1
|
Guidi C, Martínez-López E, Oliver JA, Sánchez-Vázquez FJ, Vera LM. Behavioural response to toxic elements, detoxification and organ accumulation are time-of-day-dependent in zebrafish. CHEMOSPHERE 2023; 316:137862. [PMID: 36642134 DOI: 10.1016/j.chemosphere.2023.137862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Toxic elements, such as mercury (Hg) and arsenic (As), are major pollutants in aquatic environments, posing ecological threats to living organisms due to their toxicity and bioaccumulation. This paper investigated whether zebrafish response to Hg and As displayed day/night differences. Fish were exposed to either 35 μg/L of mercury chloride for 6 h or 65 mg/L of sodium arsenate for 4 h, at two different times of the day: mid-light (day; ML) and mid-darkness (night; MD). Fish were video-recorded to investigate their behavioural response and at the end of each trial, gills and liver samples were collected for gene expression measurement. Gills, liver and brain samples were also obtained to determine Hg and As concentration. A control group (non-exposed) was video-recorded and sampled too. The effect of Hg and As on zebrafish swimming activity and the expression of antioxidant and metallothionein genes was time-of-day-dependent, with a stronger response being observed during the day than at night. However, the neurobehavioural effect of Hg was more affected by the time of exposure than the effect of As. In addition, Hg concentration in the gills was significantly higher in zebrafish exposed at ML than at MD. Altogether, these findings suggest that zebrafish response to Hg and As is time-of-day-dependent and remark the importance of considering toxicity rhythms when using this fish species as a model in toxicological research.
Collapse
Affiliation(s)
- Costanza Guidi
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, 30100, Spain
| | - Emma Martínez-López
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, 30100, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, 30100, Spain
| | - José A Oliver
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, 30100, Spain
| | - Francisco J Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, 30100, Spain
| | - Luisa M Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, 30100, Spain.
| |
Collapse
|
2
|
Toyoda T, Ogawa K. Early detection of urinary bladder carcinogens in rats by immunohistochemistry for γ-H2AX: a review from analyses of 100 chemicals. J Toxicol Pathol 2022; 35:283-298. [PMID: 36406171 PMCID: PMC9647216 DOI: 10.1293/tox.2022-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
In safety evaluations of chemicals, there is an urgent need to develop short-term methods to replace long-term carcinogenicity tests. We have reported that immunohistochemistry for γ-H2AX, a well-established biomarker of DNA damage, can detect bladder carcinogens at an early stage using histopathological specimens from 28-day repeated-dose oral toxicity studies in rats. Given the markedly low level of γ-H2AX formation in the bladder urothelium of untreated rats, an increase in γ-H2AX-positive cells following chemical exposure can be relatively easy to identify. Among the 100 compounds examined to date, bladder carcinogens can be detected with high sensitivity (33/39; 84.6%) and specificity (58/61; 95.1%). As expected, γ-H2AX formation levels tended to be high following exposure to genotoxic bladder carcinogens, whereas nongenotoxic bladder carcinogens also increased the number of γ-H2AX-positive cells, probably through secondary DNA damage associated with sustained proliferative stimulation. γ-H2AX formation in the bladder urothelium reflects species differences in susceptibility to bladder carcinogenesis between rats and mice and shows a clear dose-dependency associated with the intensity of tumor development as well as high reproducibility. Some of the bladder carcinogens that showed false-negative results in the evaluation of γ-H2AX alone could be detected by combined evaluation with immunostaining for bladder stem cell markers, including aldehyde dehydrogenase 1A1. This method may be useful for the early detection of bladder carcinogens, as it can be performed by simple addition of conventional immunostaining using formalin-fixed paraffin-embedded tissues from 28-day repeated-dose toxicity studies in rodents, which are commonly used in safety evaluations of chemical substances.
Collapse
Affiliation(s)
- Takeshi Toyoda
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| |
Collapse
|
3
|
Martínez-López E, Herrero D, López-Berenguer G, Peñalver J. Total Arsenic Concentrations in Sea Turtle Tissues from the Mediterranean Coast of Spain. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:820-826. [PMID: 33978774 DOI: 10.1007/s00128-021-03255-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
In this work we studied total arsenic concentrations in liver, muscle and kidney of 49 individuals of two sea turtle species (loggerhead sea turtles, n = 45; leatherback turtles, n = 4) stranded in Murcia (South-eastern Spain) coastline between 2009 and 2018. In accordance with the literature, muscle was the tissue with the highest concentrations in both species, followed by liver and kidney. Although differences in arsenic concentrations were not statistically significant between the study species, loggerhead sea turtles showed concentrations two or three times higher than those of leatherback turtles, which we attribute to differences on feeding behavior and habitat preferences. Arsenic concentrations in turtles from this area increase evidence of western Mediterranean Sea as a hotspot for metal pollution. Based on the scarce existing knowledge on arsenic toxicity in sea turtles, those levels found in our study are below those responsible for liver damage.
Collapse
Affiliation(s)
- E Martínez-López
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain.
- Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, 30100, Murcia, Spain.
| | - D Herrero
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain
| | - G López-Berenguer
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain
| | - J Peñalver
- Fisheries and Aquaculture Service (CARM), 30100, Murcia, Spain
| |
Collapse
|
4
|
Predoi D, Iconaru SL, Predoi MV, Motelica-Heino M. Removal and Oxidation of As(III) from Water Using Iron Oxide Coated CTAB as Adsorbent. Polymers (Basel) 2020; 12:polym12081687. [PMID: 32751079 PMCID: PMC7465564 DOI: 10.3390/polym12081687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 01/22/2023] Open
Abstract
Iron oxides such as magnetite and maghemite coated with cetyltrimethylammonium bromide (CTAB) are very promising materials for wastewater treatment because iron oxide can be easily separated from solutions using the magnetic separation procedure Iron oxide (IO) coated CTAB was synthesized by an adapted co-precipitation method. In the present study, the IO-CTAB was used for removing arsenic from water for the first time. In the present study, the performance of iron oxide coated CTAB biocomposites as an adsorbent for arsenic removal from aqueous solutions was examined. X-ray diffraction (XRD) analysis and the results revealed a cubic phase Fd-3 m of Fe3O4 with lattice a = 8.40 Å and average crystal size equal to 17.26 ± 3 nm. The mean particle size calculated from transmission electron microscopy (TEM) was 19.86 ±1.7 nm. The results of the adsorption batch experiments and the data determined using the Langmuir and Freundlich models emphasized that IO-CTAB nanoparticles were favorable for the adsorption of As(III) ions from aqueous solutions. Ultrasound measurements have shown that IO-CTAB is a cost-effective biocomposite for removing arsenic from contaminated solutions. Moreover, x-ray photoelectron spectroscopy (XPS) has shown that during the process of arsenic absorption, there is oxidation from As(III) to As(V), which leads to a decrease in toxicity during this process. The results of the cytotoxic assays confirmed that the IO-CTAB nanoparticles did not induce any morphological changes in the HeLa cells and did not affect their proliferation after 24 h of incubation.
Collapse
Affiliation(s)
- Daniela Predoi
- National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania;
- Correspondence:
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania;
| | - Mihai Valentin Predoi
- Department of Mechanics, University Politehnica of Bucharest, BN 002, 313 Splaiul Independentei, Sector 6, 060042 Bucharest, Romania;
| | - Mikael Motelica-Heino
- ISTO, UMR 7327 CNRS Université d’Orléans, 1A rue de la Férollerie, 45071 Orléans, France;
| |
Collapse
|
5
|
Bhagat J. Combinations of genotoxic tests for the evaluation of group 1 IARC carcinogens. J Appl Toxicol 2017; 38:81-99. [PMID: 28695982 DOI: 10.1002/jat.3496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/10/2023]
Abstract
Many of the known human carcinogens are potent genotoxins that are efficiently detected as carcinogens in human populations but certain types of compounds such as immunosuppressants, sex hormones, etc. act via non-genotoxic mechanism. The absence of genotoxicity and the diversity of modes of action of non-genotoxic carcinogens make predicting their carcinogenic potential extremely challenging. There is evidence that combinations of different short-term tests provide a better and efficient prediction of human genotoxic and non-genotoxic carcinogens. The purpose of this study is to summarize the in vivo and in vitro comet assay (CMT) results of group 1 carcinogens selected from the International Agency for Research on Cancer and to discuss the utility of the comet assay along with other genotoxic assays such as Ames, in vivo micronucleus (MN), and in vivo chromosomal aberration (CA) test. Of the 62 agents for which valid genotoxic data were available, 38 of 61 (62.3%) were Ames test positive, 42 of 60 (70%) were in vivo MN test positive and 36 of 45 (80%) were positive for the in vivo CA test. Higher sensitivity was seen in in vivo CMT (90%) and in vitro CMT (86.9%) assay. Combination of two tests has greater sensitivity than individual tests: in vivo MN + in vivo CA (88.6%); in vivo MN + in vivo CMT (92.5%); and in vivo MN + in vitro CMT (95.6%). Combinations of in vivo or in vitro CMT with other tests provided better sensitivity. In vivo CMT in combination with in vivo CA provided the highest sensitivity (96.7%).
Collapse
Affiliation(s)
- Jacky Bhagat
- Department of Zoology, Goa University, Taleigao Plateau, Goa 403206, India
| |
Collapse
|
6
|
Valadez-Vega C, Guzmán-Partida AM, Soto-Cordova FJ, Álvarez-Manilla G, Morales-González JA, Madrigal-Santillán E, Villagómez-Ibarra JR, Zúñiga-Pérez C, Gutiérrez-Salinas J, Becerril-Flores MA. Purification, biochemical characterization, and bioactive properties of a lectin purified from the seeds of white tepary bean (phaseolus acutifolius variety latifolius). Molecules 2011; 16:2561-2582. [PMID: 21441861 PMCID: PMC6259754 DOI: 10.3390/molecules16032561] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 02/07/2023] Open
Abstract
The present work shows the characterization of Phaseolus acutifolius variety latifolius, on which little research has been published, and provides detailed information on the corresponding lectin. This protein was purified from a semi-domesticated line of white tepary beans from Sonora, Mexico, by precipitation of the aqueous extract with ammonium sulfate, followed by affinity chromatography on an immobilized fetuin matrix. MALDI TOF analysis of Phaseolus acutifolius agglutinin (PAA) showed that this lectin is composed of monomers with molecular weights ranging between 28 and 31 kDa. At high salt concentrations, PAA forms a dimer of 63 kDa, but at low salt concentrations, the subunits form a tetramer. Analysis of PAA on 2D-PAGE showed that there are mainly three types of subunits with isoelectric points of 4.2, 4.4, and 4.5. The partial sequence obtained by LC/MS/MS of tryptic fragments from the PAA subunits showed 90-100% identity with subunits from genus Phaseolus lectins in previous reports. The tepary bean lectin showed lower hemagglutination activity than Phaseolus vulgaris hemagglutinin (PHA-E) toward trypsinized human A and O type erythrocytes. The hemagglutination activity was inhibited by N-glycans from glycoproteins. Affinity chromatography with the immobilized PAA showed a high affinity to glycopeptides from thyroglobulin, which also has N-glycans with a high content of N-acetylglucosamine. PAA showed less mitogenic activity toward human lymphocytes than PHA-L and Con A. The cytotoxicity of PAA was determined by employing three clones of the 3T3 cell line, demonstrating variability among the clones as follows: T4 (DI₅₀ 51.5 µg/mL); J20 (DI₅₀ 275 µg/mL), and N5 (DI₅₀ 72.5 µg/mL).
Collapse
Affiliation(s)
- Carmen Valadez-Vega
- Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, CP 42080 Pachuca de Soto, Hgo, Mexico; E-Mails: (J.A.M.-G.); (E.M.-S.); (C.Z.-P.); (M.A.B.-F.)
| | - Ana María Guzmán-Partida
- Center for Food Research and Development, A. C. Carretera a la Victoria Km 0.6 C.P. 83304. Hermosillo, Sonora, Mexico; E-Mails: (A.M.G.-P.); (F.J.S.-C.)
| | - Francisco Javier Soto-Cordova
- Center for Food Research and Development, A. C. Carretera a la Victoria Km 0.6 C.P. 83304. Hermosillo, Sonora, Mexico; E-Mails: (A.M.G.-P.); (F.J.S.-C.)
| | | | - José A. Morales-González
- Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, CP 42080 Pachuca de Soto, Hgo, Mexico; E-Mails: (J.A.M.-G.); (E.M.-S.); (C.Z.-P.); (M.A.B.-F.)
| | - Eduardo Madrigal-Santillán
- Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, CP 42080 Pachuca de Soto, Hgo, Mexico; E-Mails: (J.A.M.-G.); (E.M.-S.); (C.Z.-P.); (M.A.B.-F.)
| | - José Roberto Villagómez-Ibarra
- Basic Science and Engineering Institute, Universidad Autónoma del Estado de Hidalgo, Carr. A-Pachuca-Tulancingo Km 4.5 Cd Universitaria, CP 42184, Mineral de la Reforma, Hgo, Mexico; E-Mail: (J.R.V.-I.)
| | - Clara Zúñiga-Pérez
- Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, CP 42080 Pachuca de Soto, Hgo, Mexico; E-Mails: (J.A.M.-G.); (E.M.-S.); (C.Z.-P.); (M.A.B.-F.)
| | - José Gutiérrez-Salinas
- Laboratory of Biochemistry and Experimental Medicine, Division of Biomedical Research, National Medical Center “20 de Noviembre”, ISSSTE, México D.F., Mexico; E-Mail: (J.G.-S.)
| | - Marco A. Becerril-Flores
- Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, CP 42080 Pachuca de Soto, Hgo, Mexico; E-Mails: (J.A.M.-G.); (E.M.-S.); (C.Z.-P.); (M.A.B.-F.)
| |
Collapse
|
7
|
Valadez-Vega C, Alvarez-Manilla G, Riverón-Negrete L, García-Carrancá A, Morales-González JA, Zuñiga-Pérez C, Madrigal-Santillán E, Esquivel-Soto J, Esquivel-Chirino C, Villagómez-Ibarra R, Bautista M, Morales-González Á. Detection of cytotoxic activity of lectin on human colon adenocarcinoma (Sw480) and epithelial cervical carcinoma (C33-A). Molecules 2011; 16:2107-2118. [PMID: 21368722 PMCID: PMC6259920 DOI: 10.3390/molecules16032107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 02/07/2023] Open
Abstract
Lectins comprise a heterogeneous class of proteins that recognize the carbohydrate moieties of glycoconjugates with high specificity. Numerous studies have shown that lectins are capable of recognizing specific carbohydrate moieties displayed by malignant cells or tissues. The present work was performed to investigate the effects of tepary bean (Phaseolus acutifolius) lectins on proliferation, colony formation, and alteration of DNA synthesis of human malignant cells. Tepary bean lectin showed dose dependent effects on the inhibition of viability as well as on colony formation in two human malignant cells lines (C33-A, Sw480); By contrast, tepary bean lectin only showed significant effects on DNA synthesis on Sw480 cells. Our results provide evidence of the anti- proliferative and cytotoxic effects of the tepary bean lectins on C33-A and Sw480 cells lines.
Collapse
Affiliation(s)
- Carmen Valadez-Vega
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-771-717-2000; Fax: +52-771-717-2000, extension 5111
| | - Gerardo Alvarez-Manilla
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-771-717-2000; Fax: +52-771-717-2000, extension 5111
| | - Leticia Riverón-Negrete
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-771-717-2000; Fax: +52-771-717-2000, extension 5111
| | - Alejandro García-Carrancá
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-771-717-2000; Fax: +52-771-717-2000, extension 5111
| | - José A. Morales-González
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-771-717-2000; Fax: +52-771-717-2000, extension 5111
| | - Clara Zuñiga-Pérez
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-771-717-2000; Fax: +52-771-717-2000, extension 5111
| | - Eduardo Madrigal-Santillán
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-771-717-2000; Fax: +52-771-717-2000, extension 5111
| | - Jaime Esquivel-Soto
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-771-717-2000; Fax: +52-771-717-2000, extension 5111
| | - Cesar Esquivel-Chirino
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-771-717-2000; Fax: +52-771-717-2000, extension 5111
| | - Roberto Villagómez-Ibarra
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-771-717-2000; Fax: +52-771-717-2000, extension 5111
| | - Mirandeli Bautista
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-771-717-2000; Fax: +52-771-717-2000, extension 5111
| | - Ángel Morales-González
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-771-717-2000; Fax: +52-771-717-2000, extension 5111
| |
Collapse
|
8
|
Evans TJ, Yamamoto KN, Hirota K, Takeda S. Mutant cells defective in DNA repair pathways provide a sensitive high-throughput assay for genotoxicity. DNA Repair (Amst) 2010; 9:1292-8. [DOI: 10.1016/j.dnarep.2010.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2010] [Indexed: 10/18/2022]
|
9
|
Arsenic-induced protein phosphorylation changes in HeLa cells. Anal Bioanal Chem 2010; 398:2099-107. [PMID: 20803194 DOI: 10.1007/s00216-010-4128-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/11/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
Abstract
Arsenic is well documented as a chemotherapeutic agent capable of inducing cell death while at the same time is considered a human carcinogen and an environmental contaminant. Although arsenic toxicity is well known and has formed an impressive literature over the time, little is known about how its effects are exerted at the proteome level. Protein phosphorylation is an important post-translational modification involved in the regulation of cell signaling and likely is altered by arsenic treatment. Despite the importance of phosphorylation for many regulatory processes in cells, the identification and characterization of phosphorylation, as effected by arsenic through mass spectrometric detection, are not fully studied. Here, we identify phosphorylated proteins, which are related to post-translational modifications after phenylarsine oxide (PAO) inoculation to HeLa cells. PAO was chosen because of its high cytotoxicity, measured earlier in these labs. In this study, size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (SEC-ICP-MS) is used to establish several molecular weight fractions with phosphorylated proteins by monitoring (31)P signal vs. time via ICP-MS. SEC-ICP-MS fractions are collected and then separated by the nano-LC-CHIP/ITMS system for peptide determination. Spectrum Mill and MASCOT protein database search engines are used for protein identification. Several phosphorylation sites and proteins related to post-translational modifications are also identified.
Collapse
|
10
|
Sun W, Sierra-Alvarez R, Hsu I, Rowlette P, Field JA. Anoxic oxidation of arsenite linked to chemolithotrophic denitrification in continuous bioreactors. Biotechnol Bioeng 2010; 105:909-17. [PMID: 19953675 DOI: 10.1002/bit.22611] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, the anoxic oxidation of arsenite (As(III)) linked to chemolithotrophic denitrification was shown to be feasible in continuous bioreactors. Biological oxidation of As(III) was stable over prolonged periods of operation ranging up to 3 years in continuous denitrifying bioreactors with granular biofilms. As(III) was removed with a high conversion efficiency (>92%) to arsenate (As(V)) in periods with high volumetric loadings (e.g., 3.5-5.1 mmol As L(reactor) (-1) day(-1)). The maximum specific activity of sampled granular sludge from the bioreactors was 0.98 +/- 0.04 mmol As(V) formed g(-1) VSS day(-1) when determined at an initial concentration of 0.5 mM As(III). The microbial population adapted to high influent concentrations of As(III) up to 5.2 mM. However, the As(III) oxidation process was severely inhibited when 7.6-8.1 mM As(III) was fed. Activity was restored upon lowering the As(III) concentration to 3.8 mM. Several experimental strategies were utilized to demonstrate a dependence of the nitrate removal on As(III) oxidation as well as a dependence of the As(III) removal on nitrate reduction. The molar stoichiometric ratio of As(V) formed to nitrate removed (corrected for endogenous denitrification) in the bioreactors approximated 2.5, indicating complete denitrification was occurring. As(III) oxidation was also shown to be linked to the complete denitrification of NO(3) (-) to N(2) gas by demonstrating a significantly enhanced production of N(2) beyond the background endogenous production in a batch bioassay spiked with 3.5 mM As(III). The N(2) production also corresponded closely to the expected stoichiometry of 2.5 mol As(III) mol(-1) N(2)-N for complete denitrification.
Collapse
Affiliation(s)
- Wenjie Sun
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, Arizona, USA
| | | | | | | | | |
Collapse
|
11
|
Ji K, Kogame T, Choi K, Wang X, Lee J, Taniguchi Y, Takeda S. A novel approach using DNA-repair-deficient chicken DT40 cell lines for screening and characterizing the genotoxicity of environmental contaminants. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1737-44. [PMID: 20049126 PMCID: PMC2801191 DOI: 10.1289/ehp.0900842] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/26/2009] [Indexed: 05/05/2023]
Abstract
BACKGROUND Many bacterial or mammalian cell-based test systems, such as the Ames test, chromosomal aberration assays, or gene mutation assays, are commonly used in developed countries to detect the genotoxicity of industrial chemicals. However, the specificity is generally limited and the sensitivity is not sufficiently high. In addition, most assays cannot provide information on mechanisms of genotoxicity of a given chemical. OBJECTIVES We aimed to establish a sensitive and fast screening method that is also capable of characterizing mechanisms of genotoxicity. METHODS We developed a novel bioassay employing gene-disrupted clones of the chicken DT40 B-lymphocyte line, which are designed to be deficient in several specific DNA repair pathways. Genotoxic chemicals can delay cellular proliferation in DNA-repair-deficient clones more significantly than in wild-type cells by interfering with DNA replication, thereby inducing DNA damage. In addition, we verified the validity of this assay by analyzing the genotoxicity of gamma-rays, ultraviolet (UV) light, and sodium metaarsenite (NaAsO(2)). We also characterized DNA lesions induced by NaAsO(2). RESULTS Genotoxicity of given stressors was successfully screened based on a comparison of proliferation kinetics between wild-type and DNA-repair-deficient mutants in 48 hr. We also found that NaAsO(2) apparently induces at least two types of damage: chromosomal breaks and UV photoproduct-like DNA lesions. CONCLUSION This bioassay is a reliable and sensitive screening tool for environmental mutagens as well as for further characterizing the nature of detected genotoxicity.
Collapse
Affiliation(s)
- Kyunghee Ji
- School of Public Health, Seoul National University, Seoul, Korea
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, Korea
| | - Xin Wang
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jinyoung Lee
- School of Public Health, Seoul National University, Seoul, Korea
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Shunichi Takeda
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Address correspondence to S. Takeda, Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Konoe Yoshida, Sakyo-ku, Kyoto, 606-8501 Japan. Telephone: 81-75-753-4412. Fax: 81-75-753-4419. E-mail:
| |
Collapse
|
12
|
Cohen SM, Arnold LL, Eldan M, Lewis AS, Beck BD. Methylated Arsenicals: The Implications of Metabolism and Carcinogenicity Studies in Rodents to Human Risk Assessment. Crit Rev Toxicol 2008; 36:99-133. [PMID: 16736939 DOI: 10.1080/10408440500534230] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)) are active ingredients in pesticidal products used mainly for weed control. MMA(V) and DMA(V) are also metabolites of inorganic arsenic, formed intracellularly, primarily in liver cells in a metabolic process of repeated reductions and oxidative methylations. Inorganic arsenic is a known human carcinogen, inducing tumors of the skin, urinary bladder, and lung. However, a good animal model has not yet been found. Although the metabolic process of inorganic arsenic appears to enhance the excretion of arsenic from the body, it also involves formation of methylated compounds of trivalent arsenic as intermediates. Trivalent arsenicals (whether inorganic or organic) are highly reactive compounds that can cause cytotoxicity and indirect genotoxicity in vitro. DMA(V) was found to be a bladder carcinogen only in rats and only when administered in the diet or drinking water at high doses. It was negative in a two-year bioassay in mice. MMA(V) was negative in 2-year bioassays in rats and mice. The mode of action for DMA(V)-induced bladder cancer in rats appears to not involve DNA reactivity, but rather involves cytotoxicity with consequent regenerative proliferation, ultimately leading to the formation of carcinoma. This critical review responds to the question of whether DMA(V)-induced bladder cancer in rats can be extrapolated to humans, based on detailed comparisons between inorganic and organic arsenicals, including their metabolism and disposition in various animal species. The further metabolism and disposition of MMA(V) and DMA(V) formed endogenously during the metabolism of inorganic arsenic is different from the metabolism and disposition of MMA(V) and DMA(V) from exogenous exposure. The trivalent arsenicals that are cytotoxic and indirectly genotoxic in vitro are hardly formed in an organism exposed to MMA(V) or DMA(V) because of poor cellular uptake and limited metabolism of the ingested compounds. Furthermore, the evidence strongly supports a nonlinear dose-response relationship for the biologic processes involved in the carcinogenicity of arsenicals. Based on an overall review of the evidence, using a margin-of-exposure approach for MMA(V) and DMA(V) risk assessment is appropriate. At anticipated environmental exposures to MMA(V) and DMA(V), there is not likely to be a carcinogenic risk to humans.
Collapse
Affiliation(s)
- Samuel M Cohen
- Department of Pathology and Microbiology and Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135, USA.
| | | | | | | | | |
Collapse
|
13
|
Soriano C, Creus A, Marcos R. Arsenic trioxide mutational spectrum analysis in the mouse lymphoma assay. Mutat Res 2008; 646:1-7. [PMID: 18822301 DOI: 10.1016/j.mrfmmm.2008.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 07/24/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
Abstract
It has been well documented that long-term exposure to inorganic arsenic induces cancers and vascular diseases in a dose-response relationship. Nevertheless, arsenic has also demonstrated to have anticancer activity; thus, arsenic trioxide (ATO, As2O3) is an inorganic trivalent arsenic form, currently used in the treatment against acute promyelocytic leukaemia (APL). The open discussion about how arsenic compounds induce genotoxic damage has moved us to evaluate the mutational spectrum induced by ATO in mouse lymphoma cells. Thus, 49 Tk-/- mutant colonies obtained in the mouse lymphoma assay (MLA), after treatments lasting for 4h with 10microM ATO, and 49 spontaneous mutant colonies from independent untreated cultures, were used to analyse and to characterise the mutational spectrum induced by this arsenic compound, to understand its mechanism of action. RT-PCR analysis of Tk cDNA and PCR amplifications of eight selected microsatellite sequences, located on chromosome 11, were used to carry out this screening. Our results show that, in mouse lymphoma cells, ATO is a strong clastogenic compound inducing large deletions, at chromosomal level, covering the Tk gene, as well as other regions of chromosome 11.
Collapse
Affiliation(s)
- Carolina Soriano
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Edifici Cn, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | | | | |
Collapse
|
14
|
Duzkale H, Jilani I, Orsolic N, Zingaro RA, Golemovic M, Giles FJ, Kantarjian H, Albitar M, Freireich EJ, Verstovsek S. In vitro activity of dimethylarsinic acid against human leukemia and multiple myeloma cell lines. Cancer Chemother Pharmacol 2003; 51:427-32. [PMID: 12736761 DOI: 10.1007/s00280-003-0588-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2002] [Accepted: 01/15/2003] [Indexed: 11/24/2022]
Abstract
PURPOSE Arsenic trioxide (As(2)O(3)), an inorganic arsenic compound, has recently been approved for the treatment of relapsed or refractory acute promyelocytic leukemia. However, systemic toxicity associated with As(2)O(3) treatment remains a problem. Inorganic arsenic is detoxified in vivo by methylation reactions into organic arsenic compounds that are less toxic. METHODS AND RESULTS We investigated the antiproliferative and cytotoxic activity of dimethylarsinic acid (DMAA), an organic arsenic derivative and major metabolic by-product of As(2)O(3), against a panel of eight leukemia and multiple myeloma cell lines. As(2)O(3) was tested in comparison. In clonogenic assay, the average concentration of DMAA that suppressed cell colony growth by 50% was 0.5-1 m M, while for As(2)O(3) it was on average 1-2 microM. At those concentrations DMAA and As(2)O(3) had significantly less effect on colony growth of normal progenitor cells. Cytotoxic doses of DMAA and As(2)O(3) in 3-day trypan blue dye exclusion assay experiments were similar to doses effective in clonogenic assay. Assessment of apoptosis by annexin V assay revealed a high rate of apoptosis in all cell lines treated with DMAA and As(2)O(3), but significantly less effect on normal progenitor cells. DMAA, unlike As(2)O(3), had no effect on the maturation of leukemic cells. CONCLUSIONS DMAA exerts differential antiproliferative and cytotoxic activity against leukemia and multiple myeloma cells, with no significant effect on normal progenitor cells. However, concentrations of DMAA needed to achieve such efficacy are up to 1000 times those of As(2)O(3). Evaluation of novel organic arsenic that would combine the high efficacy of As(2)O(3) and the low toxicity of DMAA is warranted.
Collapse
Affiliation(s)
- Hatice Duzkale
- Department of Special Medical Education Programs, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kligerman AD, Doerr CL, Tennant AH, Harrington-Brock K, Allen JW, Winkfield E, Poorman-Allen P, Kundu B, Funasaka K, Roop BC, Mass MJ, DeMarini DM. Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic: induction of chromosomal mutations but not gene mutations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 42:192-205. [PMID: 14556226 DOI: 10.1002/em.10192] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Arsenic is a prevalent human carcinogen whose mutagenicity has not been characterized fully. Exposure to either form of inorganic arsenic, As(III) or As(V), can result in the formation of at least four organic metabolites: monomethylarsonic acid, monomethylarsonous acid (MMA(III)), dimethylarsinic acid, and dimethylarsinous acid (DMA(III)). The methylated trivalent species, as well as some of the other species, have not been evaluated previously for the induction of chromosome aberrations, sister chromatid exchanges (SCE), or toxicity in cultured human peripheral blood lymphocytes; for mutagenicity in L5178Y/Tk(+/-) mouse lymphoma cells or in the Salmonella reversion assay; or for prophage-induction in Escherichia coli. Here we evaluated the arsenicals in these assays and found that MMA(III) and DMA(III) were the most potent clastogens of the six arsenicals in human lymphocytes and the most potent mutagens of the six arsenicals at the Tk(+/-) locus in mouse lymphoma cells. The dimethylated arsenicals were also spindle poisons, suggesting that they may be ultimate forms of arsenic that induce aneuploidy. Although the arsenicals were potent clastogens, none were potent SCE inducers, similar to clastogens that act via reactive oxygen species. None of the six arsenicals were gene mutagens in Salmonella TA98, TA100, or TA104; and neither MMA(III) nor DMA(III) induced prophage. Our results show that both methylated As(V) compounds were less cytotoxic and genotoxic than As(V), whereas both methylated As(III) compounds were more cytotoxic and genotoxic than As(III). Our data support the view that MMA(III) and DMA(III) are candidate ultimate genotoxic forms of arsenic and that they are clastogens and not gene mutagens. We suggest that the clastogenicity of the other arsenicals is due to their metabolism by cells to MMA(III) or DMA(III).
Collapse
Affiliation(s)
- Andrew D Kligerman
- Environmental Carcinogenesis Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kusakabe H, Yamakage K, Wakuri S, Sasaki K, Nakagawa Y, Watanabe M, Hayashi M, Sofuni T, Ono H, Tanaka N. Relevance of chemical structure and cytotoxicity to the induction of chromosome aberrations based on the testing results of 98 high production volume industrial chemicals. Mutat Res 2002; 517:187-98. [PMID: 12034320 DOI: 10.1016/s1383-5718(02)00062-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Over a 6-year period (1991-1996), the chromosomal aberration testing of high production volume (HPV) industrial chemicals had been conducted using Chinese hamster lung (CHL/IU) cells according to OECD HPV testing program and the national program in Japan. A total of 98 chemicals were tested for the induction of chromosome aberration (CA), consisting of structural CA and polyploidy. Of the 98 chemicals, structural CA and/or polyploidy were induced by 39 chemicals (40%). Anilines and phenols tended to induce only structural CA. p-tert-Butylphenol had a peculiar feature in inducing not only structural CA but also polyploidy at considerably high frequency (93.2%) after continuous treatment for 48 h, posing an aneugenic potential. Not all, but six of 11 carboxylic acids or esters also showed the simultaneous induction of structural CA and polyploidy. The majority of organic phosphates, alcohols or ethers, alkyl benzenes and non-cyclic alkanes had no CA induction activity. For chemicals which were negative in the bacterial reverse mutation assay (Ames test), the proportion of the chemicals that induced CA at a severely cytotoxic dose (doses manifesting more than 50% cytotoxicity) was similar to that of the CA-negative chemicals manifesting severe cytotoxicity, suggesting that severely cytotoxic chemicals do not always induce CA.
Collapse
Affiliation(s)
- Hirokazu Kusakabe
- Laboratory of Cell Toxicology, Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|