1
|
Du K, Ramachandran A, Weemhoff JL, Woolbright BL, Jaeschke AH, Chao X, Ding WX, Jaeschke H. Mito-tempo protects against acute liver injury but induces limited secondary apoptosis during the late phase of acetaminophen hepatotoxicity. Arch Toxicol 2018; 93:163-178. [PMID: 30324313 DOI: 10.1007/s00204-018-2331-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
We previously reported that delayed treatment with Mito-tempo (MT), a mitochondria-targeted superoxide dismutase mimetic, protects against the early phase of acetaminophen (APAP) hepatotoxicity by inhibiting peroxynitrite formation. However, whether this protection is sustained to the late phase of toxicity is unknown. To investigate the late protection, C57Bl/6J mice were treated with 300 mg/kg APAP followed by 20 mg/kg MT 1.5 h or 3 h later. We found that both MT treatments protected against the late phase of APAP hepatotoxicity at 12 and 24 h. Surprisingly, MT-treated mice demonstrated a significant increase in apoptotic hepatocytes, while the necrotic phenotype was observed almost exclusively in mice treated with APAP alone. In addition, there was a significant increase in caspase-3 activity and cleavage in the livers of MT-treated mice. Immunostaining for active caspase-3 revealed that the positively stained hepatocytes were exclusively in centrilobular areas. Treatment with the pan-caspase inhibitor ZVD-fmk (10 mg/kg) 2 h post-APAP neutralized this caspase activation and provided additional protection against APAP hepatotoxicity. Treatment with N-acetylcysteine, the current standard of care for APAP poisoning, protected but did not induce this apoptotic phenotype. Mechanistically, MT treatment inhibited APAP-induced RIP3 kinase expression, and RIP3-deficient mice showed caspase activation and apoptotic morphology in hepatocytes analogous to MT treatment. These data suggest that while necrosis is the primary cause of cell death after APAP hepatotoxicity, treatment with the antioxidant MT may switch the mode of cell death to secondary apoptosis in some cells. Modulation of mitochondrial oxidative stress and RIP3 kinase expression play critical roles in this switch.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - James L Weemhoff
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Andrew H Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
2
|
Golbidi S, Botta A, Gottfred S, Nusrat A, Laher I, Ghosh S. Glutathione administration reduces mitochondrial damage and shifts cell death from necrosis to apoptosis in ageing diabetic mice hearts during exercise. Br J Pharmacol 2015; 171:5345-60. [PMID: 25039894 DOI: 10.1111/bph.12847] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 06/30/2014] [Accepted: 07/09/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE The effect of antioxidants on ageing type 2 diabetic (T2D) hearts during exercise is unclear. We hypothesized that GSH therapy during exercise reduces mitochondrial oxidative stress (mOXS) and cell death in ageing db/db mice hearts. EXPERIMENTAL APPROACH The effect of GSH on cardiac mOXS and cell death was evaluated both in vivo and in vitro. KEY RESULTS During exercise, GSH treatment protected db/db hearts from exaggerated mOXS without reducing total cell death. Despite similar cell death, investigations on apoptosis-specific single-stranded DNA breaks and necrosis-specific damage provided the first in vivo evidence of a shift from necrosis to apoptosis, with reduced fibrosis following GSH administration in exercised db/db hearts. Further support for a GSH-regulated 'switch' in death phenotypes came from NIH-3T3 fibroblasts and H9c2 cardiomyocytes treated with H2 O2 , a reactive oxygen species (ROS). Similar to in vivo findings, augmenting GSH by overexpressing glutamyl cysteine ligase (GCLc) protected fibroblasts and cardiomyocytes from necrosis induced by H2 O2 , but elevated caspase-3 and apoptosis instead. Similar to in vivo findings, where GSH therapy in normoglycaemic mice suppressed endogenous antioxidants and augmented caspase-3 activity, GCLc overexpression during staurosporine-induced death, which was not characterized by ROS, increased GSH efflux and aggravated death in fibroblasts and cardiomyocytes, confirming that oxidative stress is required for GSH-mediated cytoprotection. CONCLUSIONS AND IMPLICATIONS While GSH treatment is useful for reducing mOXS and attenuating necrosis and fibrosis in ageing T2D hearts during exercise, such antioxidant treatment could be counterproductive in the healthy heart during exercise.
Collapse
Affiliation(s)
- S Golbidi
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
3
|
Grosicka E, Sadurska B, Szumiło M, Grzela T, Łazarczyk P, Niderla-Bielińska J, Rahden-Staroń I. Effect of glutathione depletion on apoptosis induced by thiram in Chinese hamster fibroblasts. Int Immunopharmacol 2005; 5:1945-56. [PMID: 16275629 DOI: 10.1016/j.intimp.2005.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/14/2005] [Accepted: 06/23/2005] [Indexed: 11/18/2022]
Abstract
Fungicide thiram, which is also known as an inducer of allergic contact dermatitis (ACD), was used as a model compound of thiuram chemicals, and its cellular effects were investigated in cultured Chinese hamster V79 cells. The level of intracellular reduced glutathione (GSH), protein sulfhydryl (PSH) groups, protein carbonyls (PC), membrane lipid peroxidation reflected by enhanced thiobarbituric acid reactive substrates (TBARS) production, as well as apoptotic effect were determined. The apoptosis induction was determined by assessing DNA fragmentation by TUNEL, annexin V binding, and caspases activation assays, using fluorescent microscope or flow cytometry, respectively. The concentrations of thiram required to induce cellular GSH depletion (by 40-50%), protein, and membrane lipid peroxidation (2-fold, and 1.7-fold, respectively), as well as to induce apoptosis in V79 Chinese hamster fibroblasts without causing necrosis through cytotoxic effects were between 50-100 microM. To investigate the role of decreased GSH content in the toxicity of thiram, GSH level was modified prior to exposure. Pretreatment of V79 cells with N-acetyl-L-cysteine (NAC), a GSH biosynthesis precursor, prevented GSH decrease, PC and TBARS production, as well as caspases activation induced by thiram exposure. On the other hand, thiram effects were enhanced by the previous depletion of cellular GSH by L-buthionine-(S,R)-sulfoximine (BSO).
Collapse
Affiliation(s)
- E Grosicka
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland
| | | | | | | | | | | | | |
Collapse
|
4
|
Haddad JJ. Redox and oxidant-mediated regulation of apoptosis signaling pathways: immuno-pharmaco-redox conception of oxidative siege versus cell death commitment. Int Immunopharmacol 2004; 4:475-93. [PMID: 15099526 DOI: 10.1016/j.intimp.2004.02.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 11/10/2003] [Accepted: 02/04/2004] [Indexed: 11/21/2022]
Abstract
The mechanisms controlling apoptosis remain largely obscure. Because apoptosis is an integral part of the developmental program and is frequently the end-result of a temporal course of cellular events, it is referred to as programmed cell death. While there is considerable variation in the signals and requisite cellular metabolic events necessary to induce apoptosis in diverse cell types, the morphological features associated with apoptosis are highly conserved. Free radicals, particularly reactive oxygen species (ROS), have been proposed as common mediators for apoptosis. Many agents that induce apoptosis are either oxidants or stimulators of cellular oxidative metabolism. Conversely, many inhibitors of apoptosis have antioxidant activities or enhance cellular antioxidant defenses. Mammalian cells, therefore, exist in a state of oxidative siege in which survival requires an optimum balance of oxidants and antioxidants. The respiratory tract is subjected to a variety of environmental stresses, including oxidizing agents, particulates and airborne microorganisms that, together, may injure structural and functional lung components and thereby jeopardize the primary lung function of gas exchange. To cope with this challenge, the lung has developed elaborate defense mechanisms that include inflammatory-immune pathways as well as efficient antioxidant defense systems. In the absence of adequate antioxidant defenses, the damage produced is detected by the cell leading to the activation of genes responsible for the regulation of apoptosis, conceivably through stress-responsive transcription factors. Oxidative stress, in addition, may cause a shift in cellular redox state, which thereby modifies the nature of the stimulatory signal and which results in cell death as opposed to proliferation. ROS/redox modifications, therefore, may disrupt signal transduction pathways, can be perceived as abnormal and, under some conditions, may trigger apoptosis.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
5
|
Shen DX, Shi X, Fu JL, Zhang YM, Zhou ZC. The role of thiol reduction in hydroquinone-induced apoptosis in HEK293 cells. Chem Biol Interact 2003; 145:225-33. [PMID: 12686498 DOI: 10.1016/s0009-2797(03)00003-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydroquinone (HQ) is a chemical used as a reducing agent, antioxidant, polymerization inhibitor, and chemical intermediate. It has a minor use as a bleaching agent in dermatologic preparations. HQ also occurs as a main metabolite of benzene. In the present study, HQ-induced apoptosis was evaluated by cell morphology changes, determination of phosphatidylserine (PS) externalization and analysis of sub-G1 cells. The effect of HQ on intracellular thiol concentration, including glutathione and protein thiol, and the effect of N-acetylcysteine (NAC) and buthionine sulfoximine (BSO) pretreatment on HQ-induced apoptosis were investigated. The results showed that HQ was able to induce typical apoptosis in HEK293 cells (human embryonic kidney cells) in a dose-dependent manner. Intracellular thiol, including glutathione and protein thiol, was decreased following treatment with HQ. NAC, a precursor of intracellular GSH synthesis, significantly inhibited HQ-induced apoptosis. However, BSO, a specific inhibitor of intracellular GSH synthesis, enhanced HQ-induced apoptosis significantly. Taken together, the present study demonstrates that HQ is able to induce apoptosis in HEK293 cells, most probably through depletion of intracellular thiol. The results also suggest that, at least in HEK293 cells, the control of intracellular redox homeostasis has a central role in the regulation of cell death induced by HQ.
Collapse
Affiliation(s)
- Dong-Xiao Shen
- Department of Toxicology, School of Public Health, Peking University, 38 Xueyuan Road, Beijing 100083, People's Republic of China
| | | | | | | | | |
Collapse
|