1
|
Melo RLF, Freire TM, Valério RBR, Neto FS, de Castro Bizerra V, Fernandes BCC, de Sousa Junior PG, da Fonseca AM, Soares JM, Fechine PBA, Dos Santos JCS. Enhancing biocatalyst performance through immobilization of lipase (Eversa® Transform 2.0) on hybrid amine-epoxy core-shell magnetic nanoparticles. Int J Biol Macromol 2024; 264:130730. [PMID: 38462111 DOI: 10.1016/j.ijbiomac.2024.130730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Magnetic nanoparticles were functionalized with polyethylenimine (PEI) and activated with epoxy. This support was used to immobilize Lipase (Eversa® Transform 2.0) (EVS), optimization using the Taguchi method. XRF, SEM, TEM, XRD, FTIR, TGA, and VSM performed the characterizations. The optimal conditions were immobilization yield (I.Y.) of 95.04 ± 0.79 %, time of 15 h, ionic load of 95 mM, protein load of 5 mg/g, and temperature of 25 °C. The maximum loading capacity was 25 mg/g, and its stability in 60 days of storage showed a negligible loss of only 9.53 % of its activity. The biocatalyst demonstrated better stability at varying temperatures than free EVS, maintaining 28 % of its activity at 70 °C. It was feasible to esterify free fatty acids (FFA) from babassu oil with the best reaction of 97.91 % and ten cycles having an efficiency above 50 %. The esterification of produced biolubricant was confirmed by NMR, and it displayed kinematic viscosity and density of 6.052 mm2/s and 0.832 g/cm3, respectively, at 40 °C. The in-silico study showed a binding affinity of -5.8 kcal/mol between EVS and oleic acid, suggesting a stable substrate-lipase combination suitable for esterification.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60440-554, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Roberta Bussons Rodrigues Valério
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60455-760, Brazil
| | - Viviane de Castro Bizerra
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró, RN CEP 59625-900, Brazil
| | - Paulo Gonçalves de Sousa Junior
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza, CE CEP 60455760, Brazil
| | - Aluísio Marques da Fonseca
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró, RN CEP 59610-090, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil.
| |
Collapse
|
2
|
Bregado JL, Secchi AR, Tavares FW. A density functional theory study on interactions in water-bridged dimeric complexes of lignin. Phys Chem Chem Phys 2024; 26:9234-9252. [PMID: 38444363 DOI: 10.1039/d4cp00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Lignin is the main plant cell wall component responsible for recalcitrance in the process of lignocellulosic biomass conversion into biofuels. The recalcitrance and insolubility of lignin in different reaction media are due in part to the hydrogen bonds and π interactions that hold syringyl (S) and guaiacyl (G) units together and promote the formation of stable water-bridged dimeric complexes (WBDCs): S⋯G and S⋯S, in native lignin. The current understanding of how each type of interaction influences the stability of these complexes within lignin native cell walls is still limited. Here, we found by DFT calculations that hydrogen bonding is more dominant than π-stacking interaction between aromatic rings of WBDCs. Although there is a stronger interaction of hydrogen bonds between subunits and water and higher π-stacking interaction in the S⋯S complex compared to the S⋯G complex, the former complex is less thermodynamically stable than the latter due to the entropic contribution coming from the methoxy substituents in the S-unit. Our results demonstrate that the methoxylation degree of lignin units does not significantly influence the structural geometries of WBDCs; if anything, an enhanced dispersion interaction between ring aromatics results in quasi-sandwich geometries as found in "coiled" lignin structures in the xylem tissue of wood. In the same way as that with ionic liquids, polar solvents can dissolve S-lignin by favorable interactions with the aliphatic hydroxyl group in the α-position as the key site or the aromatic hydroxyl group as the secondary site.
Collapse
Affiliation(s)
- Jurgen Lange Bregado
- Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-914, Brazil.
| | - Argimiro R Secchi
- Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-914, Brazil.
- Chemical and Biochemical Process Engineering Program, Escola de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-909, Brazil
| | - Frederico W Tavares
- Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-914, Brazil.
- Chemical and Biochemical Process Engineering Program, Escola de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-909, Brazil
| |
Collapse
|
3
|
Souza MAD, Rodrigues LG, Rocha JE, de Freitas TS, Bandeira PN, Marinho MM, Nunes da Rocha M, Marinho ES, Honorato Barreto AC, Coutinho HDM, Silva LMA, Julião MSDS, Marques Canuto K, Marques da Fonseca A, Teixeira AMR, Dos Santos HS. Synthesis, structural, characterization, antibacterial and antibiotic modifying activity, ADMET study, molecular docking and dynamics of chalcone ( E)-1-(4-aminophenyl)-3-(4-nitrophenyl)prop-2-en-1-one in strains of Staphylococcus aureus carrying NorA and MepA efflux pumps. J Biomol Struct Dyn 2024; 42:1670-1691. [PMID: 37222682 DOI: 10.1080/07391102.2023.2213777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/05/2023] [Indexed: 05/25/2023]
Abstract
Chalcones have an open chain flavonoid structure that can be obtained from natural sources or by synthesis and are widely distributed in fruits, vegetables, and tea. They have a simple and easy to handle structure due to the α-β-unsaturated bridge responsible for most biological activities. The facility to synthesize chalcones combined with its efficient in combating serious bacterial infections make these compounds important agents in the fight against microorganisms. In this work, the chalcone (E)-1-(4-aminophenyl)-3-(4-nitrophenyl)prop-2-en-1-one (HDZPNB) was characterized by spectroscopy and electronic methods. In addition, microbiological tests were performed to investigate the modulator potential and efflux pump inhibition on S. aureus multi-resistant strains. The modulating effect of HDZPNB chalcone in association with the antibiotic norfloxacin, on the resistance of the S. aureus 1199 strain, resulted in increase the MIC. In addition, when HDZPNB was associated with ethidium bromide (EB), it caused an increase in the MIC value, thus not inhibiting the efflux pump. For the strain of S. aureus 1199B, carrying the NorA pump, the HDZPNB associated with norfloxacin showed no modulatory, and when the chalcone was used in association with EB, it had no inhibitory effect on the efflux pump. For the tested strain of S. aureus K2068, which carries the MepA pump, it can be observed that the chalcone together the antibiotic resulted in an increase the MIC. On the other hand, when chalcone was used in association with EB, it caused a decrease in bromide MIC, equal to the reduction caused by standard inhibitors. Thus, these results indicate that the HDZPNB could also act as an inhibitor of the S. aureus gene overexpressing pump MepA. The molecular docking reveals that chalcone has a good binding energies -7.9 for HDZPNB/MepA complexes, molecular dynamics simulations showed that Chalcone/MetA complexes showed good stability of the structure in an aqueous solution, and ADMET study showed that the chalcone has a good oral bioavailability, high passive permeability, low risk of efflux, low clearance rate and low toxic risk by ingestion. The microbiological tests show that the chalcone can be used as a possible inhibitor of the Mep A efflux pump.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mikael Amaro de Souza
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Leilane Gomes Rodrigues
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Janaina Esmeraldo Rocha
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Thiago Sampaio de Freitas
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Paulo Nogueira Bandeira
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Márcia Machado Marinho
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | | | | | | | - Henrique Douglas Melo Coutinho
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | | | - Murilo Sergio da Silva Julião
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
- Graduate Program in Natural Science, State University of Ceará, Fortaleza, CE, Brazil
| | - Kirley Marques Canuto
- Multiusuary Laboratory of Natural Products Chemistry, Embrapa Tropical Agroindustry, Fortaleza, CE, Brazil
| | - Aluísio Marques da Fonseca
- Academic Master's Degree in Sociobiodiversity and Sustainable Technologies - MASTS, Institute of Engineering and Development Sustainable, University of International Integration of Afro-Brazilian Lusofonia, Acarape, CE, Brazil
| | - Alexandre Magno Rodrigues Teixeira
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Graduate Program in Natural Science, State University of Ceará, Fortaleza, CE, Brazil
| | - Hélcio Silva Dos Santos
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
- Graduate Program in Natural Science, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
4
|
Interaction of Phospholipid, Cholesterol, Beta-Carotene, and Vitamin C Molecules in Liposome-Based Drug Delivery Systems: An In Silico Study. Adv Pharmacol Pharm Sci 2023; 2023:4301310. [PMID: 36644401 PMCID: PMC9833918 DOI: 10.1155/2023/4301310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
This paper investigates the interaction within a liposome-based drug delivery system in silico. Results confirmed that phospholipids, cholesterol, beta-carotene, and vitamin C in the liposome structures interact noncovalently. The formation of noncovalent interactions indicates that the liposomal structures from phospholipid molecules will not result in chemical changes to the drug or any molecules encapsulated within. Noncovalent interactions formed include (i) moderate-strength hydrogen bonds with interaction energies ranging from -73.6434 kJ·mol-1 to -45.6734 kJ·mol-1 and bond lengths ranging from 1.731 Å to 1.827 Å and (ii) van der Waals interactions (induced dipole-induced dipole and induced dipole-dipole interactions) with interaction energies ranging from -4.4735 kJ·mol-1 to -1.5840 kJ·mol-1 and bond lengths ranging from 3.192 Å to 3.742 Å. The studies for several phospholipids with short hydrocarbon chains show that changes in chain length have almost no effect on interaction energy, bond length, and partial atomic charge.
Collapse
|
5
|
Parus A, Zdebelak O, Ciesielski T, Szumski R, Woźniak-Karczewska M, Framski G, Baranowski D, Niemczak M, Zembrzuska J, Cajthaml T, Heipieper HJ, Chrzanowski Ł. Can ionic liquids exist in the soil environment? Effect of quaternary ammonium cations on glyphosate sorption, mobility and toxicity in the selected herbicidal ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Wang H, Meng F, Yi M, Fang L, Wang Z, Wang S. Highly Strong and Damage-Resistant Natural Rubber Membrane via Self-Assembly and Construction of Double Network. MEMBRANES 2022; 12:933. [PMID: 36295692 PMCID: PMC9611818 DOI: 10.3390/membranes12100933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Natural rubber latex (NRL) is commonly employed to manufacture medical protective appliances. However, the characteristics of weakness and fragility of NRL membranes limit their further application. To achieve excellent strength and damage-resistance of the rubber membrane, this work reported a facile core-shell structure construction strategy via self-assembly with modified sodium lignosulfonate (MSLS) and NRL to create a tough membrane. The double network can be formed after introducing polyamide epichlorohydrin resin (PAE) into the NRL membrane. Specifically, the first robust MSLS-PAE network can break in advance to dissipate applied energy, thereby achieving high fracture energy and tensile strength of ~111.51 kJ m-2 and ~37 MPa, respectively, which overtakes numerous soft materials. This work facilitates more studies on latex/lignin-based products with high performance and good stability for the functional application of biopolymer.
Collapse
Affiliation(s)
- Heliang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- College of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Fanrong Meng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mingyuan Yi
- College of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Lin Fang
- College of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhifen Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- College of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
7
|
Miryala SK, Basu S, Naha A, Debroy R, Ramaiah S, Anbarasu A, Natarajan S. Identification of bioactive natural compounds as efficient inhibitors against Mycobacterium tuberculosis protein-targets: A molecular docking and molecular dynamics simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117340] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Anchique L, Alcázar JJ, Ramos-Hernandez A, Méndez-López M, Mora JR, Rangel N, Paz JL, Márquez E. Predicting the Adsorption of Amoxicillin and Ibuprofen on Chitosan and Graphene Oxide Materials: A Density Functional Theory Study. Polymers (Basel) 2021; 13:1620. [PMID: 34067695 PMCID: PMC8156938 DOI: 10.3390/polym13101620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/23/2023] Open
Abstract
The occurrence, persistence, and accumulation of antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs) represent a new environmental problem due to their harmful effects on human and aquatic life. A suitable absorbent for a particular type of pollutant does not necessarily absorb other types of compounds, so knowing the compatibility between a particular pollutant and a potential absorbent before experimentation seems to be fundamental. In this work, the molecular interactions between some pharmaceuticals (amoxicillin, ibuprofen, and tetracycline derivatives) with two potential absorbers, chitosan and graphene oxide models (pyrene, GO-1, and coronene, GO-2), were studied using the ωB97X-D/6-311G(2d,p) level of theory. The energetic interaction order found was amoxicillin/chitosan > amoxicillin/GO-1 > amoxicillin/GO-2 > ibuprofen/chitosan > ibuprofen/GO-2 > ibuprofen/GO-1, the negative sign for the interaction energy in all complex formations confirms good compatibility, while the size of Eint between 24-34 kcal/mol indicates physisorption processes. Moreover, the free energies of complex formation were negative, confirming the spontaneity of the processes. The larger interaction of amoxicillin Gos, compared to ibuprofen Gos, is consistent with previously reported experimental results, demonstrating the exceptional predictability of these methods. The second-order perturbation theory analysis shows that the amoxicillin complexes are mainly driven by hydrogen bonds, while van der Waals interactions with chitosan and hydrophobic interactions with graphene oxides are modelled for the ibuprofen complexes. Energy decomposition analysis (EDA) shows that electrostatic energy is a major contributor to the stabilization energy in all cases. The results obtained in this work promote the use of graphene oxides and chitosan as potential adsorbents for the removal of these emerging pollutants from water.
Collapse
Affiliation(s)
- Leonardo Anchique
- Programa de Química, Grupo Química Supramolecular Aplicada, Facultad de Ciencias Básicas, Semillero Electroquímica Aplicada, Universidad del Atlántico, Barranquilla 081001, Colombia; (L.A.); (A.R.-H.)
| | - Jackson J. Alcázar
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile;
| | - Andrea Ramos-Hernandez
- Programa de Química, Grupo Química Supramolecular Aplicada, Facultad de Ciencias Básicas, Semillero Electroquímica Aplicada, Universidad del Atlántico, Barranquilla 081001, Colombia; (L.A.); (A.R.-H.)
| | - Maximiliano Méndez-López
- Departamento de Química y Biología, Facultad de Ciencias Exactas, Grupo de Investigaciones en Química y Biología, Universidad del Norte, Carrera 51B, Km 5, vía Puerto Colombia, Barranquilla 081007, Colombia
| | - José R. Mora
- Departamento de Ingeniería Química, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles y Vía Interoceánica, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Norma Rangel
- TecNM/Instituto Tecnológico de Aguascalientes-División de Estudios de Posgrado e Investigación, Ave. Adolfo López Mateos #1801Ote. Fracc. Bona Gens, Aguascalientes 20256, Mexico;
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Cercado de Lima 15081, Peru;
| | - Edgar Márquez
- Departamento de Química y Biología, Facultad de Ciencias Exactas, Grupo de Investigaciones en Química y Biología, Universidad del Norte, Carrera 51B, Km 5, vía Puerto Colombia, Barranquilla 081007, Colombia
| |
Collapse
|
9
|
Shyama M, Lakshmipathi S. C–H···O interaction between cation and anion in amino acid-based ionic liquids—A DFT study in gas and solvent phase. Struct Chem 2018. [DOI: 10.1007/s11224-018-1192-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Shukla MK, Leszczynski J. Phototautomerism in Uracil: A Quantum Chemical Investigation. J Phys Chem A 2002. [DOI: 10.1021/jp0209650] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. K. Shukla
- Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, 1400 J. R. Lynch Street, Jackson, Mississippi 39217
| | - Jerzy Leszczynski
- Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, 1400 J. R. Lynch Street, Jackson, Mississippi 39217
| |
Collapse
|
11
|
Abstract
This review summarizes results concerning molecular interactions of nucleic acid bases as revealed by advanced ab initio quantum chemical (QM) calculations published in last few years. We first explain advantages and limitations of modern QM calculations of nucleobases and provide a brief history of this still rather new field. Then we provide an overview of key electronic properties of standard and selected modified nucleobases, such as their charge distributions, dipole moments, polarizabilities, proton affinities, tautomeric equilibria, and amino group hybridization. Then we continue with hydrogen bonding of nucleobases, by analyzing energetics of standard base pairs, mismatched base pairs, thio-base pairs, and others. After this, the nature of aromatic stacking interactions is explained. Also, nonclassical interactions in nucleic acids such as interstrand bifurcated hydrogen bonds, interstrand close amino group contacts, C [bond] H...O interbase contacts, sugar-base stacking, intrinsically nonplanar base pairs, out-of-plane hydrogen bonds, and amino-acceptor interactions are commented on. Finally, we overview recent calculations on interactions between nucleic acid bases and metal cations. These studies deal with effects of cation binding on the strength of base pairs, analysis of specific differences among cations, such as the difference between zinc and magnesium, the influence of metalation on protonation and tautomeric equlibria of bases, and cation-pi interactions involving nucleobases. In this review, we do not provide methodological details, as these can be found in our preceding reviews. The interrelation between advanced QM approaches and classical molecular dynamics simulations is briefly discussed.
Collapse
Affiliation(s)
- J Sponer
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic and Center for Complex Molecular Systems and Biomolecules, Dolejskova 3, 182 23 Prague, Czech Republic.
| | | | | |
Collapse
|
12
|
Shukla MK, Leszczynski J. A Theoretical Investigation of Excited-State Properties of the Adenine−Uracil Base Pair. J Phys Chem A 2002. [DOI: 10.1021/jp004551n] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. K. Shukla
- Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, 1400 J.R. Lynch Street, Jackson, Mississippi 39217
| | - Jerzy Leszczynski
- Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, 1400 J.R. Lynch Street, Jackson, Mississippi 39217
| |
Collapse
|
13
|
Šponer J, Hobza P. Interaction Energies of Hydrogen-Bonded Formamide Dimer, Formamidine Dimer, and Selected DNA Base Pairs Obtained with Large Basis Sets of Atomic Orbitals. J Phys Chem A 2000. [DOI: 10.1021/jp9943880] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jiří Šponer
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Pavel Hobza
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic
| |
Collapse
|