1
|
Peña-Ponton C, Diez-Rodriguez B, Perez-Bello P, Becker C, McIntyre LM, van der Putten WH, De Paoli E, Heer K, Opgenoorth L, Verhoeven KJF. High-resolution methylome analysis uncovers stress-responsive genomic hotspots and drought-sensitive transposable element superfamilies in the clonal Lombardy poplar. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5839-5856. [PMID: 38836523 PMCID: PMC11427840 DOI: 10.1093/jxb/erae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
DNA methylation is environment-sensitive and can mediate stress responses. In trees, changes in the environment might cumulatively shape the methylome landscape over time. However, because high-resolution methylome studies usually focus on single environmental cues, the stress-specificity and long-term stability of methylation responses remain unclear. Here, we studied the methylome plasticity of a Populus nigra cv. 'Italica' clone widely distributed across Europe. Adult trees from different geographic locations were clonally propagated in a common garden experiment and exposed to cold, heat, drought, herbivory, rust infection, and salicylic acid treatments. Whole-genome bisulfite sequencing revealed stress-induced and naturally occurring DNA methylation variants. In CG/CHG contexts, the same genomic regions were often affected by multiple stresses, suggesting a generic methylome response. Moreover, these variants showed striking overlap with naturally occurring methylation variants between trees from different locations. Drought treatment triggered CHH hypermethylation of transposable elements, affecting entire superfamilies near drought-responsive genes. Thus, we revealed genomic hotspots of methylation change that are not stress-specific and that contribute to natural DNA methylation variation, and identified stress-specific hypermethylation of entire transposon superfamilies with possible functional consequences. Our results underscore the importance of studying multiple stressors in a single experiment for recognizing general versus stress-specific methylome responses.
Collapse
Affiliation(s)
- Cristian Peña-Ponton
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Barbara Diez-Rodriguez
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Eva Mayr-Stihl professorship of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098 Freiburg i. Br., Germany
- Natural Resources and Climate Area, CARTIF Technology Centre, 47151 Boecillo, Valladolid, Spain
| | - Paloma Perez-Bello
- IGA Technology Services Srl. Via Jacopo Linussio 51, 33100 Udine UD, Italy
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Department of Nematology, Wageningen University & Research, Wageningen 6700 ES, The Netherlands
| | - Emanuele De Paoli
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Katrin Heer
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Eva Mayr-Stihl professorship of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098 Freiburg i. Br., Germany
| | - Lars Opgenoorth
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
2
|
Huang Z, Yang X, Huang Y, Tang Z, Chen Y, Liu H, Huang M, Qing L, Li L, Wang Q, Jie Z, Jin X, Jia B. Saliva - a new opportunity for fluid biopsy. Clin Chem Lab Med 2023; 61:4-32. [PMID: 36285724 DOI: 10.1515/cclm-2022-0793] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 12/15/2022]
Abstract
Saliva is a complex biological fluid with a variety of biomolecules, such as DNA, RNA, proteins, metabolites and microbiota, which can be used for the screening and diagnosis of many diseases. In addition, saliva has the characteristics of simple collection, non-invasive and convenient storage, which gives it the potential to replace blood as a new main body of fluid biopsy, and it is an excellent biological diagnostic fluid. This review integrates recent studies and summarizes the research contents of salivaomics and the research progress of saliva in early diagnosis of oral and systemic diseases. This review aims to explore the value and prospect of saliva diagnosis in clinical application.
Collapse
Affiliation(s)
- Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiaoxia Yang
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ling Qing
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Li Li
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Qin Wang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhuye Jie
- BGI Genomics, BGI-Shenzhen, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen, P.R. China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Jin
- BGI Genomics, BGI-Shenzhen, Shenzhen, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
3
|
DNA methylation and histone modifications induced by abiotic stressors in plants. Genes Genomics 2021; 44:279-297. [PMID: 34837631 DOI: 10.1007/s13258-021-01191-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND A review of research shows that methylation in plants is more complex and sophisticated than in microorganisms and animals. Overall, studies on the effects of abiotic stress on epigenetic modifications in plants are still scarce and limited to few species. Epigenetic regulation of plant responses to environmental stresses has not been elucidated. This study summarizes key effects of abiotic stressors on DNA methylation and histone modifications in plants. DISCUSSION Plant DNA methylation and histone modifications in responses to abiotic stressors varied and depended on the type and level of stress, plant tissues, age, and species. A critical analysis of the literature available revealed that 44% of the epigenetic modifications induced by abiotic stressors in plants involved DNA hypomethylation, 40% DNA hypermethylation, and 16% histone modification. The epigenetic changes in plants might be underestimated since most authors used methods such as methylation-sensitive amplification polymorphism (MSAP), High performance liquid chromatography (HPLC), and immunolabeling that are less sensitive compared to bisulfite sequencing and single-base resolution methylome analyses. More over, mechanisms underlying epigenetic changes in plants have not yet been determined since most reports showed only the level or/and distribution of DNA methylation and histone modifications. CONCLUSIONS Various epigenetic mechanisms are involved in response to abiotic stressors, and several of them are still unknown. Integrated analysis of the changes in the genome by omic approaches should help to identify novel components underlying mechanisms involved in DNA methylation and histone modifications associated with plant response to environmental stressors.
Collapse
|
4
|
Ravanrouy F, Niazi A, Moghadam A, Taghavi SM. MAP30 transgenic tobacco lines: from silencing to inducing. Mol Biol Rep 2021; 48:6719-6728. [PMID: 34420140 DOI: 10.1007/s11033-021-06662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND DNA methylation is one of the most important epigenetic event that regulates gene expression. In addition to DNA methylation, transgene copy number may induce gene silencing. Therefore, the study of these cases is useful for understanding of gene silencing regulation. METHODS AND RESULTS In this study, the methylation pattern of 35S promoter was investigated in the second generation of MAP30 transgenic tobacco lines. Therefore, the genomic DNA melting curve changes were investigated before and after bisulfite treatment by real time PCR. To determine the exact position of methylation, the samples were sequenced after bisulfite treatment. Observation of decrease in DNA melting curve of expressing line in comparison with silenced line confirmed the presence of DNA methylation in silenced line. In order to induce the MAP30 expression, the silenced line was treated using different concentrations of Azacytidine and green tea extracts. The results showed that all concentrations of green tea extracts for 6 days and the concentrations of 3 and 10 μM Azacytidine for 10 and 3 days could induce the expression of MAP30 in silenced line respectively. Finally, the transgene copy number was estimated using real time PCR, as silenced line contained more than two copies while the lines expressing MAP30 contained only one or two copies. CONCLUSIONS Finally, we found that the presence of DNA methylation and also multiple gene copy numbers in silenced line have been led to gene silencing. Moreover, the effect of green tea extract on DNA methylation showed incredible results for the first time.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| | - Seyed Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
5
|
Mahapatra K, Banerjee S, De S, Mitra M, Roy P, Roy S. An Insight Into the Mechanism of Plant Organelle Genome Maintenance and Implications of Organelle Genome in Crop Improvement: An Update. Front Cell Dev Biol 2021; 9:671698. [PMID: 34447743 PMCID: PMC8383295 DOI: 10.3389/fcell.2021.671698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
Besides the nuclear genome, plants possess two small extra chromosomal genomes in mitochondria and chloroplast, respectively, which contribute a small fraction of the organelles’ proteome. Both mitochondrial and chloroplast DNA have originated endosymbiotically and most of their prokaryotic genes were either lost or transferred to the nuclear genome through endosymbiotic gene transfer during the course of evolution. Due to their immobile nature, plant nuclear and organellar genomes face continuous threat from diverse exogenous agents as well as some reactive by-products or intermediates released from various endogenous metabolic pathways. These factors eventually affect the overall plant growth and development and finally productivity. The detailed mechanism of DNA damage response and repair following accumulation of various forms of DNA lesions, including single and double-strand breaks (SSBs and DSBs) have been well documented for the nuclear genome and now it has been extended to the organelles also. Recently, it has been shown that both mitochondria and chloroplast possess a counterpart of most of the nuclear DNA damage repair pathways and share remarkable similarities with different damage repair proteins present in the nucleus. Among various repair pathways, homologous recombination (HR) is crucial for the repair as well as the evolution of organellar genomes. Along with the repair pathways, various other factors, such as the MSH1 and WHIRLY family proteins, WHY1, WHY2, and WHY3 are also known to be involved in maintaining low mutation rates and structural integrity of mitochondrial and chloroplast genome. SOG1, the central regulator in DNA damage response in plants, has also been found to mediate endoreduplication and cell-cycle progression through chloroplast to nucleus retrograde signaling in response to chloroplast genome instability. Various proteins associated with the maintenance of genome stability are targeted to both nuclear and organellar compartments, establishing communication between organelles as well as organelles and nucleus. Therefore, understanding the mechanism of DNA damage repair and inter compartmental crosstalk mechanism in various sub-cellular organelles following induction of DNA damage and identification of key components of such signaling cascades may eventually be translated into strategies for crop improvement under abiotic and genotoxic stress conditions. This review mainly highlights the current understanding as well as the importance of different aspects of organelle genome maintenance mechanisms in higher plants.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Sayanti De
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Mehali Mitra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Pinaki Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| |
Collapse
|
6
|
Speer H, McKune AJ. Aging under Pressure: The Roles of Reactive Oxygen and Nitrogen Species (RONS) Production and Aging Skeletal Muscle in Endothelial Function and Hypertension-From Biological Processes to Potential Interventions. Antioxidants (Basel) 2021; 10:antiox10081247. [PMID: 34439495 PMCID: PMC8389268 DOI: 10.3390/antiox10081247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022] Open
Abstract
The proportion of adults living with hypertension increases significantly with advancing age. It is therefore important to consider how health and vitality can be maintained by the aging population until end of life. A primary risk factor for the progression of cardiovascular diseases (CVD) is hypertension, so exploring the factors and processes central to this burden of disease is essential for healthy aging. A loss of skeletal muscle quantity and quality is characteristic in normal aging, with a reduction of vasodilatory capacity caused by endothelial dysfunction, and subsequent increase in peripheral resistance and risk for hypertension. Reactive Oxygen and Nitrogen Species (RONS) encompass the reactive derivatives of NO and superoxide, which are continuously generated in contracting skeletal muscle and are essential mediators for cellular metabolism. They act together as intra and intercellular messengers, gene expression regulators, and induce programmed cell death. In excessive amounts RONS can inflict damage to endothelial and skeletal muscle cells, alter signaling pathways or prematurely promote stress responses and potentially speed up the aging process. The age-related increase in RONS by skeletal muscle and endothelial mitochondria leads to impaired production of NO, resulting in vascular changes and endothelial dysfunction. Changes in vascular morphology is an early occurrence in the etiology of CVDs and, while this is also a normal characteristic of aging, whether it is a cause or a consequence of aging in hypertension remains unclear. This review serves to focus on the roles and mechanisms of biological processes central to hypertension and CVD, with a specific focus on the effects of aging muscle and RONS production, as well as the influence of established and more novel interventions to mediate the increasing risk for hypertension and CVD and improve health outcomes as we age.
Collapse
Affiliation(s)
- Hollie Speer
- Faculty of Science and Technology, School of Science, University of Canberra, Bruce, ACT 2617, Australia
- Faculty of Health, School of Rehabilitation and Exercise Sciences, University of Canberra, Bruce, ACT 2617, Australia;
- Research Institute for Sport and Exercise (UC-RISE), University of Canberra, Bruce, ACT 2617, Australia
- Correspondence:
| | - Andrew J. McKune
- Faculty of Health, School of Rehabilitation and Exercise Sciences, University of Canberra, Bruce, ACT 2617, Australia;
- Research Institute for Sport and Exercise (UC-RISE), University of Canberra, Bruce, ACT 2617, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Science, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
7
|
Tini F, Beccari G, Marconi G, Porceddu A, Sulyok M, Gardiner DM, Albertini E, Covarelli L. Identification of Putative Virulence Genes by DNA Methylation Studies in the Cereal Pathogen Fusarium graminearum. Cells 2021; 10:cells10051192. [PMID: 34068122 PMCID: PMC8152758 DOI: 10.3390/cells10051192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 01/17/2023] Open
Abstract
DNA methylation mediates organisms’ adaptations to environmental changes in a wide range of species. We investigated if a such a strategy is also adopted by Fusarium graminearum in regulating virulence toward its natural hosts. A virulent strain of this fungus was consecutively sub-cultured for 50 times (once a week) on potato dextrose agar. To assess the effect of subculturing on virulence, wheat seedlings and heads (cv. A416) were inoculated with subcultures (SC) 1, 23, and 50. SC50 was also used to re-infect (three times) wheat heads (SC50×3) to restore virulence. In vitro conidia production, colonies growth and secondary metabolites production were also determined for SC1, SC23, SC50, and SC50×3. Seedling stem base and head assays revealed a virulence decline of all subcultures, whereas virulence was restored in SC50×3. The same trend was observed in conidia production. The DNA isolated from SC50 and SC50×3 was subject to a methylation content-sensitive enzyme and double-digest, restriction-site-associated DNA technique (ddRAD-MCSeEd). DNA methylation analysis indicated 1024 genes, whose methylation levels changed in response to the inoculation on a healthy host after subculturing. Several of these genes are already known to be involved in virulence by functional analysis. These results demonstrate that the physiological shifts following sub-culturing have an impact on genomic DNA methylation levels and suggest that the ddRAD-MCSeEd approach can be an important tool for detecting genes potentially related to fungal virulence.
Collapse
Affiliation(s)
- Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| | - Gianpiero Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
- Correspondence:
| | - Andrea Porceddu
- Department of Agriculture, University of Sassari, Viale Italia, 39a, 07100 Sassari, Italy;
| | - Micheal Sulyok
- Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Applied Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse, 20, A-3430 Tulln, Austria;
| | - Donald M. Gardiner
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, 306 Carmody Road, St Lucia, QLD 4067, Australia;
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| |
Collapse
|
8
|
Tyczewska A, Gracz-Bernaciak J, Szymkowiak J, Twardowski T. Herbicide stress-induced DNA methylation changes in two Zea mays inbred lines differing in Roundup® resistance. J Appl Genet 2021; 62:235-248. [PMID: 33512663 PMCID: PMC8032638 DOI: 10.1007/s13353-021-00609-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 01/18/2023]
Abstract
DNA methylation plays a crucial role in the regulation of gene expression, activity of transposable elements, defense against foreign DNA, and inheritance of specific gene expression patterns. The link between stress exposure and sequence-specific changes in DNA methylation was hypothetical until it was shown that stresses can induce changes in the gene expression through hypomethylation or hypermethylation of DNA. To detect changes in DNA methylation under herbicide stress in two local Zea mays inbred lines exhibiting differential susceptibility to Roundup®, the methylation-sensitive amplified polymorphism (MSAP) technique was used. The overall DNA methylation levels were determined at approximately 60% for both tested lines. The most significant changes were observed for the more sensitive Z. mays line, where 6 h after the herbicide application, a large increase in the level of DNA methylation (attributed to the increase in fully methylated bands (18.65%)) was noted. DNA sequencing revealed that changes in DNA methylation profiles occurred in genes encoding heat shock proteins, membrane proteins, transporters, kinases, lipases, methyltransferases, zinc-finger proteins, cytochromes, and transposons. Herbicide stress-induced changes depended on the Z. mays variety, and the large increase in DNA methylation level in the sensitive line resulted in a lower ability to cope with stress conditions.
Collapse
Affiliation(s)
- Agata Tyczewska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | | | - Jakub Szymkowiak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Tomasz Twardowski
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
9
|
Mohd Saad NS, Severn-Ellis AA, Pradhan A, Edwards D, Batley J. Genomics Armed With Diversity Leads the Way in Brassica Improvement in a Changing Global Environment. Front Genet 2021; 12:600789. [PMID: 33679880 PMCID: PMC7930750 DOI: 10.3389/fgene.2021.600789] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Meeting the needs of a growing world population in the face of imminent climate change is a challenge; breeding of vegetable and oilseed Brassica crops is part of the race in meeting these demands. Available genetic diversity constituting the foundation of breeding is essential in plant improvement. Elite varieties, land races, and crop wild species are important resources of useful variation and are available from existing genepools or genebanks. Conservation of diversity in genepools, genebanks, and even the wild is crucial in preventing the loss of variation for future breeding efforts. In addition, the identification of suitable parental lines and alleles is critical in ensuring the development of resilient Brassica crops. During the past two decades, an increasing number of high-quality nuclear and organellar Brassica genomes have been assembled. Whole-genome re-sequencing and the development of pan-genomes are overcoming the limitations of the single reference genome and provide the basis for further exploration. Genomic and complementary omic tools such as microarrays, transcriptomics, epigenetics, and reverse genetics facilitate the study of crop evolution, breeding histories, and the discovery of loci associated with highly sought-after agronomic traits. Furthermore, in genomic selection, predicted breeding values based on phenotype and genome-wide marker scores allow the preselection of promising genotypes, enhancing genetic gains and substantially quickening the breeding cycle. It is clear that genomics, armed with diversity, is set to lead the way in Brassica improvement; however, a multidisciplinary plant breeding approach that includes phenotype = genotype × environment × management interaction will ultimately ensure the selection of resilient Brassica varieties ready for climate change.
Collapse
Affiliation(s)
| | | | | | | | - Jacqueline Batley
- School of Biological Sciences Western Australia and UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Zhang GJ, Dong R, Lan LN, Li SF, Gao WJ, Niu HX. Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants. Int J Mol Sci 2020; 21:ijms21030707. [PMID: 31973163 PMCID: PMC7037861 DOI: 10.3390/ijms21030707] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/16/2022] Open
Abstract
The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed.
Collapse
Affiliation(s)
- Guo-Jun Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Ran Dong
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Li-Na Lan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- Correspondence: (W.-J.G.); (H.-X.N.)
| | - Hong-Xing Niu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- Correspondence: (W.-J.G.); (H.-X.N.)
| |
Collapse
|
11
|
Mahmood AM, Dunwell JM. Evidence for novel epigenetic marks within plants. AIMS GENETICS 2019; 6:70-87. [PMID: 31922011 PMCID: PMC6949463 DOI: 10.3934/genet.2019.4.70] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/07/2019] [Indexed: 12/21/2022]
Abstract
Variation in patterns of gene expression can result from modifications in the genome that occur without a change in the sequence of the DNA; such modifications include methylation of cytosine to generate 5-methylcytosine (5mC) resulting in the generation of heritable epimutation and novel epialleles. This type of non-sequence variation is called epigenetics. The enzymes responsible for generation of such DNA modifications in mammals are named DNA methyltransferases (DNMT) including DNMT1, DNMT2 and DNMT3. The later stages of oxidations to these modifications are catalyzed by Ten Eleven Translocation (TET) proteins, which contain catalytic domains belonging to the 2-oxoglutarate dependent dioxygenase family. In various mammalian cells/tissues including embryonic stem cells, cancer cells and brain tissues, it has been confirmed that these proteins are able to induce the stepwise oxidization of 5-methyl cytosine to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and finally 5-carboxylcytosine (5caC). Each stage from initial methylation until the end of the DNA demethylation process is considered as a specific epigenetic mark that may regulate gene expression. This review discusses controversial evidence for the presence of such oxidative products, particularly 5hmC, in various plant species. Whereas some reports suggest no evidence for enzymatic DNA demethylation, other reports suggest that the presence of oxidative products is followed by the active demethylation and indicate the contribution of possible TET-like proteins in the regulation of gene expression in plants. The review also summarizes the results obtained by expressing the human TET conserved catalytic domain in transgenic plants.
Collapse
Affiliation(s)
- Asaad M Mahmood
- Department of Biology, College of Education, University of Garmian, Kalar, KRG/Iraq
| | - Jim M Dunwell
- School of School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, UK
| |
Collapse
|
12
|
Complex relationship between DNA methylation and gene expression due to Lr28 in wheat-leaf rust pathosystem. Mol Biol Rep 2019; 47:1339-1360. [DOI: 10.1007/s11033-019-05236-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/08/2019] [Accepted: 12/07/2019] [Indexed: 11/26/2022]
|
13
|
Methylation content sensitive enzyme ddRAD (MCSeEd): a reference-free, whole genome profiling system to address cytosine/adenine methylation changes. Sci Rep 2019; 9:14864. [PMID: 31619715 PMCID: PMC6795852 DOI: 10.1038/s41598-019-51423-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
Methods for investigating DNA methylation nowadays either require a reference genome and high coverage, or investigate only CG methylation. Moreover, no large-scale analysis can be performed for N6-methyladenosine (6 mA) at an affordable price. Here we describe the methylation content sensitive enzyme double-digest restriction-site-associated DNA (ddRAD) technique (MCSeEd), a reduced-representation, reference-free, cost-effective approach for characterizing whole genome methylation patterns across different methylation contexts (e.g., CG, CHG, CHH, 6 mA). MCSeEd can also detect genetic variations among hundreds of samples. MCSeEd is based on parallel restrictions carried out by combinations of methylation insensitive and sensitive endonucleases, followed by next-generation sequencing. Moreover, we present a robust bioinformatic pipeline (available at https://bitbucket.org/capemaster/mcseed/src/master/ ) for differential methylation analysis combined with single nucleotide polymorphism calling without or with a reference genome.
Collapse
|
14
|
Singi P, Rocha RP, de Carli ML, Hanemann JAC, Pereira AAC, Coelho LFL, Malaquias LCC. Different
DNA
methylation profile is demonstrated in paracoccidioidomycosis patients without oral lesions. Mycoses 2019; 62:1133-1139. [DOI: 10.1111/myc.13000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Paola Singi
- Department of Clinic and Surgery School of Dentistry Federal University of Alfenas Alfenas MG Brazil
| | - Raissa P. Rocha
- Graduate Program in Microbiology Federal University of Minas Gerais Belo Horizonte MG Brazil
| | - Marina L. de Carli
- Department of Clinic and Surgery School of Dentistry Federal University of Alfenas Alfenas MG Brazil
| | - João Adolfo C. Hanemann
- Department of Clinic and Surgery School of Dentistry Federal University of Alfenas Alfenas MG Brazil
| | - Alessandro A. C. Pereira
- Department of Pathology and Parasitology Institute of Biomedical Sciences Federal University of Alfenas Alfenas MG Brazil
| | - Luiz Felipe L. Coelho
- Department of Microbiology and Immunology Institute of Biomedical Sciences Federal University of Alfenas Alfenas MG Brazil
| | - Luiz Cosme C. Malaquias
- Department of Microbiology and Immunology Institute of Biomedical Sciences Federal University of Alfenas Alfenas MG Brazil
| |
Collapse
|
15
|
Wu S, Huang Y, Li S, Wen H, Zhang M, Li J, Li Y, Shao C, He F. DNA methylation levels and expression patterns of Smyd1a and Smyd1b genes during Metamorphosis of the Japanese Flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2018; 223:16-22. [DOI: 10.1016/j.cbpb.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 11/26/2022]
|
16
|
Zhao Y, He J, Yang L, Luo Q, Liu Z. Histone Deacetylase-3 Modification of MicroRNA-31 Promotes Cell Proliferation and Aerobic Glycolysis in Breast Cancer and Is Predictive of Poor Prognosis. J Breast Cancer 2018; 21:112-123. [PMID: 29963106 PMCID: PMC6015978 DOI: 10.4048/jbc.2018.21.2.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 05/02/2018] [Indexed: 01/02/2023] Open
Abstract
Purpose The incidence and mortality of breast cancer is increasing worldwide. There is a constant quest to understand the underlying molecular biology of breast cancer so as to plan better treatment options. The purpose of the current study was to characterize the expression of histone deacetylases-3 (HDAC3), a member of class I HDACs, and assess the clinical significance of HDAC3 in breast cancer. Methods Quantitative real-time polymerase chain reaction, immunohistochemistry, and western blot analysis were used to examine messenger RNA and protein expression levels. The relationships between HDAC3 expression and clinicopathological variables were analyzed. MTT assays were used to detect cell proliferation. Glucose-uptake, lactate, adenosine triphosphate, and lactate dehydrogenase assays were employed to detect aerobic glycolysis. Chromatin immunoprecipitation was used to detect microRNA-31 (miR-31) promoter binding. Results Our data revealed that HDAC3 was upregulated in breast cancer tissue compared with matched para-carcinoma tissues, and high levels of HDAC3 were positively correlated with advanced TNM stage and N stage of cancer. Furthermore, overexpression of HDAC3 promoted breast cancer cell-proliferation and aerobic glycolysis. The functional involvement of HDAC3 was related in part to the repression of miR-31 transcription via decreased histone H3 acetylation at lysine K9 levels of the miR-31 promoter. Survival analysis revealed that the level of HDAC3 was an independent prognostic factor for breast cancer patients. Conclusion Our findings revealed that HDAC3 served as an oncogene that could promote cell proliferation and aerobic glycolysis and was predictive of a poor prognosis in breast cancer. HDAC3 participated in the cell proliferation of breast cancer, which may prove to be a pivotal epigenetic target against this devastating disease.
Collapse
Affiliation(s)
- Yunfei Zhao
- Department of Pathology, Suining Central Hospital, Suining, China
| | - Jiao He
- Department of Pathology, Suining Central Hospital, Suining, China
| | - Ling Yang
- Department of Pathology, Suining Central Hospital, Suining, China
| | - Qichi Luo
- Department of Pathology, Suining Central Hospital, Suining, China
| | - Zhi Liu
- Department of Pathology, Suining Central Hospital, Suining, China
| |
Collapse
|
17
|
Boba A, Kostyn K, Preisner M, Wojtasik W, Szopa J, Kulma A. Expression of heterologous lycopene β-cyclase gene in flax can cause silencing of its endogenous counterpart by changes in gene-body methylation and in ABA homeostasis mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:143-151. [PMID: 29579641 DOI: 10.1016/j.plaphy.2018.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 05/28/2023]
Abstract
Previously we described flax plants with expression of Arabidopsis lycopene β-cyclase (lcb) gene in which decreased expression of the endogenous lcb and increased resistance to fungal pathogen was observed. We suggested that co-suppression was responsible for the change. In this study we investigated the molecular basis of the observed effect in detail. We found that methylation changes in the Lulcb gene body might be responsible for repression of the gene. Treatment with azacitidine (DNA methylation inhibitor) confirmed the results. Moreover, we studied how the manipulation of carotenoid biosynthesis pathway increased ABA level in these plants. We suggest that elevated ABA levels may be responsible for the increased resistance of the flax plants to pathogen infection through activation of chitinase (PR gene).
Collapse
Affiliation(s)
- Aleksandra Boba
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Kamil Kostyn
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Plant Sciences, Plac Grunwaldzki 24A, 53-363 Wroclaw, Poland.
| | - Marta Preisner
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Plant Sciences, Plac Grunwaldzki 24A, 53-363 Wroclaw, Poland.
| | - Wioleta Wojtasik
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Jan Szopa
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Plant Sciences, Plac Grunwaldzki 24A, 53-363 Wroclaw, Poland.
| | - Anna Kulma
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| |
Collapse
|
18
|
Bocchini M, D’Amato R, Ciancaleoni S, Fontanella MC, Palmerini CA, Beone GM, Onofri A, Negri V, Marconi G, Albertini E, Businelli D. Soil Selenium (Se) Biofortification Changes the Physiological, Biochemical and Epigenetic Responses to Water Stress in Zea mays L. by Inducing a Higher Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:389. [PMID: 29636765 PMCID: PMC5880925 DOI: 10.3389/fpls.2018.00389] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/09/2018] [Indexed: 05/08/2023]
Abstract
Requiring water and minerals to grow and to develop its organs, Maize (Zea mays L.) production and distribution is highly rainfall-dependent. Current global climatic changes reveal irregular rainfall patterns and this could represent for maize a stressing condition resulting in yield and productivity loss around the world. It is well known that low water availability leads the plant to adopt a number of metabolic alterations to overcome stress or reduce its effects. In this regard, selenium (Se), a trace element, can help reduce water damage caused by the overproduction of reactive oxygen species (ROS). Here we report the effects of exogenous Se supply on physiological and biochemical processes that may influence yield and quality of maize under drought stress conditions. Plants were grown in soil fertilized by adding 150 mg of Se (sodium selenite). We verified the effects of drought stress and Se treatment. Selenium biofortification proved more beneficial for maize plants when supplied at higher Se concentrations. The increase in proline, K concentrations and nitrogen metabolism in aerial parts of plants grown in Se-rich substrates, seems to prove that Se-biofortification increased plant resistance to water shortage conditions. Moreover, the increase of SeMeSeCys and SeCys2 forms in roots and aerial parts of Se-treated plants suggest resistance strategies to Se similar to those existing in Se-hyperaccumulator species. In addition, epigenetic changes in DNA methylation due to water stress and Se treatment were also investigated using methylation sensitive amplified polymorphism (MSAP). Results suggest that Se may be an activator of particular classes of genes that are involved in tolerance to abiotic stresses. In particular, PSY (phytoene synthase) gene, essential for maintaining leaf carotenoid contents, SDH (sorbitol dehydrogenase), whose activity regulates the level of important osmolytes during drought stress and ADH (alcohol dehydrogenase), whose activity plays a central role in biochemical adaptation to environmental stress. In conclusion, Se-biofortification could help maize plants to cope with drought stress conditions, by inducing a higher drought tolerance.
Collapse
Affiliation(s)
- Marika Bocchini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Roberto D’Amato
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Simona Ciancaleoni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Maria C. Fontanella
- Department for Sustainable Food Process, Catholic University of the Sacred Heart, Piacenza, Italy
| | - Carlo A. Palmerini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Gian M. Beone
- Department for Sustainable Food Process, Catholic University of the Sacred Heart, Piacenza, Italy
| | - Andrea Onofri
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Valeria Negri
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Gianpiero Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Daniela Businelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Bayat S, Shekari Khaniani M, Choupani J, Alivand MR, Mansoori Derakhshan S. HDACis (class I), cancer stem cell, and phytochemicals: Cancer therapy and prevention implications. Biomed Pharmacother 2018; 97:1445-1453. [DOI: 10.1016/j.biopha.2017.11.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
|
20
|
The correlation between DNA methylation and transcriptional expression of human dopamine transporter in cell lines. Neurosci Lett 2017; 662:91-97. [PMID: 29030220 DOI: 10.1016/j.neulet.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 01/03/2023]
Abstract
This study aims to investigate the relationship between DNA methylation and expression of human dopamine transporter (hDAT). We examined methylation status of hDAT in cells with various hDAT expression levels, including two dopaminergic neural cell lines (SK-N-AS and SH-SY-5Y) and one non-dopaminergic cell line (HEK293) by bisulfite sequencing PCR(BSP). The effects of DNA methyltransferase inhibitor 5-aza-dC or/and histone deacetylase inhibitor (HDACi, sodium butyrate, NaB) on the DNA methylation status and mRNA expression levels of hDAT were examined. The results revealed marked hypomethylation of the two promoter regions (-1214 to -856bp and -48 to 439bp, the first base of exon 1 was taken as +1 bp)of hDAT in SK-N-AS (4.7%±2.0mC and 3.5%±1.0mC, respectively) compared with SH-SY-5Y (88.0%±4.4%mC and 81.1%±8.8%mC) and HEK293 (90.7%±2.4mC and 84.4%±8.6% mC) cell lines, indicating a cell-specific methylation regulation of hDAT. 5-aza-dC and NaB decreased hypermethylation,while increase hDAT expression in SH-SY-5Y cells and recovered hDAT mRNA expression in HEK293 cells. DNA methylation enabled the cell-specific differential expression of the hDAT gene. hDAT silencing was reversed by the introduction of DNA hypomethylation via 5-aza-dC or/and NaB.
Collapse
|
21
|
The Variation Analysis of DNA Methylation in Wheat Carrying Gametocidal Chromosome 3C from Aegilops triuncialis. Int J Mol Sci 2017; 18:ijms18081738. [PMID: 28796162 PMCID: PMC5578128 DOI: 10.3390/ijms18081738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
Gametocidal (Gc) chromosomes can ensure their preferential transmission by killing the gametes without themselves through causing chromosome breakage and therefore have been exploited as an effective tool for genetic breeding. However, to date very little is known about the molecular mechanism of Gc action. In this study, we used methylation-sensitive amplified polymorphism (MSAP) technique to assess the extent and pattern of cytosine methylation alterations at the whole genome level between two lines of wheat Gc addition line and their common wheat parent. The results indicated that the overall levels of cytosine methylation of two studied Gc addition lines (CS–3C and CS–3C3C, 48.68% and 48.65%, respectively) were significantly increased when compared to common wheat CS (41.31%) and no matter fully methylated or hemimethylated rates enhanced in Gc addition lines. A set of 30 isolated fragments that showed different DNA methylation or demethylation patterns between the three lines were sequenced and the results indicated that 8 fragments showed significant homology to known sequences, of which three were homologous to MITE transposon (Miniature inverted–repeat transposable elements), LTR-retrotransposon WIS-1p and retrotransposon Gypsy, respectively. Overall, our results showed that DNA methylation could play a role in the Gc action.
Collapse
|
22
|
Fei Y, Xue Y, Du P, Yang S, Deng X. Expression analysis and promoter methylation under osmotic and salinity stress of TaGAPC1 in wheat (Triticum aestivum L). PROTOPLASMA 2017; 254:987-996. [PMID: 27488925 DOI: 10.1007/s00709-016-1008-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) catalyzes a key reaction in glycolysis and encoded by a multi-gene family which showed instability expression under abiotic stress. DNA methylation is an epigenetic modification that plays an important role in gene regulation in response to abiotic stress. The comprehension of DNA methylation at promoter region of TaGAPC1 can provide insights into the transcription regulation mechanisms of plant genes under abiotic stress. In this study, we cloned TaGAPC1 genes and its promoters from two wheat genomes, then investigated the expression patterns of TaGAPC1 under osmotic and salinity stress, and analyzed the promoter sequences. Moreover, the methylation patterns of promoters under stress were confirmed. Expression analysis indicated that TaGAPC1 was induced inordinately by stresses in two wheat genotypes with contrasting drought tolerance. Several stress-related cis-acting elements (MBS, DRE, GT1 and LTR et al.) were located in its promoters. Furthermore, the osmotic and salinity stress induced the demethylation of CG and CHG nucleotide in the promoter region of Changwu134. The methylation level of CHG and CHH in promoter of Zhengyin1 was always increased under stresses, and the CG contexts remained unchanged. The cytosine loci of stress-related cis-acting elements also showed different methylation changes in this process. These results provide insights into the relationship between promoter methylation and gene expression, promoting the function investigation of GAPC.
Collapse
Affiliation(s)
- Ying Fei
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, People's Republic of China
| | - Yuanxia Xue
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, People's Republic of China
| | - Peixiu Du
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, People's Republic of China
| | - Shushen Yang
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, People's Republic of China.
| | - Xiping Deng
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, 712100, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
23
|
Zheng X, Chen L, Xia H, Wei H, Lou Q, Li M, Li T, Luo L. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant's adaptation to drought condition. Sci Rep 2017; 7:39843. [PMID: 28051176 PMCID: PMC5209664 DOI: 10.1038/srep39843] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022] Open
Abstract
Epigenetic mechanisms are crucial mediators of appropriate plant reactions to adverse environments, but their involvement in long-term adaptation is less clear. Here, we established two rice epimutation accumulation lines by applying drought conditions to 11 successive generations of two rice varieties. We took advantage of recent technical advances to examine the role of DNA methylation variations on rice adaptation to drought stress. We found that multi-generational drought improved the drought adaptability of offspring in upland fields. At single-base resolution, we discovered non-random appearance of drought-induced epimutations. Moreover, we found that a high proportion of drought-induced epimutations maintained their altered DNA methylation status in advanced generations. In addition, genes related to transgenerational epimutations directly participated in stress-responsive pathways. Analysis based on a cluster of drought-responsive genes revealed that their DNA methylation patterns were affected by multi-generational drought. These results suggested that epigenetic mechanisms play important roles in rice adaptations to upland growth conditions. Epigenetic variations have morphological, physiological and ecological consequences and are heritable across generations, suggesting that epigenetics can be considered an important regulatory mechanism in plant long-term adaptation and evolution under adverse environments.
Collapse
Affiliation(s)
- Xiaoguo Zheng
- Shanghai Agrobiological Gene Center, Shanghai, China.,College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Haibin Wei
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Qiaojun Lou
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Mingshou Li
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Tiemei Li
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai, China.,College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Wang GX, Lv J, Zhang J, Han S, Zong M, Guo N, Zeng XY, Zhang YY, Wang YP, Liu F. Genetic and Epigenetic Alterations of Brassica nigra Introgression Lines from Somatic Hybridization: A Resource for Cauliflower Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1258. [PMID: 27625659 PMCID: PMC5003894 DOI: 10.3389/fpls.2016.01258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/08/2016] [Indexed: 05/30/2023]
Abstract
Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower "Korso" (Brassica oleracea var. botrytis, 2n = 18, CC genome) and black mustard "G1/1" (Brassica nigra, 2n = 16, BB genome). However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs) were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits) and physiological (black rot/club root resistance) characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from "Korso." Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms) analysis identified the presence of "G1/1" DNA segments (average 7.5%). Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1%) was higher than presence of novel bands (1.4%), and the presence of fragments specific to Brassica carinata (BBCC 2n = 34) were common (average 15.5%). Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4%) was more frequent than hypomethylation (4.8%). Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.
Collapse
Affiliation(s)
- Gui-xiang Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Jing Lv
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
- Yangzhou UniversityYangzhou, China
- Zhalute No.1 High SchoolTongliao, China
| | - Jie Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Shuo Han
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Mei Zong
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Ning Guo
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Xing-ying Zeng
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Yue-yun Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | | | - Fan Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| |
Collapse
|
25
|
Huang YZ, Zhang ZJ, He H, Cao XK, Song CC, Liu KP, Lan XY, Lei CZ, Qi XL, Bai YY, Chen H. Correlation between ZBED6 Gene Upstream CpG Island methylation and mRNA expression in cattle. Anim Biotechnol 2016; 28:104-111. [DOI: 10.1080/10495398.2016.1212060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yong-Zhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Zi-Jing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, People’s Republic of China
| | - Hua He
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Xiu-Kai Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Cheng-Chuang Song
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Kun-Peng Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Xian-Yong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Chu-Zhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Xing-Lei Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, Henan, People’s Republic of China
| | - Yue-Yu Bai
- Animal Health Supervision in Henan Province, Zhengzhou, Henan, People’s Republic of China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| |
Collapse
|
26
|
Mishra S, Saadat D, Kwon O, Lee Y, Choi WS, Kim JH, Yeo WH. Recent advances in salivary cancer diagnostics enabled by biosensors and bioelectronics. Biosens Bioelectron 2016; 81:181-197. [PMID: 26946257 DOI: 10.1016/j.bios.2016.02.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 01/05/2023]
Abstract
There is a high demand for a non-invasive, rapid, and highly accurate tool for disease diagnostics. Recently, saliva based diagnostics for the detection of specific biomarkers has drawn significant attention since the sample extraction is simple, cost-effective, and precise. Compared to blood, saliva contains a similar variety of DNA, RNA, proteins, metabolites, and microbiota that can be compiled into a multiplex of cancer detection markers. The salivary diagnostic method holds great potential for early-stage cancer diagnostics without any complicated and expensive procedures. Here, we review various cancer biomarkers in saliva and compare the biomarkers efficacy with traditional diagnostics and state-of-the-art bioelectronics. We summarize biomarkers in four major groups: genomics, transcriptomics, proteomics, and metabolomics/microbiota. Representative bioelectronic systems for each group are summarized based on various stages of a cancer. Systematic study of oxidative stress establishes the relationship between macromolecules and cancer biomarkers in saliva. We also introduce the most recent examples of salivary diagnostic electronics based on nanotechnologies that can offer rapid, yet highly accurate detection of biomarkers. A concluding section highlights areas of opportunity in the further development and applications of these technologies.
Collapse
Affiliation(s)
- Saswat Mishra
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Darius Saadat
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA
| | - Ohjin Kwon
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Yongkuk Lee
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Woon-Seop Choi
- School of Display Engineering, Hoseo University, Asan, Republic of Korea
| | - Jong-Hoon Kim
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA.
| | - Woon-Hong Yeo
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Center for Rehabilitation Science and Engineering, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
27
|
Wang XL, Song SH, Wu YS, Li YL, Chen TT, Huang ZY, Liu S, Dunwell TL, Pfeifer GP, Dunwell JM, Wamaedeesa R, Ullah I, Wang Y, Hu SN. Genome-wide mapping of 5-hydroxymethylcytosine in three rice cultivars reveals its preferential localization in transcriptionally silent transposable element genes. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6651-63. [PMID: 26272901 PMCID: PMC4715260 DOI: 10.1093/jxb/erv372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
5-Hydroxymethylcytosine (5hmC), a modified form of cytosine that is considered the sixth nucleobase in DNA, has been detected in mammals and is believed to play an important role in gene regulation. In this study, 5hmC modification was detected in rice by employing a dot-blot assay, and its levels was further quantified in DNA from different rice tissues using liquid chromatography-multistage mass spectrometry (LC-MS/MS/MS). The results showed large intertissue variation in 5hmC levels. The genome-wide profiles of 5hmC modification in three different rice cultivars were also obtained using a sensitive chemical labelling followed by a next-generation sequencing method. Thousands of 5hmC peaks were identified, and a comparison of the distributions of 5hmC among different rice cultivars revealed the specificity and conservation of 5hmC modification. The identified 5hmC peaks were significantly enriched in heterochromatin regions, and mainly located in transposable elements (TEs), especially around retrotransposons. The correlation analysis of 5hmC and gene expression data revealed a close association between 5hmC and silent TEs. These findings provide a resource for plant DNA 5hmC epigenetic studies and expand our knowledge of 5hmC modification.
Collapse
Affiliation(s)
- Xi-liang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China Graduate University of Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Shu-hui Song
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong-Sheng Wu
- Mudanjiang Youbo Pharmaceutical Co., Ltd, Heilongjiang 157011, China
| | - Yu-Li Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China Graduate University of Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Ting-ting Chen
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-yuan Huang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Shuo Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | | | - Gerd P Pfeifer
- Beckman Research Institute, City of Hope Medical Centre, Duarte, CA 91010, USA
| | - Jim M Dunwell
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6AR, UK
| | - Raheema Wamaedeesa
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6AR, UK
| | - Ihsan Ullah
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6AR, UK Agricultural Biotechnology Research Institute, Faisalabad 38000, Pakistan
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Song-nian Hu
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
28
|
Leboldus JM, Kinzer K, Richards J, Ya Z, Yan C, Friesen TL, Brueggeman R. Genotype-by-sequencing of the plant-pathogenic fungi Pyrenophora teres and Sphaerulina musiva utilizing Ion Torrent sequence technology. MOLECULAR PLANT PATHOLOGY 2015; 16:623-32. [PMID: 25346350 PMCID: PMC6638358 DOI: 10.1111/mpp.12214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Genetic and genomics tools to characterize host-pathogen interactions are disproportionately directed to the host because of the focus on resistance. However, understanding the genetics of pathogen virulence is equally important and has been limited by the high cost of de novo genotyping of species with limited marker data. Non-resource-prohibitive methods that overcome the limitation of genotyping are now available through genotype-by-sequencing (GBS). The use of a two-enzyme restriction-associated DNA (RAD)-GBS method adapted for Ion Torrent sequencing technology provided robust and reproducible high-density genotyping of several fungal species. A total of 5783 and 2373 unique loci, 'sequence tags', containing 16,441 and 9992 single nucleotide polymorphisms (SNPs) were identified and characterized from natural populations of Pyrenophora teres f. maculata and Sphaerulina musiva, respectively. The data generated from the P. teres f. maculata natural population were used in association mapping analysis to map the mating-type gene to high resolution. To further validate the methodology, a biparental population of P. teres f. teres, previously used to develop a genetic map utilizing simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers, was re-analysed using the SNP markers generated from this protocol. A robust genetic map containing 1393 SNPs on 997 sequence tags spread across 15 linkage groups with anchored reference markers was generated from the P. teres f. teres biparental population. The robust high-density markers generated using this protocol will allow positional cloning in biparental fungal populations, association mapping of natural fungal populations and population genetics studies.
Collapse
Affiliation(s)
- Jared M Leboldus
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Kasia Kinzer
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Jonathan Richards
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Zhu Ya
- Department of Computer Science, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Changhui Yan
- Department of Computer Science, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
- Cereal Crops Research Unit, USDA-ARS, Fargo, ND, 58102, USA
| | - Robert Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| |
Collapse
|
29
|
Liu S, Li F, Kong L, Sun Y, Qin L, Chen S, Cui H, Huang Y, Xia G. Genetic and epigenetic changes in somatic hybrid introgression lines between wheat and tall wheatgrass. Genetics 2015; 199:1035-45. [PMID: 25670745 PMCID: PMC4391570 DOI: 10.1534/genetics.114.174094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/05/2015] [Indexed: 12/27/2022] Open
Abstract
Broad phenotypic variations were induced in derivatives of an asymmetric somatic hybridization of bread wheat (Triticum aestivum) and tall wheatgrass (Thinopyrum ponticum Podp); however, how these variations occurred was unknown. We explored the nature of these variations by cytogenetic assays and DNA profiling techniques to characterize six genetically stable somatic introgression lines. Karyotyping results show the six lines similar to their wheat parent, but GISH analysis identified the presence of a number of short introgressed tall wheatgrass chromatin segments. DNA profiling revealed many genetic and epigenetic differences, including sequences deletions, altered regulation of gene expression, changed patterns of cytosine methylation, and the reactivation of retrotransposons. Phenotypic variations appear to result from altered repetitive sequences combined with the epigenetic regulation of gene expression and/or retrotransposon transposition. The extent of genetic and epigenetic variation due to the maintenance of parent wheat cells in tissue culture was assessed and shown to be considerably lower than had been induced in the introgression lines. Asymmetric somatic hybridization provides appropriate material to explore the nature of the genetic and epigenetic variations induced by genomic shock.
Collapse
Affiliation(s)
- Shuwei Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Fei Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Lina Kong
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Yang Sun
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Lumin Qin
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Suiyun Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Haifeng Cui
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Yinghua Huang
- U.S. Department of Agriculture/Agricultural Research Service Plant Science Research Laboratory, Stillwater, Oklahoma 74075
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| |
Collapse
|
30
|
Lugassi-Ben Hamo M, Martin CV, Zaccai M. Characterization of expressed sequence tags from Lilium longiflorum in vernalized and non-vernalized bulbs. JOURNAL OF PLANT PHYSIOLOGY 2015; 173:72-81. [PMID: 25462080 DOI: 10.1016/j.jplph.2014.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/26/2014] [Accepted: 09/28/2014] [Indexed: 05/11/2023]
Abstract
In Lilium longiflorum, vernalization is both an obligatory requirement and the major factor affecting flowering time, however, little is known about the molecular regulation of this mechanism in Lilium and other flowering bulbs. Exposure of L. longiflorum bulbs to 9 weeks at 4°C greatly promoted stem elongation within the bulb, floral transition and flowering. Subtraction libraries of vernalized (V) and non-vernalized (NV) bulb meristems were constructed. 671 and 479 genes were sequenced, from which 72 and 82 proteins were inferred for the NV-V and the V-NV libraries, respectively. Much lower transcription levels and putative gene functions were recorded in the NV-V libraries compared the V-NV libraries. However, a large number of genes annotated to transposable elements (TEs), represented more than 20% of the sequenced cDNA were expressed in the NV-V libraries, as opposed to less than 2% in the V-NV libraries. The expression profile of several genes potentially involved in the vernalization pathway was assessed. Expression of LlSOC1, the lily homologue of SUPPRESSOR OF OVER-EXPRESSION OF CO1 (SOC1), an important flowering gene in several plant species, found in the V-NV library, was highly up-regulated during bulb meristem cold exposure. The subtraction libraries provided a fast tool for relevant gene isolation.
Collapse
Affiliation(s)
- Maya Lugassi-Ben Hamo
- Department of Life Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beersheva 84105, Israel.
| | | | - Michele Zaccai
- Department of Life Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beersheva 84105, Israel.
| |
Collapse
|
31
|
Venkateswaran Venkatasubramani A, McLaughlin K, Rodriguez Blanco G, Larionov V, Kagansky A. Pilot RNAi screening using mammalian cell-based system identifies novel putative silencing factors including Kat5/Tip60. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.4.570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Bocchini M, Bartucca ML, Ciancaleoni S, Mimmo T, Cesco S, Pii Y, Albertini E, Del Buono D. Iron deficiency in barley plants: phytosiderophore release, iron translocation, and DNA methylation. FRONTIERS IN PLANT SCIENCE 2015; 6:514. [PMID: 26217365 PMCID: PMC4496560 DOI: 10.3389/fpls.2015.00514] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
All living organisms require iron (Fe) to carry out many crucial metabolic pathways. Despite its high concentrations in the geosphere, Fe bio-availability to plant roots can be very scarce. To cope with Fe shortage, plants can activate different strategies. For these reasons, we investigated Fe deficient Hordeum vulgare L. plants by monitoring growth, phytosiderophores (PS) release, iron content, and translocation, and DNA methylation, with respect to Fe sufficient ones. Reductions of plant growth, roots to shoots Fe translocation, and increases in PS release were found. Experiments on DNA methylation highlighted significant differences between fully and hemy-methylated sequences in Fe deficient plants, with respect to Fe sufficient plants. Eleven DNA bands differently methylated were found in starved plants. Of these, five sequences showed significant alignment to barley genes encoding for a glucosyltransferase, a putative acyl carrier protein, a peroxidase, a β-glucosidase and a transcription factor containing a Homeodomin. A resupply experiment was carried out on starved barley re-fed at 13 days after sowing (DAS), and it showed that plants did not recover after Fe addition. In fact, Fe absorption and root to shoot translocation capacities were impaired. In addition, resupplied barley showed DNA methylation/demethylation patterns very similar to that of barley grown in Fe deprivation. This last finding is very encouraging because it indicates as these variations/modifications could be transmitted to progenies.
Collapse
Affiliation(s)
- Marika Bocchini
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| | - Maria Luce Bartucca
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| | - Simona Ciancaleoni
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of BolzanoBolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of BolzanoBolzano, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of BolzanoBolzano, Italy
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
- *Correspondence: Emidio Albertini, Department of Agriculture, Food and Environmental Sciences, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Daniele Del Buono
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| |
Collapse
|
33
|
Abstract
Stress-induced ROS changes DNA methylation patterns. A protocol combining methylation-sensitive restriction endonuclease (MS-RE) digestion with suppression subtractive hybridization (SSH) to construct the differential-methylation subtractive library was developed for finding genes regulated by methylation mechanism under cold stress. The total efficiency of target fragment detection was 74.64%. DNA methylation analysis demonstrated the methylation status of target fragments changed after low temperature or DNA methyltransferase inhibitor treatment. Transcription level analysis indicated that demethylation of DNA promotes gene expression level. The results proved that our protocol was reliable and efficient to obtain gene fragments in differential-methylation status.
Collapse
|
34
|
Zheng X, Chen L, Li M, Lou Q, Xia H, Wang P, Li T, Liu H, Luo L. Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS One 2013; 8:e80253. [PMID: 24244664 PMCID: PMC3823650 DOI: 10.1371/journal.pone.0080253] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022] Open
Abstract
Adverse environmental conditions have large impacts on plant growth and crop production. One of the crucial mechanisms that plants use in variable and stressful natural environments is gene expression modulation through epigenetic modification. In this study, two rice varieties with different drought resistance levels were cultivated under drought stress from tilling stage to seed filling stage for six successive generations. The variations in DNA methylation of the original generation (G0) and the sixth generation (G6) of these two varieties in normal condition (CK) and under drought stress (DT) at seedling stage were assessed by using Methylation Sensitive Amplification Polymorphism (MSAP) method. The results revealed that drought stress had a cumulative effect on the DNA methylation pattern of both varieties, but these two varieties had different responses to drought stress in DNA methylation. The DNA methylation levels of II-32B (sensitive) and Huhan-3 (resistant) were around 39% and 32%, respectively. Genome-wide DNA methylation variations among generations or treatments accounted for around 13.1% of total MSAP loci in II-32B, but was only approximately 1.3% in Huhan-3. In II-32B, 27.6% of total differentially methylated loci (DML) were directly induced by drought stress and 3.2% of total DML stably transmitted their changed DNA methylation status to the next generation. In Huhan-3, the numbers were 48.8% and 29.8%, respectively. Therefore, entrainment had greater effect on Huhan-3 than on II-32B. Sequence analysis revealed that the DML were widely distributed on all 12 rice chromosomes and that it mainly occurred on the gene’s promoter and exon region. Some genes with DML respond to environmental stresses. The inheritance of epigenetic variations induced by drought stress may provide a new way to develop drought resistant rice varieties.
Collapse
Affiliation(s)
- Xiaoguo Zheng
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Mingshou Li
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Qiaojun Lou
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Pei Wang
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Tiemei Li
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hongyan Liu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Lijun Luo
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
- * E-mail:
| |
Collapse
|
35
|
Intragenic DNA methylation status down-regulates bovine IGF2 gene expression in different developmental stages. Gene 2013; 534:356-61. [PMID: 24140490 DOI: 10.1016/j.gene.2013.09.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/26/2013] [Indexed: 12/31/2022]
Abstract
DNA methylation is a key epigenetic modification in mammals and has an essential and important role in muscle development. Insulin-like growth factor 2 (IGF2) is a fetal growth and differentiation factor that plays an important role in muscle growth and in myoblast proliferation and differentiation. The aim of this study was to evaluate the expression of IGF2 and the methylation pattern on the differentially methylated region (DMR) of the last exon of IGF2 in six tissues with two different developmental stages. The DNA methylation pattern was compared using bisulfite sequencing polymerase chain reaction (BSP) and combined bisulfite restriction analysis (COBRA). The quantitative real-time PCR (qPCR) analysis indicated that IGF2 has a broad tissue distribution and the adult bovine group showed significant lower mRNA expression levels than that in the fetal bovine group (P<0.05 or P<0.01). Moreover, the DNA methylation level analysis showed that the adult bovine group exhibited a significantly higher DNA methylation levels than that in the fetal bovine group (P<0.05 or P<0.01). These results indicate that IGF2 expression levels were negatively associated with the methylation status of the IGF2 DMR during the two developmental stages. Our results suggest that the methylation pattern in this DMR may be a useful parameter to investigate as a marker-assisted selection for muscle developmental in beef cattle breeding program and as a model for studies in other species.
Collapse
|
36
|
Marconi G, Pace R, Traini A, Raggi L, Lutts S, Chiusano M, Guiducci M, Falcinelli M, Benincasa P, Albertini E. Use of MSAP markers to analyse the effects of salt stress on DNA methylation in rapeseed (Brassica napus var. oleifera). PLoS One 2013; 8:e75597. [PMID: 24086583 PMCID: PMC3781078 DOI: 10.1371/journal.pone.0075597] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 08/18/2013] [Indexed: 01/30/2023] Open
Abstract
Excessive soil salinity is a major ecological and agronomical problem, the adverse effects of which are becoming a serious issue in regions where saline water is used for irrigation. Plants can employ regulatory strategies, such as DNA methylation, to enable relatively rapid adaptation to new conditions. In this regard, cytosine methylation might play an integral role in the regulation of gene expression at both the transcriptional and post-transcriptional levels. Rapeseed, which is the most important oilseed crop in Europe, is classified as being tolerant of salinity, although cultivars can vary substantially in their levels of tolerance. In this study, the Methylation Sensitive Amplified Polymorphism (MSAP) approach was used to assess the extent of cytosine methylation under salinity stress in salinity-tolerant (Exagone) and salinity-sensitive (Toccata) rapeseed cultivars. Our data show that salinity affected the level of DNA methylation. In particular methylation decreased in Exagone and increased in Toccata. Nineteen DNA fragments showing polymorphisms related to differences in methylation were sequenced. In particular, two of these were highly similar to genes involved in stress responses (Lacerata and trehalose-6-phosphatase synthase S4) and were chosen to further characterization. Bisulfite sequencing and quantitative RT-PCR analysis of selected MSAP loci showed that cytosine methylation changes under salinity as well as gene expression varied. In particular, our data show that salinity stress influences the expression of the two stress-related genes. Moreover, we quantified the level of trehalose in Exagone shoots and found that it was correlated to TPS4 expression and, therefore, to DNA methylation. In conclusion, we found that salinity could induce genome-wide changes in DNA methylation status, and that these changes, when averaged across different genotypes and developmental stages, accounted for 16.8% of the total site-specific methylation differences in the rapeseed genome, as detected by MSAP analysis.
Collapse
Affiliation(s)
- Gianpiero Marconi
- Department of Applied Biology, University of Perugia, Perugia, Italy
| | - Roberta Pace
- Department of Agricultural and Environmental Science, University of Perugia, Perugia, Italy
| | - Alessandra Traini
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Naples, Italy
| | - Lorenzo Raggi
- Department of Applied Biology, University of Perugia, Perugia, Italy
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marialuisa Chiusano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Naples, Italy
| | - Marcello Guiducci
- Department of Agricultural and Environmental Science, University of Perugia, Perugia, Italy
| | - Mario Falcinelli
- Department of Applied Biology, University of Perugia, Perugia, Italy
| | - Paolo Benincasa
- Department of Agricultural and Environmental Science, University of Perugia, Perugia, Italy
| | - Emidio Albertini
- Department of Applied Biology, University of Perugia, Perugia, Italy
| |
Collapse
|
37
|
Soltanpour MS, Amirizadeh N, Zaker F, Oodi A, Nikougoftar M, Kazemi A. mRNA expression and promoter DNA methylation status of CDKi p21 and p57 genes inex vivoexpanded CD34+cells following co-culture with mesenchymal stromal cells and growth factors. Hematology 2013; 18:30-8. [DOI: 10.1179/1607845412y.0000000030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Mohammad Soleiman Soltanpour
- Department of Hematology and Blood BankingSchool of Allied Medical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Naser Amirizadeh
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood BankingSchool of Allied Medical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Arezoo Oodi
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Tehran, Iran
| | - Mahin Nikougoftar
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Tehran, Iran
| | - Ahmad Kazemi
- Department of Hematology and Blood BankingSchool of Allied Medical Sciences, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
38
|
Jin L, Wang W, Hu D, Min S. Effects of Protonation and C5 Methylation on the Electrophilic Addition Reaction of Cytosine: A Computational Study. J Phys Chem B 2012; 117:3-12. [DOI: 10.1021/jp304282z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Lingxia Jin
- Key Laboratory for
Macromolecular Science of Shaanxi Province, School of
Chemistry and Chemical Engineering, Shaanxi Normal University, Xi′an 710062, China
- School of Chemical
and Environmental Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| | - Wenliang Wang
- Key Laboratory for
Macromolecular Science of Shaanxi Province, School of
Chemistry and Chemical Engineering, Shaanxi Normal University, Xi′an 710062, China
| | - Daodao Hu
- Key Laboratory for
Macromolecular Science of Shaanxi Province, School of
Chemistry and Chemical Engineering, Shaanxi Normal University, Xi′an 710062, China
| | - Suotian Min
- School of Chemical
and Environmental Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
39
|
Shao C, Ma X, Xu X, Meng Y. Identification of the highly accumulated microRNA*s in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Gene 2012. [PMID: 23201415 DOI: 10.1016/j.gene.2012.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Plant microRNAs (miRNAs) are crucial for the regulation of gene expression, which is involved in almost all the important biological processes. In the cytoplasm, the miRNA strand is selectively incorporated into a specific Argonaute (AGO)-associated gene silencing complex, while the miRNA* is degraded rapidly. Thus, most miRNA*s were thought to be biologically meaningless. Interestingly, several recent reports in both plants and animals have shaken this notion. Many miRNA*s were demonstrated to possess regulatory roles in gene expression. However, the low accumulation levels of most miRNA*s raise the question whether the activities of this small RNA (sRNA) species are widespread in plants. Here, by using publicly available sRNA high-throughput sequencing data, we found that the accumulation levels of several miRNA*s could be much higher than those of their miRNA partners in certain organs, mutants and/or AGO-associated silencing complexes of both Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Based on target prediction and degradome sequencing data-based validation, some of these highly accumulated miRNA*s were indicated to possess cleavage-based potential regulatory role on certain targets. Besides, some interesting biological interpretations were obtained based on the accumulation patterns of the miRNA*s, the annotations of the target genes, and literature mining. Taken together, the expanded list of the highly accumulated miRNA*s along with their potential target genes discovered in this study further strengthened the current notion that certain members of the miRNA* species are biologically relevant, which needs further inspection.
Collapse
Affiliation(s)
- Chaogang Shao
- College of Life Sciences, Huzhou Teachers College, Huzhou 313000, PR China.
| | | | | | | |
Collapse
|
40
|
Xiao Z, Wang C, Mo D, Li J, Chen Y, Zhang Z, Cong P. Promoter CpG methylation status in porcine Lyn is associated with its expression levels. Gene 2012; 511:73-8. [PMID: 23000019 DOI: 10.1016/j.gene.2012.08.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 08/07/2012] [Accepted: 08/28/2012] [Indexed: 11/26/2022]
Abstract
Resistance to disease and improvement of product quality are important goals in pig farming. Tyrosine Protein Kinase Lyn (LYN) is one of several Src-family tyrosine kinases in immune cells. This protein functions both as a positive and negative regulator of B cell activation, and regulates signaling pathways through phosphorylation of inhibitory receptors, enzymes and adaptors, which suggested that LYN could be correlated with immunity and can be considered as a candidate gene to study in disease resistance. Until now, the profiles of expression and transcriptional regulation of the LYN gene in pig breeds different in immune capacity remain unclear. Using real-time PCR, it indicated that porcine LYN mRNA expressed mainly in immune organs including the spleen, duodenum and liver. Furthermore, Dahuabai pigs (a kind of Chinese indigenous pig breeds with higher immune capacity) showed significant higher LYN mRNA expression levels than that in Landrace. Methylation analysis indicates that LYN expression levels were associated with the methylation status of the LYN promoter, and methylation of the novel CpG site at -1268C/-1267G generated by transposition at -1267 (A→G) results in up-regulating transcriptional activity of this gene. Interestingly, the base A located in -1267 mainly exhibited in landrace while the base G mainly in Dahuabai pigs. These results might contribute to study the function of this gene in pig breeding for disease resistance.
Collapse
Affiliation(s)
- Zhengzhong Xiao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | | | | | | | | | | | | |
Collapse
|
41
|
Song Y, Ji D, Li S, Wang P, Li Q, Xiang F. The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS One 2012; 7:e41274. [PMID: 22815985 PMCID: PMC3399865 DOI: 10.1371/journal.pone.0041274] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/19/2012] [Indexed: 11/19/2022] Open
Abstract
Epigenetic modification contributes to the regulation of gene expression and plant development under salinity stress. Here we describe the identification of 49 soybean transcription factors by microarray analysis as being inducible by salinity stress. A semi-quantitative RT-PCR-based expression assay confirmed the salinity stress inducibility of 45 of these 49 transcription factors, and showed that ten of them were up-regulated when seedlings were exposed to the demethylation agent 5-aza-2-deoxycytidine. Salinity stress was shown to affect the methylation status of four of these ten transcription factors (one MYB, one b-ZIP and two AP2/DREB family members) using a combination of bisulfite sequencing and DNA methylation-sensitive DNA gel blot analysis. ChIP analysis indicated that the activation of three of the four DNA methylated transcription factors was correlated with an increased level of histone H3K4 trimethylation and H3K9 acetylation, and/or a reduced level of H3K9 demethylation in various parts of the promoter or coding regions. Our results suggest a critical role for some transcription factors' activation/repression by DNA methylation and/or histone modifications in soybean tolerance to salinity stress.
Collapse
Affiliation(s)
- Yuguang Song
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Dandan Ji
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Shuo Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Peng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Qiang Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Fengning Xiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
42
|
Qin S, Lin H, Jiang P. Advances in genetic engineering of marine algae. Biotechnol Adv 2012; 30:1602-13. [PMID: 22634258 DOI: 10.1016/j.biotechadv.2012.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/12/2012] [Accepted: 05/18/2012] [Indexed: 12/28/2022]
Abstract
Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited.
Collapse
Affiliation(s)
- Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | | | | |
Collapse
|
43
|
Wu J, Du H, Liao X, Zhao Y, Li L, Yang L. Tn5 transposase-assisted transformation of indica rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:186-200. [PMID: 21635585 DOI: 10.1111/j.1365-313x.2011.04663.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Here, we describe experiments on Tn5 transposase-assisted transformation of indica rice. Transposomes were formed in vitro as a result of hyperactive Tn5 transposase complexing with a transposon that contained a 19-bp tetracycline operator (tetO) sequence. To form modified projectiles for transformation, the Tn10-derived prokaryotic tetracycline repressor (TetR) proteins, which can bind transposomes via the high affinity of TetR for tetO, were immobilized onto the surface of bare gold microscopic particles. These projectiles were introduced into cells of the indica rice cultivar Zhuxian B by particle bombardment. Once projectiles were inside the cell, tetracycline induced an allosteric conformational change in TetR that resulted in the dissociation of TetR from tetO, and thus generated free transposomes. Molecular evidence of transposition was obtained by the cloning of insertion sites from many transgenic plants. We also demonstrated that the introduced foreign DNA was inherited stably over several generations. This technique is a promising transformation method for other plant species as it is species independent.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | | | | | | | | | | |
Collapse
|
44
|
Wu J, Du H, Liao X, Zhao Y, Li L, Yang L. An improved particle bombardment for the generation of transgenic plants by direct immobilization of relleasable Tn5 transposases onto gold particles. PLANT MOLECULAR BIOLOGY 2011; 77:117-27. [PMID: 21643845 DOI: 10.1007/s11103-011-9798-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 05/25/2011] [Indexed: 05/09/2023]
Abstract
We have developed a modified particle bombardment method for plant transgenesis. An intein-tag and a 6×Cys-tag were successively fused to the N-terminus of a hyperactive Tn5 transposase. The modified transposase was immobilized on bare gold microscopic particles via covalent binding of a 6×Cys-tag sulfydryl groups to the gold surface. The tethered transposase can bind the transposon DNA in vitro to form the transposome in the absence of Mg²⁺ ions. After bombardment of the gold particles carrying the transposomes into the plant cells, the transposomes will be released from the carrier due to the activated self-cleavage function of intein-tag. Our data showed this procedure integrated foreign DNA into the plant genome with an increased transformation frequency as compared to the conventional particle bombardment method. A single copy insertion can also be obtained by decreasing of the assembled transposon DNA amount in relation to plant cell biomass.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Tan MP. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:21-26. [PMID: 19889550 DOI: 10.1016/j.plaphy.2009.10.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 10/20/2009] [Accepted: 10/20/2009] [Indexed: 05/26/2023]
Abstract
Water stress is known to alter cytosine methylation, which generally represses transcription. However, little is known about the role of methylation alteration in maize under osmotic stress. Here, methylation-sensitive amplified polymorphism (MSAP) was used to screen PEG- or NaCl-induced methylation alteration in maize seedlings. The sequences of 25 differentially amplified fragments relevant to stress were successfully obtained. Two stress-specific fragments from leaves, LP166 and LPS911, shown to be homologous to retrotransposon Gag-Pol protein genes, suggested that osmotic stress-induced methylation of retrotransposons. Three MSAP fragments, representing drought-induced or salt-induced methylation in leaves, were homologous to a maize aluminum-induced transporter. Besides these, heat shock protein HSP82, Poly [ADP-ribose] polymerase 2, Lipoxygenase, casein kinase (CK2), and dehydration-responsive element-binding (DREB) factor were also homologs of MSAP sequences from salt-treated roots. One MSAP fragment amplified from salt-treated roots, designated RS39, was homologous to the first intron of maize protein phosphatase 2C (zmPP2C), whereas - LS103, absent from salt-treated leaves, was homologous to maize glutathione S-transferases (zmGST). Expression analysis showed that salt-induced intron methylation of root zmPP2C significantly downregulated its expression, while salt-induced demethylation of leaf zmGST weakly upregulated its expression. The results suggested that salinity-induced methylation downregulated zmPP2C expression, a negative regulator of the stress response, while salinity-induced demethylation upregulated zmGST expression, a positive effecter of the stress response. Altered methylation, in response to stress, might also be involved in stress acclimation.
Collapse
Affiliation(s)
- Ming-pu Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
46
|
Li X, Wang X, He K, Ma Y, Su N, He H, Stolc V, Tongprasit W, Jin W, Jiang J, Terzaghi W, Li S, Deng XW. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. THE PLANT CELL 2008; 20:259-76. [PMID: 18263775 PMCID: PMC2276441 DOI: 10.1105/tpc.107.056879] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 12/12/2007] [Accepted: 12/20/2007] [Indexed: 05/17/2023]
Abstract
We present high-resolution maps of DNA methylation and H3K4 di- and trimethylation of two entire chromosomes and two fully sequenced centromeres in rice (Oryza sativa) shoots and cultured cells. This analysis reveals combinatorial interactions between these epigenetic modifications and chromatin structure and gene expression. Cytologically densely stained heterochromatin had less H3K4me2 and H3K4me3 and more methylated DNA than the less densely stained euchromatin, whereas centromeres had a unique epigenetic composition. Most transposable elements had highly methylated DNA but no H3K4 methylation, whereas more than half of protein-coding genes had both methylated DNA and di- and/or trimethylated H3K4. Methylation of DNA but not H3K4 was correlated with suppressed transcription. By contrast, when both DNA and H3K4 were methylated, transcription was only slightly reduced. Transcriptional activity was positively correlated with the ratio of H3K4me3/H3K4me2: genes with predominantly H3K4me3 were actively transcribed, whereas genes with predominantly H3K4me2 were transcribed at moderate levels. More protein-coding genes contained all three modifications, and more transposons contained DNA methylation in shoots than cultured cells. Differential epigenetic modifications correlated to tissue-specific expression between shoots and cultured cells. Collectively, this study provides insights into the rice epigenomes and their effect on gene expression and plant development.
Collapse
Affiliation(s)
- Xueyong Li
- National Institute of Biological Sciences, Beijing 102206, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Akimoto K, Katakami H, Kim HJ, Ogawa E, Sano CM, Wada Y, Sano H. Epigenetic inheritance in rice plants. ANNALS OF BOTANY 2007; 100:205-17. [PMID: 17576658 PMCID: PMC2735323 DOI: 10.1093/aob/mcm110] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Epigenetics is defined as mechanisms that regulate gene expression without base sequence alteration. One molecular basis is considered to be DNA cytosine methylation, which reversibly modifies DNA or chromatin structures. Although its correlation with epigenetic inheritance over generations has been circumstantially shown, evidence at the gene level has been limited. The present study aims to find genes whose methylation status directly correlates with inheritance of phenotypic changes. METHODS DNA methylation in vivo was artificially reduced by treating rice (Oryza sativa ssp. japonica) seeds with 5-azadeoxycytidine, and the progeny were cultivated in the field for > 10 years. Genomic regions with changed methylation status were screened by the methylation-sensitive amplified polymorphysm (MSAP) method, and cytosine methylation was directly scanned by the bisulfite mapping method. Pathogen infection with Xanthomonas oryzae pv. oryzae, race PR2 was performed by the scissors-dip method on mature leaf blades. KEY RESULTS The majority of seedlings were lethal, but some survived to maturity. One line designated as Line-2 showed a clear marker phenotype of dwarfism, which was stably inherited by the progeny over nine generations. MSAP screening identified six fragments, among which two were further characterized by DNA blot hybridization and direct methylation mapping. One clone encoding a retrotransposon gag-pol polyprotein showed a complete erasure of 5-methylcytosines in Line-2, but neither translocation nor expression of this region was detectable. The other clone encoded an Xa21-like protein, Xa21G. In wild-type plants, all cytosines were methylated within the promoter region, whereas in Line-2, corresponding methylation was completely erased throughout generations. Expression of Xa21G was not detectable in wild type but was constitutive in Line-2. When infected with X. oryzae pv. oryzae, against which Xa21 confers resistance in a gene-for-gene manner, the progeny of Line-2 were apparently resistant while the wild type was highly susceptible without Xa21G expression. CONCLUSIONS These results indicated that demethylation was selective in Line-2, and that promoter demethylation abolished the constitutive silencing of Xa21G due to hypermethylation, resulting in acquisition of disease resistance. Both hypomethylation and resistant trait were stably inherited. This is a clear example of epigenetic inheritance, and supports the idea of Lamarckian inheritance which suggested acquired traits to be heritable.
Collapse
Affiliation(s)
- Keiko Akimoto
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Hatsue Katakami
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Hyun-Jung Kim
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Emiko Ogawa
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Cecile M. Sano
- Department of Plant Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Yuko Wada
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Hiroshi Sano
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
- For correspondence, E-mail
| |
Collapse
|
48
|
Choi CS, Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 2007; 277:589-600. [PMID: 17273870 DOI: 10.1007/s00438-007-0209-1] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 01/10/2007] [Indexed: 01/03/2023]
Abstract
To examine the relationship between gene expression and DNA methylation, transcriptionally activated genes were screened in hypomethylated transgenic tobacco plants expressing an anti-DNA methyltransferase sequence. Among 16 genes initially identified, one clone was found to encode a glycerophosphodiesterase-like protein (NtGPDL), earlier reported to be responsive to aluminium stress. When detached leaves from wild type tobacco plants were treated with aluminium, NtGPDL transcripts were induced within 6 h, and corresponding genomic loci were demethylated at CCGG sites within 1 h. Direct bisulfite methylation mapping revealed that CG sites in coding regions were selectively demethylated, and that promoter regions were totally unmethylated regardless of the stress. Salt and low temperature treatments also induced similar demethylation patterns. Such effects could be attributable to oxidative stress, since reactive oxygen species generated by paraquat efficiently induced the same pattern of demethylation at coding regions. Pathogen infection induced neither transcripts nor genomic demethylation. These results suggested a close correlation between methylation and expression of NtGPDL upon abiotic stresses with a cause-effect relationship. Since DNA methylation is linked to histone modification, it is conceivable that demethylation at coding regions might induce alteration of chromatin structure, thereby enhancing transcription. We propose that environmental responses of plants are partly mediated through active alteration of the DNA methylation status.
Collapse
Affiliation(s)
- Chang-Sun Choi
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara, Japan
| | | |
Collapse
|
49
|
Rahman LU, Kitamura Y, Yamaguchi J, Mukai M, Akiyama K, Yamamoto H, Muranaka T, Ikenaga T. Exogenous plant H6H but not bacterial HCHL gene is expressed in Duboisia leichhardtii hairy roots and affects tropane alkaloid production. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Abstract
DNA in plants is highly methylated, containing 5-methylcytosine (m5C) and N6-methyladenine (m6A); m5C is located mainly in symmetrical CG and CNG sequences but it may occur also in other non-symmetrical contexts. m6A but not m5C was found in plant mitochondrial DNA. DNA methylation in plants is species-, tissue-, organelle- and age-specific. It is controlled by phytohormones and changes on seed germination, flowering and under the influence of various pathogens (viral, bacterial, fungal). DNA methylation controls plant growth and development, with particular involvement in regulation of gene expression and DNA replication. DNA replication is accompanied by the appearance of under-methylated, newly formed DNA strands including Okazaki fragments; asymmetry of strand DNA methylation disappears until the end of the cell cycle. A model for regulation of DNA replication by methylation is suggested. Cytosine DNA methylation in plants is more rich and diverse compared with animals. It is carried out by the families of specific enzymes that belong to at least three classes of DNA methyltransferases. Open reading frames (ORF) for adenine DNA methyltransferases are found in plant and animal genomes, and a first eukaryotic (plant) adenine DNA methyltransferase (wadmtase) is described; the enzyme seems to be involved in regulation of the mitochondria replication. Like in animals, DNA methylation in plants is closely associated with histone modifications and it affects binding of specific proteins to DNA and formation of respective transcription complexes in chromatin. The same gene (DRM2) in Arabidopsis thaliana is methylated both at cytosine and adenine residues; thus, at least two different, and probably interdependent, systems of DNA modification are present in plants. Plants seem to have a restriction-modification (R-M) system. RNA-directed DNA methylation has been observed in plants; it involves de novo methylation of almost all cytosine residues in a region of siRNA-DNA sequence identity; therefore, it is mainly associated with CNG and non-symmetrical methylations (rare in animals) in coding and promoter regions of silenced genes. Cytoplasmic viral RNA can affect methylation of homologous nuclear sequences and it maybe one of the feedback mechanisms between the cytoplasm and the nucleus to control gene expression.
Collapse
Affiliation(s)
- B F Vanyushin
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Russia.
| |
Collapse
|