Alkyl Substituents of Macrocyclic π-Extended Thiophene Oligomers Causes a Key Effect on Their Stacking and Functional Properties. Chempluschem 2020; 84:694-703. [PMID: 31944018 DOI: 10.1002/cplu.201900062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/24/2019] [Indexed: 11/10/2022]
Abstract
Three new macrocyclic π-extended thiophene hexamers composed of four thienylene-ethynylene and two thienylene-vinylene units with or without four alkyl substituents have been synthesized. Despite similar shape-persistent structures in solution, the alkyl substituents control the solid-state structures and morphologies. The unsubstituted hexamer exhibited a planar conformation with a theoretically predicted structure in the solid state; however, the planar hexamer with four ethyl substituents formed a closely stacked columnar crystal structure to exhibit π-π interactions. Interestingly, the hexamer with four butyl substituents adopted both planar and twisted conformations in the solid state, exhibiting polymorphism based on induced-fit stacking of molecules. Thus, the butyl-substituted hexamer produces a mixture of yellow, orange, and red single crystals from toluene/acetone, and X-ray analysis revealed six different conformations. Consequently, the small structural difference in the macrocycles causes a key effect on their functional properties in the solid state, and their morphology governs electrical conductivity and organic field-effect-transistor activity. The polymorphism of the hexamers was applied to the switching of film morphology.
Collapse
Affiliation(s)
- Toshihiro Fujiwara
- Graduate School of Environment and Information Sciences, Yokohama National University Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Masataka Takashika
- Graduate School of Environment and Information Sciences, Yokohama National University Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Masashi Hasegawa
- School of Science, Kitasato University Sagamihara, Kanagawa, 252-0373, Japan
| | - Yutaka Ie
- The Institute of Scientific and Industrial Research, Osaka University Ibaraki, Osaka, 567-0047, Japan
| | - Yoshio Aso
- The Institute of Scientific and Industrial Research, Osaka University Ibaraki, Osaka, 567-0047, Japan
| | - Shinobu Aoyagi
- Department of Information and Basic Science, Nagoya City University, Nagoya, 467-8501, Japan
| | - Hiroyuki Otani
- Graduate School of Environment and Information Sciences, Yokohama National University Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Masahiko Iyoda
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
38
|
Yospanya W, Nishijima M, Araki Y, Buffeteau T, Pouget E, Wada T, Oda R. Near perfect head-to-head selectivity on the supramolecular photocyclodimerisation of 2-anthracenecarboxylate with self-organised gemini surfactant bilayers. Chem Commun (Camb) 2020; 56:10058-10061. [DOI: 10.1039/d0cc04198j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near perfect head-to-head selectivity upon supramolecular [4+4] photocyclodimerisation of 2-anthracenecarboxylate were achieved through silicificated self-organised gemini surfactant bilayers in water at room temperature.
Collapse
Affiliation(s)
- Wijak Yospanya
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN)
- CNRS – Université de Bordeaux – Bordeaux INP
- 33607 Pessac
- France
- Institute of Multidisciplinary Research for Advanced Materials
| | - Masaki Nishijima
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
| | - Thierry Buffeteau
- Institut des Sciences Moléculaires (UMR5255 ISM)
- CNRS – Université de Bordeaux
- 33405 Talence
- France
| | - Emilie Pouget
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN)
- CNRS – Université de Bordeaux – Bordeaux INP
- 33607 Pessac
- France
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
| | - Reiko Oda
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN)
- CNRS – Université de Bordeaux – Bordeaux INP
- 33607 Pessac
- France
| |
Collapse
|
39
|
Electrochemical behavior of N-Nitrosodiphenylamine and its determination in synthetic urine samples using a graphite-polyurethane composite electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Mallick S, Cao L, Chen X, Zhou J, Qin Y, Wang GY, Wu YY, Meng M, Zhu GY, Tan YN, Cheng T, Liu CY. Mediation of Electron Transfer by Quadrupolar Interactions: The Constitutional, Electronic, and Energetic Complementarities in Supramolecular Chemistry. iScience 2019; 22:269-287. [PMID: 31805432 PMCID: PMC6909048 DOI: 10.1016/j.isci.2019.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/06/2019] [Accepted: 11/09/2019] [Indexed: 11/15/2022] Open
Abstract
Studies of intermolecular interactions enhance our knowledge of chemistry across molecular and supramolecular levels. Here, we show that host-guest quadrupolar interaction has a profound influence on the molecular system. With covalently bonded dimolybdenum complex units as the electron donor (D) and acceptor (A) and a thienylene group (C4H2S) as the bridge (B), the mixed-valence D-B-A complexes are shaped with clefts in the middle of the molecule. Interestingly, in aromatic solvents, the D-A electronic coupling constants (Hab) and electron transfer rates (ket) are dramatically reduced. Theoretical computations indicate that an aromatic molecule is encapsulated in the cleft of the D-B-A array; quadrupole-quadrupole interaction between the guest molecule and the C4H2S bridge evokes a charge redistribution, which increases the HOMO-LUMO energy gap, intervening in the through-bond electron transfer. These results demonstrate that a supramolecular system is unified underlying the characteristics of the assembled molecules through constitutional, electronic, and energetic complementarities.
Collapse
Affiliation(s)
- Suman Mallick
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Lijiu Cao
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Xiaoli Chen
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Junpeng Zhou
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Yi Qin
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Gang Yi Wang
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Yi Yang Wu
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Miao Meng
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Guang Yuan Zhu
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Ying Ning Tan
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Tao Cheng
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Chun Y Liu
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
41
|
Fan L, Luo S, Chen S, Wang T, Wang P, Gong L. Nucleophile Coordination Enabled Regioselectivity in Palladium‐Catalyzed Asymmetric Allylic C−H Alkylation. Angew Chem Int Ed Engl 2019; 58:16806-16810. [DOI: 10.1002/anie.201908960] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/02/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Lian‐Feng Fan
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shi‐Wei Luo
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shu‐Sen Chen
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Tian‐Ci Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Pu‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
- Center for Excellence in Molecular Synthesis of CAS China
| |
Collapse
|
42
|
Fan L, Luo S, Chen S, Wang T, Wang P, Gong L. Nucleophile Coordination Enabled Regioselectivity in Palladium‐Catalyzed Asymmetric Allylic C−H Alkylation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lian‐Feng Fan
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shi‐Wei Luo
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shu‐Sen Chen
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Tian‐Ci Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Pu‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
- Center for Excellence in Molecular Synthesis of CAS China
| |
Collapse
|
43
|
Padilla-Salinas R, Anderson R, Sakaniwa K, Zhang S, Nordeen P, Lu C, Shimizu T, Yin H. Discovery of Novel Small Molecule Dual Inhibitors Targeting Toll-Like Receptors 7 and 8. J Med Chem 2019; 62:10221-10244. [DOI: 10.1021/acs.jmedchem.9b01201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rosaura Padilla-Salinas
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Rachel Anderson
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kentaro Sakaniwa
- Graduate School of Pharmaceuticals Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shuting Zhang
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science, Tsinghua University, Beijing 100082, China
| | - Patrick Nordeen
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Chuanjun Lu
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceuticals Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hang Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science, Tsinghua University, Beijing 100082, China
| |
Collapse
|
44
|
Recent advances in mass spectrometry studies of non-covalent complexes of macrocycles - A review. Anal Chim Acta 2019; 1081:32-50. [DOI: 10.1016/j.aca.2019.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
|
45
|
Perez Bakovic GR, Roberts JL, Colford B, Joyce M, Servoss SL. Peptoid microsphere coatings: The effects of helicity, temperature, pH, and ionic strength. Biopolymers 2019; 110:e23283. [DOI: 10.1002/bip.23283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/08/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- German R. Perez Bakovic
- Ralph E. Martin Department of Chemical EngineeringUniversity of Arkansas Fayetteville Fayetteville Arkansas
| | - Jesse L. Roberts
- Ralph E. Martin Department of Chemical EngineeringUniversity of Arkansas Fayetteville Fayetteville Arkansas
| | - Bryce Colford
- Ralph E. Martin Department of Chemical EngineeringUniversity of Arkansas Fayetteville Fayetteville Arkansas
| | - Myles Joyce
- Ralph E. Martin Department of Chemical EngineeringUniversity of Arkansas Fayetteville Fayetteville Arkansas
| | - Shannon L. Servoss
- Ralph E. Martin Department of Chemical EngineeringUniversity of Arkansas Fayetteville Fayetteville Arkansas
| |
Collapse
|
46
|
McCaslin TG, Pagba CV, Chi SH, Hwang HJ, Gumbart JC, Perry JW, Olivieri C, Porcelli F, Veglia G, Guo Z, McDaniel M, Barry BA. Structure and Function of Tryptophan-Tyrosine Dyads in Biomimetic β Hairpins. J Phys Chem B 2019; 123:2780-2791. [PMID: 30888824 PMCID: PMC6463897 DOI: 10.1021/acs.jpcb.8b12452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Tyrosine–tryptophan (YW) dyads
are ubiquitous
structural motifs in enzymes and play roles in proton-coupled electron
transfer (PCET) and, possibly, protection from oxidative stress. Here,
we describe the function of YW dyads in de novo designed 18-mer, β
hairpins. In Peptide M, a YW dyad is formed between W14 and Y5. A
UV hypochromic effect and an excitonic Cotton signal are observed,
in addition to singlet, excited state (W*) and fluorescence emission
spectral shifts. In a second Peptide, Peptide MW, a Y5–W13
dyad is formed diagonally across the strand and distorts the backbone.
On a picosecond timescale, the W* excited-state decay kinetics are
similar in all peptides but are accelerated relative to amino acids
in solution. In Peptide MW, the W* spectrum is consistent with increased
conformational flexibility. In Peptide M and MW, the electron paramagnetic
resonance spectra obtained after UV photolysis are characteristic
of tyrosine and tryptophan radicals at 160 K. Notably, at pH 9, the
radical photolysis yield is decreased in Peptide M and MW, compared
to that in a tyrosine and tryptophan mixture. This protective effect
is not observed at pH 11 and is not observed in peptides containing
a tryptophan–histidine dyad or tryptophan alone. The YW dyad
protective effect is attributed to an increase in the radical recombination
rate. This increase in rate can be facilitated by hydrogen-bonding
interactions, which lower the barrier for the PCET reaction at pH
9. These results suggest that the YW dyad structural motif promotes
radical quenching under conditions of reactive oxygen stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fernando Porcelli
- Department for Innovation in Biological, Agro-Food and Forest Systems , University of Tuscia , 01100 Viterbo , Italy
| | | | | | | | | |
Collapse
|
47
|
Xing X, Zhao Y. Aromatically functionalized pseudo-crown ethers with unusual solvent response and enhanced binding properties. Org Biomol Chem 2019; 16:1627-1631. [PMID: 29446435 DOI: 10.1039/c8ob00100f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conformational flexibility in the host's structure is often considered detrimental to its binding. Flexible pseudo-crown ethers with aromatic donor/acceptor groups at the chain ends, however, displayed enhanced binding affinity and selectivity, particularly when the direct binding interactions were compromised by unfavorable solvents.
Collapse
Affiliation(s)
- Xiaoyu Xing
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| | | |
Collapse
|
48
|
Hwang J, Li P, Vik EC, Karki I, Shimizu KD. Study of through-space substituent–π interactions using N-phenylimide molecular balances. Org Chem Front 2019. [DOI: 10.1039/c9qo00195f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Substituent–π interactions associated with aromatic stacking interactions were experimentally measured using a small N-phenylimide molecular balance model system.
Collapse
Affiliation(s)
- Jungwun Hwang
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Ping Li
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Erik C. Vik
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Ishwor Karki
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Ken D. Shimizu
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| |
Collapse
|
49
|
Seidel T, Schuetz DA, Garon A, Langer T. The Pharmacophore Concept and Its Applications in Computer-Aided Drug Design. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 110:99-141. [PMID: 31621012 DOI: 10.1007/978-3-030-14632-0_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pharmacophore-based techniques currently are an integral part of many computer-aided drug design workflows and have been successfully and extensively applied for tasks such as virtual screening, de novo design, and lead optimization. Pharmacophore models can be derived both in a receptor-based and in a ligand-based manner, and provide an abstract description of essential non-bonded interactions that typically occur between small-molecule ligands and macromolecular targets. Due to their simplistic and abstract nature, pharmacophores are both perfectly suited for efficient computer processing and easy to comprehend by life and physical scientists. As a consequence, they have also proven to be a valuable tool for communicating between computational and medicinal chemists.This chapter aims to provide a short overview of the pharmacophore concept and its applications in modern computer-aided drug design. The chapter is divided into three distinct parts. The first section contains a brief introduction to the pharmacophore concept. The second section provides a description of the most common nonbonded interaction types and their representation as pharmacophoric features. Furthermore, it gives an overview of the various methods for pharmacophore generation and important pharmacophore-based techniques in drug design. This part concludes with examples for recent pharmacophore concept-related research and development. The last section is dedicated to a review of research in the field of natural product chemistry as carried out by employing pharmacophore-based drug design methods.
Collapse
Affiliation(s)
- Thomas Seidel
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria.
| | - Doris A Schuetz
- InteLigand GmbH, IRIC-Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montréal, QC, Canada
| | - Arthur Garon
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Blechschmidt DR, Woodhouse MD, Inagaki S, Whitfield M, Ogunsanya A, Yoder A, Lilly D, Heim EW, Soucie LN, Liang J, Liu Y. Aromatic donor–acceptor interaction promoted catalyst assemblies for hydrolytic kinetic resolution of epichlorohydrin. Org Biomol Chem 2019; 17:172-180. [DOI: 10.1039/c8ob02249f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalyst activity of bis-acceptor functionalized Co(iii)–salen in hydrolytic kinetic resolution can be fine-tuned by introducing a proper donor compound.
Collapse
Affiliation(s)
| | | | | | | | | | - Aaron Yoder
- Department of Chemistry
- Northern Michigan University
- Marquette
- USA
| | - Daniel Lilly
- Department of Chemistry
- Northern Michigan University
- Marquette
- USA
| | - Eric W. Heim
- Department of Chemistry
- Northern Michigan University
- Marquette
- USA
| | - Luke N. Soucie
- Department of Chemistry
- Northern Michigan University
- Marquette
- USA
| | - Jian Liang
- Department of Chemistry
- Northern Michigan University
- Marquette
- USA
| | - Yu Liu
- Department of Chemistry
- Northern Michigan University
- Marquette
- USA
| |
Collapse
|