1
|
Raina JK, Sharma R, Kumar N, Ali SA, Panjaliya RK, Bakaya A, Kumar P. Association of Glutathione S-transferase gene polymorphism with coronary artery disease (CAD) in North Indian population (Jammu and Kashmir): evidence from a case-control study and an updated meta-analysis. Inhal Toxicol 2025:1-13. [PMID: 40287978 DOI: 10.1080/08958378.2025.2495592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Chemicals released during cigarette smoking disrupt the structure, function and physiological capacity of the cardiovascular system. Detoxification of these harmful chemicals is done by Glutathione S-transferase (GST) isoenzymes (GSTM1 and GSTT1). GST gene polymorphisms may have a role in conferring susceptibility to coronary artery disease. This case-control study aims to evaluate the relationship between GSTM1 and GSTT1 gene polymorphisms, smoking habits, and coronary artery disease (CAD) in the Northern Indian population of Jammu and Kashmir, strengthened by a meta-analysis based on previously published studies. METHODS The current study involved 220 patients with CAD and 240 healthy controls from the Jammu region in the Union Territory of Jammu and Kashmir. Whole blood DNA was isolated, followed by genotyping using the polymerase chain reaction (PCR) technique. RESULTS Smoking, a non-vegetarian diet, and lipid levels were found to be significantly associated with coronary artery disease (CAD). The frequency of the GSTMnull genotype was significantly higher in patients than in controls (48.2% vs. 33.3%), while both groups showed comparable frequencies of the GSTTnull genotype. Combined genotype analysis indicated that the GSTM1 Tnull genotype was associated with an increased risk of CAD, with an adjusted odds ratio (AOR) of 1.70 and a 95% confidence interval (CI) of 1.30-2.27(p = 0.05). Patients who were smokers and had the GSTMnull genotype, as well as those with the GSTM1Tnull or GSTMnullT1 genotypes, were at a significantly higher risk of developing CAD. The results of the meta-analysis supported the findings of the case-control association study. CONCLUSION The GSTM1 null genotype, either independently or in conjunction with smoking, is linked to the incidence of CAD among North Indians in Jammu and Kashmir.
Collapse
Affiliation(s)
- Jyotdeep K Raina
- Department of Human Genetics, GGM Science College, Jammu, Jammu and Kashmir, India
| | - Ravi Sharma
- Department of Zoology, University of Jammu, Jammu and Kashmir, India
| | - Naveen Kumar
- Department of Computer Engineering, SMVDU, Katra, J&K
| | - Sheikh Abid Ali
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | | | - Ashok Bakaya
- Department of Cardiology, Acharya Shri Chander College of Medical Sciences and Hospital (ASCOMS), Sidhra, Jammu, Jammu and Kashmir
| | - Parvinder Kumar
- Department of Zoology, University of Jammu, Jammu and Kashmir, India
| |
Collapse
|
2
|
Newman AAC, Dalman JM, Moore KJ. Cardiovascular Disease and Cancer: A Dangerous Liaison. Arterioscler Thromb Vasc Biol 2025; 45:359-371. [PMID: 39781742 PMCID: PMC11864891 DOI: 10.1161/atvbaha.124.319863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
The field of cardio-oncology has traditionally focused on the impact of cancer and its therapies on cardiovascular health. Mounting clinical and preclinical evidence, however, indicates that the reverse may also be true: cardiovascular disease can itself influence tumor growth and metastasis. Numerous epidemiological studies have reported that individuals with prevalent cardiovascular disease have an increased incidence of cancer. In parallel, studies using preclinical mouse models of myocardial infarction, heart failure, and cardiac remodeling support the notion that cardiovascular disorders accelerate the growth of solid tumors and metastases. These findings have ushered in a new and burgeoning field termed reverse cardio-oncology that investigates the impact of cardiovascular disease pathophysiology on cancer emergence and progression. Recent studies have begun to illuminate the mechanisms driving this relationship, including shared risk factors, reprogramming of immune responses, changes in gene expression, and the release of cardiac factors that result in selective advantages for tumor cells or their local milieu, thus exacerbating cancer pathology. Here, we review the evidence supporting the relationship between cardiovascular disease and cancer, the mechanistic pathways enabling this connection, and the implications of these findings for patient care.
Collapse
Affiliation(s)
- Alexandra A C Newman
- Cardiovascular Research Center, New York University Langone Health, New York, NY 10016, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jessie M Dalman
- Cardiovascular Research Center, New York University Langone Health, New York, NY 10016, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- University of Michigan Medical School, Ann Arbor, MI 48104, USA
| | - Kathryn J Moore
- Cardiovascular Research Center, New York University Langone Health, New York, NY 10016, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
3
|
Ma C, Liu Y, Fu Z. Implications of endoplasmic reticulum stress and autophagy in aging and cardiovascular diseases. Front Pharmacol 2024; 15:1413853. [PMID: 39119608 PMCID: PMC11306071 DOI: 10.3389/fphar.2024.1413853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The average lifespan of humans has been increasing, resulting in a rapidly rising percentage of older individuals and high morbidity of aging-associated diseases, especially cardiovascular diseases (CVDs). Diverse intracellular and extracellular factors that interrupt homeostatic functions in the endoplasmic reticulum (ER) induce ER stress. Cells employ a dynamic signaling pathway of unfolded protein response (UPR) to buffer ER stress. Recent studies have demonstrated that ER stress triggers various cellular processes associated with aging and many aging-associated diseases, including CVDs. Autophagy is a conserved process involving lysosomal degradation and recycling of cytoplasmic components, proteins, organelles, and pathogens that invade the cytoplasm. Autophagy is vital for combating the adverse influence of aging on the heart. The present report summarizes recent studies on the mechanism of ER stress and autophagy and their overlap in aging and on CVD pathogenesis in the context of aging. It also discusses possible therapeutic interventions targeting ER stress and autophagy that might delay aging and prevent or treat CVDs.
Collapse
Affiliation(s)
- Chenguang Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- 32295 Troops of P.L.A, Liaoyang, China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Snijckers RPM, Foks AC. Adaptive immunity and atherosclerosis: aging at its crossroads. Front Immunol 2024; 15:1350471. [PMID: 38686373 PMCID: PMC11056569 DOI: 10.3389/fimmu.2024.1350471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Adaptive immunity plays a profound role in atherosclerosis pathogenesis by regulating antigen-specific responses, inflammatory signaling and antibody production. However, as we age, our immune system undergoes a gradual functional decline, a phenomenon termed "immunosenescence". This decline is characterized by a reduction in proliferative naïve B- and T cells, decreased B- and T cell receptor repertoire and a pro-inflammatory senescence associated secretory profile. Furthermore, aging affects germinal center responses and deteriorates secondary lymphoid organ function and structure, leading to impaired T-B cell dynamics and increased autoantibody production. In this review, we will dissect the impact of aging on adaptive immunity and the role played by age-associated B- and T cells in atherosclerosis pathogenesis, emphasizing the need for interventions that target age-related immune dysfunction to reduce cardiovascular disease risk.
Collapse
Affiliation(s)
| | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
5
|
Incorvaia L, Badalamenti G, Novo G, Gori S, Cortesi L, Brando C, Cinieri S, Curigliano G, Ricciardi GR, Toss A, Chiari R, Berardi R, Ballatore Z, Bono M, Bazan Russo TD, Gristina V, Galvano A, Damerino G, Blasi L, Bazan V, Russo A. Anthracycline-related cardiotoxicity in patients with breast cancer harboring mutational signature of homologous recombination deficiency (HRD). ESMO Open 2024; 9:102196. [PMID: 38118367 PMCID: PMC10837774 DOI: 10.1016/j.esmoop.2023.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND The BRCA proteins play a key role in the homologous recombination (HR) pathway. Beyond BRCA1/2, other genes are involved in the HR repair (HRR). Due to the prominent role in the cellular repair process, pathogenic or likely pathogenic variants (PV/LPVs) in HRR genes may cause inadequate DNA damage repair in cardiomyocytes. PATIENTS AND METHODS This was a multicenter, hospital-based, retrospective cohort study to investigate the heart toxicity from anthracycline-containing regimens (ACRs) in the adjuvant setting of breast cancer (BC) patients carrying germline BRCA PV/LPVs and no-BRCA HRR pathway genes. The left ventricular ejection fraction (LVEF) was assessed using cardiac ultrasound before starting ACR therapy and at subsequent time points according to clinical indications. RESULTS Five hundred and three BC patients were included in the study. We predefined three groups: (i) BRCA cohort; (ii) no-BRCA cohort; (iii) variant of uncertain significance (VUS)/wild-type (WT) cohort. When baseline (T0) and post-ACR (T1) LVEFs between the three cohorts were compared, pre-treatment LVEF values were not different (BRCA1/2 versus HRR-no-BRCA versus VUS/WT cohort). Notably, during monitoring (T1, median 3.4 months), patients carrying BRCA or HRR no-BRCA germline pathogenic or likely pathogenic variants showed a statistically significant reduction of LVEF compared to baseline (T0). To assess the relevance of HRR on the results, we included the analysis of the subgroup of 20 BC patients carrying PV/LPVs in other genes not involved in HRR, such as mismatch repair genes (MUTYH, PMS2, MSH6). Unlike HRR genes, no significant differences in T0-T1 were found in this subgroup of patients. CONCLUSION Our data suggest that deleterious variants in HRR genes, leading to impaired HR, could increase the sensitivity of cardiomyocytes to ACR in early BC patients. In this subgroup of patients, other measurements, such as the global longitudinal strain, and a more in-depth assessment of risk factors may be proposed in the future to optimize cardiovascular risk management and improve long-term survival.
Collapse
Affiliation(s)
- L Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo
| | - G Badalamenti
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo
| | - G Novo
- Division of Cardiology, University Hospital Paolo Giaccone, Palermo; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Palermo
| | - S Gori
- Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella
| | - L Cortesi
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena
| | - C Brando
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo
| | - S Cinieri
- Complex Medical Oncology Unit, ASL Brindisi Senatore Antonio Perrino Hospital, Brindisi
| | - G Curigliano
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milan, Milan
| | - G R Ricciardi
- Medical Oncology Unit, A.O. Papardo & Department of Human Pathology, University of Messina, Messina
| | - A Toss
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena
| | - R Chiari
- Medical Oncology, Ospedali Riuniti Padova Sud, Monselice
| | - R Berardi
- Medical Oncology, AOU Ospedali Riuniti Umberto I-GM Lancisi-G Salesi, Polytechnic University of the Marche Region, Ancona
| | - Z Ballatore
- Medical Oncology, AOU Ospedali Riuniti Umberto I-GM Lancisi-G Salesi, Polytechnic University of the Marche Region, Ancona
| | - M Bono
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo
| | - T D Bazan Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo
| | - V Gristina
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo
| | - A Galvano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo
| | - G Damerino
- Division of Cardiology, University Hospital Paolo Giaccone, Palermo
| | - L Blasi
- Medical Oncology Unit, ARNAS Civico, Palermo
| | - V Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bind), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - A Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo.
| |
Collapse
|
6
|
Hu ML, Pan YR, Yong YY, Liu Y, Yu L, Qin DL, Qiao G, Law BYK, Wu JM, Zhou XG, Wu AG. Poly (ADP-ribose) polymerase 1 and neurodegenerative diseases: Past, present, and future. Ageing Res Rev 2023; 91:102078. [PMID: 37758006 DOI: 10.1016/j.arr.2023.102078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.
Collapse
Affiliation(s)
- Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi-Ru Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi Liu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
7
|
Huangfu N, Ma H, Tian M, Zhang J, Wang Y, Li Z, Chen X, Cui H. DHX9 Strengthens Atherosclerosis Progression By Promoting Inflammation in Macrophages. Inflammation 2023; 46:1725-1738. [PMID: 37326773 PMCID: PMC10567826 DOI: 10.1007/s10753-023-01836-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Atherosclerosis (AS) is the main cause of cerebrovascular diseases, and macrophages play important roles in atherosclerosis. DExH-Box helicase 9 (DHX9), as a member of DExD/H-box RNA helicase superfamily II, is identified as an autoantigen in the sera of systemic lupus erythematosus patients to trigger inflammation. The aim of this study was to investigate whether DHX9 is involved in AS development, especially in macrophages-mediated-inflammatory responses. We find that DHX9 expression is significantly increased in oxLDL or interferon-γ-treated macrophages and peripheral blood mononuclear cells (PBMCs) from patients with coronary artery disease (CAD). Knockdown of DHX9 inhibits lipid uptake and pro-inflammatory factors expression in macrophages, and ameliorates TNF-α-mediated monocyte adhesion capacity. Furthermore, we find that oxLDL stimulation promotes DHX9 interaction with p65 in macrophages, and further enhances the transcriptional activity of DHX9-p65-RNA Polymerase II complex to produce inflammatory factors. Moreover, using ApoE -/- mice fed with western diet to establish AS model, we find that knockdown of DHX9 mediated by adeno-associated virus-Sh-DHX9 through tail vein injection evidently alleviates AS progression in vivo. Finally, we also find that knockdown of DHX9 inhibits p65 activation, inflammatory factors expression, and the transcriptional activity of p65-RNA Polymerase II complex in PBMCs from patients with CAD. Overall, these results indicate that DHX9 promotes AS progression by enhancing inflammation in macrophages, and suggest DHX9 as a potential target for developing therapeutic drug.
Collapse
Affiliation(s)
- Ning Huangfu
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China
| | - Hongchuang Ma
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China
| | - Mengyun Tian
- School of Medicine, Ningbo University, Ningbo, 315000, China
| | - Jie Zhang
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China
- School of Medicine, Ningbo University, Ningbo, 315000, China
| | - Yong Wang
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China
| | - Zhenwei Li
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China
| | - Xiaomin Chen
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China.
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China.
| | - Hanbin Cui
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China.
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China.
| |
Collapse
|
8
|
Sakai C, Ueda K, Goda K, Fujita R, Maeda J, Nakayama S, Sotomaru Y, Tashiro S, Yoshizumi M, Ishida T, Ishida M. A possible role for proinflammatory activation via cGAS-STING pathway in atherosclerosis induced by accumulation of DNA double-strand breaks. Sci Rep 2023; 13:16470. [PMID: 37777633 PMCID: PMC10542807 DOI: 10.1038/s41598-023-43848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/28/2023] [Indexed: 10/02/2023] Open
Abstract
DNA damage contributes to atherosclerosis. However, causative links between DNA double-strand breaks (DSBs) and atherosclerosis have yet to be established. Here, we investigated the role of DSBs in atherosclerosis using mice and vascular cells deficient in Ku80, a DSB repair protein. After 4 weeks of a high-fat diet, Ku80-deficient apolipoprotein E knockout mice (Ku80+/-ApoE-/-) displayed increased plaque size and DSBs in the aorta compared to those of ApoE-/- control. In the preatherosclerotic stages (two-week high-fat diet), the plaque size was similar in both the Ku80+/-ApoE-/- and ApoE-/- control mice, but the number of DSBs and mRNA levels of inflammatory cytokines such as IL-6 and MCP-1 were significantly increased in the Ku80+/-ApoE-/- aortas. We further investigated molecular links between DSBs and inflammatory responses using vascular smooth muscle cells isolated from Ku80 wild-type and Ku80+/- mice. The Ku80+/- cells displayed senescent features and elevated levels of inflammatory cytokine mRNAs. Moreover, the cytosolic DNA-sensing cGAS-STING pathway was activated in the Ku80+/- cells. Inhibiting the cGAS-STING pathway reduced IL-6 mRNA level. Notably, interferon regulatory factor 3 (IRF3), a downstream effector of the cGAS-STING pathway, was activated, and the depletion of IRF3 also reduced IL-6 mRNA levels in the Ku80+/- cells. Finally, DSBs accumulation in normal cells also activated the cGAS-STING-IRF3 pathway. In addition, cGAS inhibition attenuated DNA damage-induced IL-6 expression and cellular senescence in these cells. These results suggest that DSBs accumulation promoted atherosclerosis by upregulating proinflammatory responses and cellular senescence via the cGAS-STING (-IRF3) pathway.
Collapse
Affiliation(s)
- Chiemi Sakai
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Keitaro Ueda
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Kohei Goda
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Rikuto Fujita
- National Hospital Organization, Higashihiroshima Medical Center, Hiroshima City, Japan
| | - Junji Maeda
- Department of Cardiology, Tsuchiya General Hospital, Hiroshima City, Japan
| | - Shinya Nakayama
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima City, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima City, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima City, Japan
| | - Masao Yoshizumi
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Mari Ishida
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan.
| |
Collapse
|
9
|
Nikfarjam S, Singh KK. DNA damage response signaling: A common link between cancer and cardiovascular diseases. Cancer Med 2023; 12:4380-4404. [PMID: 36156462 PMCID: PMC9972122 DOI: 10.1002/cam4.5274] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
DNA damage response (DDR) signaling ensures genomic and proteomic homeostasis to maintain a healthy genome. Dysregulation either in the form of down- or upregulation in the DDR pathways correlates with various pathophysiological states, including cancer and cardiovascular diseases (CVDs). Impaired DDR is studied as a signature mechanism for cancer; however, it also plays a role in ischemia-reperfusion injury (IRI), inflammation, cardiovascular function, and aging, demonstrating a complex and intriguing relationship between cancer and pathophysiology of CVDs. Accordingly, there are increasing number of reports indicating higher incidences of CVDs in cancer patients. In the present review, we thoroughly discuss (1) different DDR pathways, (2) the functional cross talk among different DDR mechanisms, (3) the role of DDR in cancer, (4) the commonalities and differences of DDR between cancer and CVDs, (5) the role of DDR in pathophysiology of CVDs, (6) interventional strategies for targeting genomic instability in CVDs, and (7) future perspective.
Collapse
Affiliation(s)
- Sepideh Nikfarjam
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Krishna K Singh
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
10
|
Natarajan P. Genomic Aging, Clonal Hematopoiesis, and Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2023; 43:3-14. [PMID: 36353993 PMCID: PMC9780188 DOI: 10.1161/atvbaha.122.318181] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Chronologic age is the dominant risk factor for coronary artery disease but the features of aging promoting coronary artery disease are poorly understood. Advances in human genetics and population-based genetic profiling of blood cells have uncovered the surprising role of age-related subclinical leukemogenic mutations in blood cells, termed "clonal hematopoiesis of indeterminate potential," in coronary artery disease. Such mutations typically occur in DNMT3A, TET2, ASXL1, and JAK2. Murine and human studies prioritize the role of key inflammatory pathways linking clonal hematopoiesis with coronary artery disease. Increasingly larger, longitudinal, multiomics analyses are enabling further dissection into mechanistic insights. These observations expand the genetic architecture of coronary artery disease, now linking hallmark features of hematologic neoplasia with a much more common cardiovascular condition. Implications of these studies include the prospect of novel precision medicine paradigms for coronary artery disease.
Collapse
Affiliation(s)
- Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Ruszel KP, Zalewski DP, Stępniewski A, Gałkowski D, Bogucki J, Feldo M, Płachno BJ, Kocki J, Bogucka-Kocka A. Next-Generation Sequencing in the Assessment of the Transcriptomic Landscape of DNA Damage Repair Genes in Abdominal Aortic Aneurysm, Chronic Venous Disease and Lower Extremity Artery Disease. Int J Mol Sci 2022; 24:551. [PMID: 36614026 PMCID: PMC9820637 DOI: 10.3390/ijms24010551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular diseases are one of the most common causes of death and morbidity. Lower extremity artery disease (LEAD), abdominal aortic aneurysm (AAA) and chronic venous disease (CVD) belong to this group of conditions and exhibit various presentations and courses; thus, there is an urgent need for revealing new biomarkers for monitoring and potential treatment. Next-generation sequencing of mRNA allows rapid and detailed transcriptome analysis, allowing us to pinpoint the most pronounced differences between the mRNA expression profiles of vascular disease patients. Comparison of expression data of 519 DNA-repair-related genes obtained from mRNA next-generation sequencing revealed significant transcriptomic marks characterizing AAA, CVD and LEAD. Statistical, gene set enrichment analysis (GSEA), gene ontology (GO) and literature analyses were applied and highlighted many DNA repair and accompanying processes, such as cohesin functions, oxidative stress, homologous recombination, ubiquitin turnover, chromatin remodelling and DNA double-strand break repair. Surprisingly, obtained data suggest the contribution of genes engaged in the regulatory function of DNA repair as a key component that could be used to distinguish between analyzed conditions. DNA repair-related genes depicted in the presented study as dysregulated in AAA, CVD and LEAD could be utilized in the design of new biomarkers or therapies associated with these diseases.
Collapse
Affiliation(s)
- Karol P. Ruszel
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland
| | - Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903, USA
| | - Jacek Bogucki
- Chair and Department of Organic Chemistry, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| |
Collapse
|
12
|
Batty M, Bennett MR, Yu E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022; 11:3843. [PMID: 36497101 PMCID: PMC9735601 DOI: 10.3390/cells11233843] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular system and is the leading cause of cardiovascular diseases worldwide. Excessive generation of reactive oxygen species (ROS) leads to a state of oxidative stress which is a major risk factor for the development and progression of atherosclerosis. ROS are important for maintaining vascular health through their potent signalling properties. However, ROS also activate pro-atherogenic processes such as inflammation, endothelial dysfunction and altered lipid metabolism. As such, considerable efforts have been made to identify and characterise sources of oxidative stress in blood vessels. Major enzymatic sources of vascular ROS include NADPH oxidases, xanthine oxidase, nitric oxide synthases and mitochondrial electron transport chains. The production of ROS is balanced by ROS-scavenging antioxidant systems which may become dysfunctional in disease, contributing to oxidative stress. Changes in the expression and function of ROS sources and antioxidants have been observed in human atherosclerosis while in vitro and in vivo animal models have provided mechanistic insight into their functions. There is considerable interest in utilising antioxidant molecules to balance vascular oxidative stress, yet clinical trials are yet to demonstrate any atheroprotective effects of these molecules. Here we will review the contribution of ROS and oxidative stress to atherosclerosis and will discuss potential strategies to ameliorate these aspects of the disease.
Collapse
Affiliation(s)
| | | | - Emma Yu
- Section of Cardiorespiratory Medicine, University of Cambridge, Cambridge CB2 0BB, UK
| |
Collapse
|
13
|
Coronary artery disease and cancer: a significant resemblance. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:187. [PMID: 36071253 DOI: 10.1007/s12032-022-01789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/01/2022] [Indexed: 10/14/2022]
Abstract
Cancer and coronary artery disease (CAD) are two of the most common causes of death, and they frequently coexist, especially as the world's population ages. CAD can develop prior to or following cancer diagnosis, as well as a side effect of cancer treatment. CAD develops as complex interactions of lifestyle and hereditary variables, just like the development of the most complex and non-communicable diseases. Cancer is caused by both external/acquired factors (tobacco, food, physical activity, alcohol consumption, epigenetic alterations) and internal/inherited factors (genetic mutations, hormones, and immunological diseases). The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9) system has recently emerged as a strong tool for gene therapy for both cancer as well as CAD treatment due to its great accuracy and efficiency. A deeper understanding of the complex link between CAD and cancer should lead to better prevention, faster detection, and safer treatment strategies.
Collapse
|
14
|
Xiao H, Zhang M, Wu H, Wu J, Hu X, Pei X, Li D, Zhao L, Hua Q, Meng B, Zhang X, Peng L, Cheng X, Li Z, Yang W, Zhang Q, Zhang Y, Lu Y, Pan Z. CIRKIL Exacerbates Cardiac Ischemia/Reperfusion Injury by Interacting With Ku70. Circ Res 2022; 130:e3-e17. [PMID: 35105170 DOI: 10.1161/circresaha.121.318992] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ku70 participates in several pathological processes through mediating repair of DNA double-strand breaks. Our previous study has identified a highly conserved long noncoding RNA cardiac ischemia reperfusion associated Ku70 interacting lncRNA (CIRKIL) that was upregulated in myocardial infarction. The study aims to investigate whether CIRKIL regulates myocardial ischemia/reperfusion (I/R) through binding to Ku70. METHODS CIRKIL transgenic and knockout mice were subjected to 45-minute ischemia and 24-hour reperfusion to establish myocardial I/R model. RNA pull-down and RNA immunoprecipitation assay were used to detect the interaction between CIRKIL and Ku70. RESULTS The expression of CIRKIL was increased in I/R myocardium and H2O2-treated cardiomyocytes. Overexpression of CIRKIL increased the expression of γH2A.X, a specific marker of DNA double-strand breaks and aggravated cardiomyocyte apoptosis, whereas knockdown of CIRKIL produced the opposite changes. Transgenic overexpression of CIRKIL aggravated cardiac dysfunction, enlarged infarct area, and worsened cardiomyocyte damage in I/R mice. Knockout of CIRKIL alleviated myocardial I/R injury. Mechanistically, CIRKIL directly bound to Ku70 to subsequently decrease nuclear translocation of Ku70 and impair DNA double-strand breaks repair. Concurrent overexpression of Ku70 mitigated CIRKIL overexpression-induced myocardial I/R injury. Furthermore, knockdown of human CIRKIL significantly suppressed cell damage induced by H2O2 in adult human ventricular cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS CIRKIL is a detrimental factor in I/R injury acting via regulating nuclear translocation of Ku70 and DNA double-strand breaks repair. Thus, CIRKIL might be considered as a novel molecular target for the treatment of cardiac conditions associated with I/R injury.
Collapse
Affiliation(s)
- Hongwen Xiao
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Mingyu Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Hao Wu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.).,College of Pharmacy and Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, P.R. China. (H.W., D.L., Q.H., Y.L.)
| | - Jiaxu Wu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Xiaoxi Hu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Xinyu Pei
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Danyang Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.).,College of Pharmacy and Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, P.R. China. (H.W., D.L., Q.H., Y.L.)
| | - Lu Zhao
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Qi Hua
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.).,College of Pharmacy and Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, P.R. China. (H.W., D.L., Q.H., Y.L.)
| | - Bo Meng
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Xiaowen Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Lili Peng
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Xiaoling Cheng
- Department of Medicinal Chemistry, Harbin Medical University, P.R. China. (X.C.)
| | - Zhuoyun Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Wanqi Yang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Qi Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Yang Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Yanjie Lu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.).,College of Pharmacy and Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, P.R. China. (H.W., D.L., Q.H., Y.L.)
| | - Zhenwei Pan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| |
Collapse
|
15
|
Wang Q, Ma E, Wo D, Chen J, He J, Peng J, Zhu W, Ren DN. Huoxin pill prevents acute myocardial ischaemia injury via inhibition of Wnt/β-catenin signaling. J Cell Mol Med 2021; 25:11053-11062. [PMID: 34786834 PMCID: PMC8650034 DOI: 10.1111/jcmm.17028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death worldwide, and due to the widespread and irreversible damage caused, new therapeutic treatments are urgently needed in order to limit the degree of ischaemic damage following MI. Aberrant activation of Wnt/β‐catenin signalling pathway often occurs during cardiovascular diseases including MI, which results in excess production of reactive oxygen species (ROS) and further promotes myocardial dysfunction. Huoxin pill (HXP) is a Traditional Chinese Medicine formula that has been widely used in the treatment of coronary heart disease and angina; however, its mechanisms remain unclear. Here, we performed mouse models of MI and examined the effects and mechanisms of HXP in protecting against MI‐induced ischaemic damage. Our study showed that administration with HXP robustly protected against MI‐induced cardiac injuries, decreased infarct size and improved cardiac function. Moreover, HXP attenuated ischaemia‐induced DNA damage occurrence in vivo and H2O2‐induced DNA damage occurrence in vitro, via potent inhibition of adverse Wnt/β‑catenin signalling activation. Our study thus elucidated the role and mechanism of HXP in protecting against MI and oxidative stress‐induced injuries and suggests new therapeutic strategies in ischaemic heart disease via inhibition of Wnt/β‐catenin signalling pathway.
Collapse
Affiliation(s)
- Qing Wang
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - En Ma
- Clinical and Translational Research Center, Key Laboratory of Arrhythmias of Ministry of Education, Research Institute of Heart Failure Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Da Wo
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Jinxiao Chen
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Jia He
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Weidong Zhu
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Dan-Ni Ren
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| |
Collapse
|
16
|
Liu L, Ni YQ, Zhan JK, Liu YS. The Role of SGLT2 Inhibitors in Vascular Aging. Aging Dis 2021; 12:1323-1336. [PMID: 34341711 PMCID: PMC8279525 DOI: 10.14336/ad.2020.1229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular aging is defined as organic and functional changes in blood vessels, in which decline in autophagy levels, DNA damage, MicroRNA (miRNA), oxidative stress, sirtuin, and apoptosis signal-regulated kinase 1 (ASK1) are integral thereto. With regard to vascular morphology, the increase in arterial stiffness, atherosclerosis, vascular calcification and high amyloid beta levels are closely related to vascular aging. Further closely related thereto, at the cellular level, is the aging of vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Vascular aging seriously affects the health, economy and life of patients, but can be delayed by SGLT2 inhibitors through the improvement of vascular function. In the present article, a review is conducted of recent domestic and international progress in research on SGLT2 inhibitors,vascular aging and diseases related thereto, thereby providing theoretical support and guidance for further revealing the relationship between SGLT2 inhibitors and diseases related to vascular aging.
Collapse
Affiliation(s)
- Le Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - Yu-Qing Ni
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - Jun-Kun Zhan
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - You-Shuo Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
17
|
He L, Zhao R, Wang Y, Liu H, Wang X. Research Progress on Catalpol as Treatment for Atherosclerosis. Front Pharmacol 2021; 12:716125. [PMID: 34326774 PMCID: PMC8313760 DOI: 10.3389/fphar.2021.716125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 12/31/2022] Open
Abstract
Coronary atherosclerotic heart disease, cerebrovascular disease, and peripheral artery disease are common diseases with high morbidity and mortality rates and must be addressed. Their most frequent complications, including myocardial infarction and stroke, are caused by spontaneous thrombotic occlusion and are the most frequent cause of death worldwide. Atherosclerosis (AS) is the most widespread underlying pathological change for the above diseases. Therefore, drugs that interfere with this pathophysiological process must be incorporated in the treatment. Chinese traditional and herbal drugs can effectively treat AS. With the development of traditional Chinese medicine, the active ingredients in common Chinese medicinal materials must be thoroughly purified prior to their application in western medicine. Various proprietary Chinese medicine preparations with remarkable effects have been used in AS treatment. Catalpol, the active component of Rehmannia glutinosa, belongs to iridoid terpene and has anti-inflammatory, antioxidant, insulin resistance improvement, and other related effects. Several reviews have been conducted on this compound and its actions against osteoporosis, neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD) and diabetes and its complications. The current review focused on catalpol's effect on atherosclerotic plaque formation in different animal models. The potential mechanisms of catalpol to ameliorate AS were also summarized in terms of oxidative stress, inflammation, cell aging, apoptosis, and activation of the silent information regulator factor 2-related enzyme 1 (SIRT1) pathway.
Collapse
Affiliation(s)
- Lei He
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Rusheng Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Youheng Wang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Huibing Liu
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China.,College of Life Science, Henan Normal University, Xinxiang, China
| | - Xuehui Wang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
18
|
Haemmig S, Yang D, Sun X, Das D, Ghaffari S, Molinaro R, Chen L, Deng Y, Freeman D, Moullan N, Tesmenitsky Y, Wara AKMK, Simion V, Shvartz E, Lee JF, Yang T, Sukova G, Marto JA, Stone PH, Lee WL, Auwerx J, Libby P, Feinberg MW. Long noncoding RNA SNHG12 integrates a DNA-PK-mediated DNA damage response and vascular senescence. Sci Transl Med 2021; 12:12/531/eaaw1868. [PMID: 32075942 DOI: 10.1126/scitranslmed.aaw1868] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/27/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging regulators of biological processes in the vessel wall; however, their role in atherosclerosis remains poorly defined. We used RNA sequencing to profile lncRNAs derived specifically from the aortic intima of Ldlr -/- mice on a high-cholesterol diet during lesion progression and regression phases. We found that the evolutionarily conserved lncRNA small nucleolar host gene-12 (SNHG12) is highly expressed in the vascular endothelium and decreases during lesion progression. SNHG12 knockdown accelerated atherosclerotic lesion formation by 2.4-fold in Ldlr -/- mice by increased DNA damage and senescence in the vascular endothelium, independent of effects on lipid profile or vessel wall inflammation. Conversely, intravenous delivery of SNHG12 protected the tunica intima from DNA damage and atherosclerosis. LncRNA pulldown in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that SNHG12 interacted with DNA-dependent protein kinase (DNA-PK), an important regulator of the DNA damage response. The absence of SNHG12 reduced the DNA-PK interaction with its binding partners Ku70 and Ku80, abrogating DNA damage repair. Moreover, the anti-DNA damage agent nicotinamide riboside (NR), a clinical-grade small-molecule activator of NAD+, fully rescued the increases in lesional DNA damage, senescence, and atherosclerosis mediated by SNHG12 knockdown. SNHG12 expression was also reduced in pig and human atherosclerotic specimens and correlated inversely with DNA damage and senescent markers. These findings reveal a role for this lncRNA in regulating DNA damage repair in the vessel wall and may have implications for chronic vascular disease states and aging.
Collapse
Affiliation(s)
- Stefan Haemmig
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dafeng Yang
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Cardiology, Xiangya Hospital, Central South University, 0731 Changsha, Hunan, China
| | - Xinghui Sun
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Debapria Das
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Siavash Ghaffari
- Keenan Research Centre, St. Michael's Hospital and Department of Biochemistry, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Roberto Molinaro
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,School of Pharmacy, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Lei Chen
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Cardiology, Xiangya Hospital, Central South University, 0731 Changsha, Hunan, China
| | - Yihuan Deng
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Freeman
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Norman Moullan
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yevgenia Tesmenitsky
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - A K M Khyrul Wara
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Viorel Simion
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eugenia Shvartz
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James F Lee
- The Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tianlun Yang
- Department of Cardiology, Xiangya Hospital, Central South University, 0731 Changsha, Hunan, China
| | - Galina Sukova
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jarrod A Marto
- The Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Departments of Cancer Biology and Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter H Stone
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Warren L Lee
- Keenan Research Centre, St. Michael's Hospital and Department of Biochemistry, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Veljović T, Đurić M, Gušić I, Mirnić J, Čakić S, Maletin A, Brkić S. THE INFLUENCE OF PERIODONTAL DISEASE TREATMENT ON 8-HYDROXY-DEOXYGUANOSINE CONCENTRATIONS IN SALIVA AND PLASMA OF CHRONIC PERIODONTITIS PATIENTS. Acta Clin Croat 2020; 59:615-622. [PMID: 34285432 PMCID: PMC8253078 DOI: 10.20471/acc.2020.59.04.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/12/2019] [Indexed: 11/24/2022] Open
Abstract
The 8-hydroxy-deoxyguanosine (8-OHdG) is one of the customary products of oxidized DNA. The purpose of this study was to compare salivary and plasma 8-OHdG concentrations in a group of chronic periodontitis patients to those measured in a group of patients with healthy periodontium, as well as to determine the impact of periodontal therapy on 8-OHdG concentrations in saliva and plasma in chronic periodontitis patients. The study sample comprised of 24 patients with chronic periodontitis and 16 periodontally healthy individuals. Plaque index, gingival index, papilla bleeding index, probing depth and clinical attachment level were indices used to determine patient periodontal status. Salivary and plasma 8-OHdG concentrations were determined by ELISA method. The salivary 8-OHdG concentration was statistically significantly higher in the group of periodontitis patients compared to periodontally healthy subjects. After initial periodontal therapy, the 8-OHdG concentration in saliva was significantly reduced in the periodontitis group (p=0.021). Differences in plasma 8-OHdG concentrations between the two groups did not reach statistical significance and no significant changes were noted in the periodontitis group following initial periodontal therapy. A higher salivary 8-OHdG concentration reflects increased oxidative stress caused by periodontal disease. Initial periodontal therapy may be helpful in reducing salivary 8-OHdG concentrations in chronic periodontitis patients.
Collapse
Affiliation(s)
| | - Milanko Đurić
- 1University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia; 2Department of Dentistry, Novi Sad, Serbia; 3University of Belgrade, Faculty of Dental Medicine, Department of Periodontology and Oral Medicine, Belgrade, Serbia; 4Department of Infectious Diseases, Clinical Centre of Vojvodina, Novi Sad, Serbia
| | - Ivana Gušić
- 1University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia; 2Department of Dentistry, Novi Sad, Serbia; 3University of Belgrade, Faculty of Dental Medicine, Department of Periodontology and Oral Medicine, Belgrade, Serbia; 4Department of Infectious Diseases, Clinical Centre of Vojvodina, Novi Sad, Serbia
| | - Jelena Mirnić
- 1University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia; 2Department of Dentistry, Novi Sad, Serbia; 3University of Belgrade, Faculty of Dental Medicine, Department of Periodontology and Oral Medicine, Belgrade, Serbia; 4Department of Infectious Diseases, Clinical Centre of Vojvodina, Novi Sad, Serbia
| | - Saša Čakić
- 1University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia; 2Department of Dentistry, Novi Sad, Serbia; 3University of Belgrade, Faculty of Dental Medicine, Department of Periodontology and Oral Medicine, Belgrade, Serbia; 4Department of Infectious Diseases, Clinical Centre of Vojvodina, Novi Sad, Serbia
| | - Aleksandra Maletin
- 1University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia; 2Department of Dentistry, Novi Sad, Serbia; 3University of Belgrade, Faculty of Dental Medicine, Department of Periodontology and Oral Medicine, Belgrade, Serbia; 4Department of Infectious Diseases, Clinical Centre of Vojvodina, Novi Sad, Serbia
| | - Snežana Brkić
- 1University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia; 2Department of Dentistry, Novi Sad, Serbia; 3University of Belgrade, Faculty of Dental Medicine, Department of Periodontology and Oral Medicine, Belgrade, Serbia; 4Department of Infectious Diseases, Clinical Centre of Vojvodina, Novi Sad, Serbia
| |
Collapse
|
20
|
Andreassi MG, Borghini A, Vecoli C. Micronucleus assay for predicting coronary artery disease: A systematic review and meta-analysis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108348. [PMID: 34083055 DOI: 10.1016/j.mrrev.2020.108348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022]
Abstract
Coronary artery disease (CAD) is the leading cause of morbidity and mortality worldwide. Coronary angiography allows an accurate assessment of the extent and severity of atherosclerotic coronary narrowing, but it provides little characterization of early detection of potentially asymptomatic vulnerable plaque. The identification of the coronary "vulnerable patient" or high-risk plaques remains a major challenge in the treatment of CAD. Recently, growing evidence shows that DNA damage plays a role in the initiation and progression of atherosclerotic plaque. Cytokinesis-block micronucleus (CBMN) assay is one of the most frequently used and validated method for assessing chromosomal damage and genetic instability. Accordingly, the purpose of this systematic review was to retrieve and discuss existing literature on the studies assessing the association between MN and angiographically-proven CAD. A total of 8 studies published between 2001 and 2017 were included in the meta-analysis. Despite a large heterogeneity between studies (I2= 99.7 %, p < 0.0001), an overall increase of MN frequencies was found in patients with CAD compared with control group (meta-MR = 1.96; 95 % CI, 1.5-3.2, p = 0.009). A subgroup analysis showed an increase in the frequency of MN formation for both two- vessel (MR = 2.13, 95 % CI: 0.9-6.9, p = 0.08) and three-vessel disease (MR = 2.89, 95 % CI: 1.84-4.55, P = 0.06). Overall, the results of this meta-analysis provide evidence of an association between CBMN and presence, extent and severity of angiographically-assessed CAD. However, the small number of papers analyzed requires further large and more rigorously designed studies, carefully considering a series of clinical confounding factors, such as the quality of the metabolic control, the influence of drugs and radiation imaging treatments.
Collapse
Affiliation(s)
| | - Andrea Borghini
- CNR Institute of Clinical Physiology, Via Moruzzi 1, Pisa, Italy
| | - Cecilia Vecoli
- CNR Institute of Clinical Physiology, Via Moruzzi 1, Pisa, Italy
| |
Collapse
|
21
|
Sinitsky MY, Kutikhin AG, Tsepokina AV, Shishkova DK, Asanov MA, Yuzhalin AE, Minina VI, Ponasenko AV. Mitomycin C induced genotoxic stress in endothelial cells is associated with differential expression of proinflammatory cytokines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 858-860:503252. [DOI: 10.1016/j.mrgentox.2020.503252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
|
22
|
Orekhov AN, Ivanova EA, Markin AM, Nikiforov NG, Sobenin IA. Genetics of Arterial-Wall-Specific Mechanisms in Atherosclerosis: Focus on Mitochondrial Mutations. Curr Atheroscler Rep 2020; 22:54. [PMID: 32772280 DOI: 10.1007/s11883-020-00873-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Mutations in both nuclear and mitochondrial genes are associated with the development of atherosclerotic lesions in arteries and may provide a partial explanation to the focal nature of lesion distribution in the arterial wall. This review is aimed to discuss the genetic aspects of atherogenesis with a special focus on possible pro-atherogenic variants (mutations) of the nuclear and mitochondrial genomes that may be implicated in atherosclerosis development and progression. RECENT FINDINGS Mutations in the nuclear genes generally do not cause a phenotype restricted to a specific vascular wall cell and manifest themselves mostly at the organism level. Such mutations can act as important contributors to changes in lipid metabolism and modulate other risk factors of atherosclerosis. By contrast, mitochondrial DNA (mtDNA) mutations occurring locally in the arterial wall cells or in circulating immune cells may play a site-specific role in atherogenesis. The mosaic distribution of heteroplasmic mtDNA mutations in the arterial wall tissue may explain, at least to some extent, the locality and focality of atherosclerotic lesions distribution. The genetic mechanisms of atherogenesis include alterations of both nuclear and mitochondrial genomes. Altered lipid metabolism and inflammatory response of resident arterial wall and circulating immune cells may be related to mtDNA damage and defective mitophagy, which hinders clearance of dysfunctional mitochondria. Mutations of mtDNA can have mosaic distribution and locally affect functionality of endothelial and subendothelial intimal cells in the arterial wall contributing to atherosclerotic lesion development.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315. .,Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, Moscow, Russia, 117418.
| | - Ekaterina A Ivanova
- Institute for Atherosclerosis Research, 2-1-207 Osennyaya Street, Moscow, Russia, 121609.
| | - Alexander M Markin
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, Moscow, Russia, 117418
| | - Nikita G Nikiforov
- Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, Moscow, Russia, 119334.,Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, Moscow, Russia, 121552
| | - Igor A Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315.,Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, Moscow, Russia, 121552
| |
Collapse
|
23
|
Wo D, Chen J, Li Q, Ma E, Yan H, Peng J, Zhu W, Fang Y, Ren DN. IGFBP-4 enhances VEGF-induced angiogenesis in a mouse model of myocardial infarction. J Cell Mol Med 2020; 24:9466-9471. [PMID: 32597006 PMCID: PMC7417680 DOI: 10.1111/jcmm.15516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a well‐known angiogenic factor, however its ability in promoting therapeutic angiogenesis following myocardial infarction (MI) is limited. Here, we aimed to investigate whether dual treatment with insulin‐like growth factor binding protein‐4 (IGFBP‐4), an agent that protects against early oxidative damage, can be effective in enhancing the therapeutic effect of VEGF following MI. Combined treatment with IGFBP‐4 enhanced VEGF‐induced angiogenesis and prevented cell damage via enhancing the expression of a key angiogenic factor angiopoietin‐1. Dual treatment with the two agents synergistically decreased cardiac fibrosis markers collagen‐I and collagen‐III following MI. Importantly, while the protective action of IGFBP‐4 occurs at an early stage of ischemic injury, the action of VEGF occurs at a later stage, at the onset angiogenesis. Our findings demonstrate that VEGF treatment alone is often not enough to protect against oxidative stress and promote post‐ischemic angiogenesis, whereas the combined treatment with IGFBP4 and VEGF can utilize the dual roles of these agents to effectively protect against ischemic and oxidative injury, and promote angiogenesis. These findings provide important insights into the roles of these agents in the clinical setting, and suggest new strategies in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Da Wo
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinxiao Chen
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiongyu Li
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - En Ma
- Key Laboratory of Arrhythmias of Ministry of Education, Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongwei Yan
- Key Laboratory of Arrhythmias of Ministry of Education, Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weidong Zhu
- Key Laboratory of Arrhythmias of Ministry of Education, Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Fang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dan-Ni Ren
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
24
|
Petr MA, Tulika T, Carmona-Marin LM, Scheibye-Knudsen M. Protecting the Aging Genome. Trends Cell Biol 2020; 30:117-132. [DOI: 10.1016/j.tcb.2019.12.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
|
25
|
Bonassi S, Fenech M. Micronuclei and Their Association with Infertility, Pregnancy Complications, Developmental Defects, Anaemias, Inflammation, Diabetes, Chronic Kidney Disease, Obesity, Cardiovascular Disease, Neurodegenerative Diseases and Cancer. THE MICRONUCLEUS ASSAY IN TOXICOLOGY 2019. [DOI: 10.1039/9781788013604-00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Micronuclei (MN) are a strong cytogenetic indicator of a catastrophic change in the genetic structure and stability of a cell because they originate from either chromosome breaks or whole chromosomes that have been lost from the main nucleus during cell division. The resulting genetic abnormalities can to lead to cellular malfunction, altered gene expression and impaired regenerative capacity. Furthermore, MN are increased as a consequence of genetic defects in DNA repair, deficiency in micronutrients required for DNA replication and repair and exposure to genotoxic chemicals and ultraviolet or ionising radiation. For all of these reasons, the measurement of MN has become one of the best-established methods to measure DNA damage in humans at the cytogenetic level. This chapter is a narrative review of the current evidence for the association of increased MN frequency with developmental and degenerative diseases. In addition, important knowledge gaps are identified, and recommendations for future studies required to consolidate the evidence are provided. The great majority of published studies show a significant association of increased MN in lymphocytes and/or buccal cells with infertility, pregnancy complications, developmental defects, anaemias, inflammation, diabetes, cardiovascular disease, kidney disease, neurodegenerative diseases and cancer. However, the strongest evidence is from prospective studies showing that MN frequency in lymphocytes predicts cancer risk and cardiovascular disease mortality.
Collapse
|
26
|
Inflammation and Vascular Ageing: From Telomeres to Novel Emerging Mechanisms. High Blood Press Cardiovasc Prev 2019; 26:321-329. [DOI: 10.1007/s40292-019-00331-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
|
27
|
Vargas-Alarcón G, Pérez-Hernández N, Rodríguez-Pérez JM, Fragoso JM, Cardoso-Saldaña G, Vázquez-Vázquez C, Ramírez-Bello J, Posadas-Romero C, Posadas-Sánchez R. MRE11A Polymorphisms Are Associated With Subclinical Atherosclerosis and Cardiovascular Risk Factors. A Case-Control Study of the GEA Mexican Project. Front Genet 2019; 10:530. [PMID: 31214252 PMCID: PMC6555271 DOI: 10.3389/fgene.2019.00530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/14/2019] [Indexed: 01/10/2023] Open
Abstract
DNA damage and subsequent repair pathways have been involved in the initiation and progression of atherosclerosis. Meiotic recombination 11 homolog A (MRE11A) gene polymorphisms have been associated with the presence of myocardial infarction. We analyzed five MRE11A gene polymorphisms in 386 individuals with subclinical atherosclerosis and 1093 healthy controls. Under different models, the rs13447720 (Odds ratio = 0.646, Padditive = 0.009; Odds ratio = 0.636, Pdominant = 0.012; Odds ratio = 0.664, Pover–dominant = 0.025; Odds ratio = 0.655, Pcodominant1 = 0.021) and rs499952 (Odds ratio = 0.807, Padditive = 0.032; Odds ratio = 0.643, Pcodominant2 = 0.034) polymorphisms were associated with a lower risk of subclinical atherosclerosis. On the other hand, the rs2155209 polymorphism was associated with a reduced risk of having a coronary artery calcification score ≥ 100 Agatston units. The rs13447720, rs499952, and rs2155209 polymorphisms, as well as the haplotypes that included the five studied polymorphisms were associated with some clinical and metabolic parameters in both subclinical atherosclerosis and healthy individuals. Our results suggest that the rs13447720 and rs499952 polymorphisms are associated with a decreased risk of developing subclinical atherosclerosis, whereas the rs2155209 is associated with a lower subclinical atherosclerosis severity (coronary artery calcification < 100 Agatston units). MRE11A polymorphisms and haplotypes were associated with clinical and metabolic parameters.
Collapse
Affiliation(s)
- Gilberto Vargas-Alarcón
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Nonanzit Pérez-Hernández
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | - José Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | - Christian Vázquez-Vázquez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Julian Ramírez-Bello
- Research Unit on Endocrine and Metabolic Diseases, Hospital Juárez de México, Mexico City, Mexico
| | - Carlos Posadas-Romero
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | |
Collapse
|
28
|
Bansal S, Kare PK, Tripathi AK, Madhu SV. Advanced Glycation End Products: A Potential Contributor of Oxidative Stress for Cardio-Vascular Problems in Diabetes. OXIDATIVE STRESS IN HEART DISEASES 2019:437-459. [DOI: 10.1007/978-981-13-8273-4_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Schwartz SM, Virmani R, Majesky MW. An update on clonality: what smooth muscle cell type makes up the atherosclerotic plaque? F1000Res 2018; 7:F1000 Faculty Rev-1969. [PMID: 30613386 PMCID: PMC6305222 DOI: 10.12688/f1000research.15994.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Almost 50 years ago, Earl Benditt and his son John described the clonality of the atherosclerotic plaque. This led Benditt to propose that the atherosclerotic lesion was a smooth muscle neoplasm, similar to the leiomyomata seen in the uterus of most women. Although the observation of clonality has been confirmed many times, interest in the idea that atherosclerosis might be a form of neoplasia waned because of the clinical success of treatments for hyperlipemia and because animal models have made great progress in understanding how lipid accumulates in the plaque and may lead to plaque rupture. Four advances have made it important to reconsider Benditt's observations. First, we now know that clonality is a property of normal tissue development. Second, this is even true in the vessel wall, where we now know that formation of clonal patches in that wall is part of the development of smooth muscle cells that make up the tunica media of arteries. Third, we know that the intima, the "soil" for development of the human atherosclerotic lesion, develops before the fatty lesions appear. Fourth, while the cells comprising this intima have been called "smooth muscle cells", we do not have a clear definition of cell type nor do we know if the initial accumulation is clonal. As a result, Benditt's hypothesis needs to be revisited in terms of changes in how we define smooth muscle cells and the quite distinct developmental origins of the cells that comprise the muscular coats of all arterial walls. Finally, since clonality of the lesions is real, the obvious questions are do these human tumors precede the development of atherosclerosis, how do the clones develop, what cell type gives rise to the clones, and in what ways do the clones provide the soil for development and natural history of atherosclerosis?
Collapse
Affiliation(s)
| | - Renu Virmani
- CV Path Institute, Gaithersberg, Maryland, 20878, USA
| | - Mark W. Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital Research Institute, Seattle, WA, 98112, USA
| |
Collapse
|
30
|
Guo X, Ni J, Liang Z, Xue J, Fenech MF, Wang X. The molecular origins and pathophysiological consequences of micronuclei: New insights into an age-old problem. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 779:1-35. [PMID: 31097147 DOI: 10.1016/j.mrrev.2018.11.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Micronuclei (MN), the small nucleus-like bodies separated from the primary nucleus, can exist in cells with numerical and/or structural chromosomal aberrations in apparently normal tissues and more so in tumors in humans. While MN have been observed for over 100 years, they were merely and constantly considered as passive indicators of chromosome instability (CIN) for a long time. Relatively little is known about the molecular origins and biological consequences of MN. Rapid technological advances are helping to close these gaps. Very recent studies provide exciting evidence that MN act as key platform for chromothripsis and a trigger of innate immune response, suggesting that MN could affect cellular functions by both genetic and nongenetic means. These previously unappreciated findings have reawakened widespread interests in MN. In this review, the diverse mechanisms leading to MN generation and the complex fate profiles of MN are discussed, together with the evidence for their contribution to CIN, inflammation, senescence and cell death. Moreover, we put this knowledge together into a speculative perspective on how MN may be responsible for cancer development and how their presence may influence the choice of treatment. We suggest that the heterogeneous responses to MN may function physiological to ensure the arrestment, elimination and immune clearance of damaged cells, but pathologically, may enable the survival and oncogenic transformation of cells bearing CIN. These insights not only underscore the complexity of MN biology, but also raise a host of new questions and provide fertile ground for future research.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Ziqing Liang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Michael F Fenech
- University of South Australia, Adelaide, SA, 5000, Australia; Genome Health Foundation, North Brighton, SA, 5048, Australia.
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
31
|
Yu S, Wen Y, Li J, Zhang H, Liu Y. Prenatal Lipopolysaccharide Exposure Promotes Dyslipidemia in the Male Offspring Rats. Front Physiol 2018; 9:542. [PMID: 29867579 PMCID: PMC5964359 DOI: 10.3389/fphys.2018.00542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
Inflammation is critical to the pathogenesis of cardiovascular diseases (CVDs). We have uncovered intrauterine inflammation induced by lipopolysaccharide (LPS) increases CVDs in adult offspring rats. The present study aimed to explore the role of prenatal exposure to LPS on the lipid profiles in male offspring rats and to further assess their susceptibility to high fat diet (HFD). Maternal LPS (0.79 mg/kg) exposure produced a significant increase in serum and hepatic levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, aspartate amino transferase as well as liver morphological abnormalities in 8-week-old offspring rats. Meanwhile, disturbed gene expressions involved in hepatic lipid metabolism and related signaling pathways were found, especially the up-regulated very-low density lipoprotein receptor (VLDLR) and down-regulated transmembrane 7 superfamily member 2 (TM7SF2). Following HFD treatment, however, the lipid profile shifts and liver dysfunction were exacerbated compared to the offsprings treated with prenatal LPS exposure alone. Compared with that in control offsprings, the hepatic mitochondria (Mt) in offspring rats solely treated with HFD exhibited remarkably higher ATP level, enforced Complex IV expression and a sharp reduction of its activity, whereas the offsprings from LPS-treated dams showed the loss of ATP content, diminished membrane potential, decline in protein expression and activity of mitochondrial respiratory complex IV, increased level of MtDNA deletion as well. Furthermore, treatment with HFD deteriorated these mitochondrial disorders in the prenatally LPS-exposed offspring rats. Taken together, maternal LPS exposure reinforces dyslipidemia in response to a HFD in adult offsprings, which should be associated with mitochondrial abnormalities and disturbed gene expressions of cholesterol metabolism.
Collapse
Affiliation(s)
- Shiyun Yu
- Department of Pharmaceutics, College of Pharmacy, Institute of Materia Medica, Third Military Medical University, Chongqing, China
| | - Yan Wen
- Department of Pharmaceutics, College of Pharmacy, Institute of Materia Medica, Third Military Medical University, Chongqing, China.,Department of General Surgery, Southwest Hospital of Third Military Medical University, Chongqing, China
| | - Jingmei Li
- Department of Pharmaceutics, College of Pharmacy, Institute of Materia Medica, Third Military Medical University, Chongqing, China
| | - Haigang Zhang
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ya Liu
- Department of Pharmaceutics, College of Pharmacy, Institute of Materia Medica, Third Military Medical University, Chongqing, China
| |
Collapse
|
32
|
Chemotherapeutic-Induced Cardiovascular Dysfunction: Physiological Effects, Early Detection-The Role of Telomerase to Counteract Mitochondrial Defects and Oxidative Stress. Int J Mol Sci 2018. [PMID: 29534446 PMCID: PMC5877658 DOI: 10.3390/ijms19030797] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although chemotherapeutics can be highly effective at targeting malignancies, their ability to trigger cardiovascular morbidity is clinically significant. Chemotherapy can adversely affect cardiovascular physiology, resulting in the development of cardiomyopathy, heart failure and microvascular defects. Specifically, anthracyclines are known to cause an excessive buildup of free radical species and mitochondrial DNA damage (mtDNA) that can lead to oxidative stress-induced cardiovascular apoptosis. Therefore, oncologists and cardiologists maintain a network of communication when dealing with patients during treatment in order to treat and prevent chemotherapy-induced cardiovascular damage; however, there is a need to discover more accurate biomarkers and therapeutics to combat and predict the onset of cardiovascular side effects. Telomerase, originally discovered to promote cellular proliferation, has recently emerged as a potential mechanism to counteract mitochondrial defects and restore healthy mitochondrial vascular phenotypes. This review details mechanisms currently used to assess cardiovascular damage, such as C-reactive protein (CRP) and troponin levels, while also unearthing recently researched biomarkers, including circulating mtDNA, telomere length and telomerase activity. Further, we explore a potential role of telomerase in the mitigation of mitochondrial reactive oxygen species and maintenance of mtDNA integrity. Telomerase activity presents a promising indicator for the early detection and treatment of chemotherapy-derived cardiac damage.
Collapse
|
33
|
Corredor Z, Rodríguez-Ribera L, Coll E, Silva I, Díaz JM, Ballarín J, Marcos R, Pastor S. DNA damage in kidney transplant patients. Role of organ origin. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:712-718. [PMID: 28833525 DOI: 10.1002/em.22117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Chronic kidney disease (CKD) patients are characterized by elevated levels of genomic damage. This damage increases when kidney function decreases being maximum in hemodialysis patients. As kidney transplantation improves renal function, and it is related with better survival, the aim of our study was to evaluate potential changes in DNA damage levels after kidney transplantation, and comparing living donor recipients with cadaveric donor recipients. The alkaline comet assay was used to determine DNA breaks and oxidative damaged DNA; and the micronucleus assay was used to determine chromosomal breakage and/or aneuploidy. Fifty CKD patients were followed up after 6 and 12 months of their kidney transplantation. All patients increased their genomic damage levels after 6 and 12 months of renal transplantation, compared with those observed before transplantation, despite of the improvement of their metabolic functions. Donor advanced age correlated positively with higher DNA damage. Genomic damage was lower in living donor transplants with respect to cadaveric donor transplants. Our conclusion is that DNA damage increased in kidney transplantation patients, whereas their renal function improved. Higher levels of DNA damage were found in cadaveric donor transplants when compared to living donor transplants. Environ. Mol. Mutagen. 58:712-718, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zuray Corredor
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Edifici C, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Spain
| | - Lara Rodríguez-Ribera
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Edifici C, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Spain
| | | | | | | | | | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Edifici C, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Susana Pastor
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Edifici C, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| |
Collapse
|
34
|
Musthafa QA, Abdul Shukor MF, Ismail NAS, Mohd Ghazi A, Mohd Ali R, M Nor IF, Dimon MZ, Wan Ngah WZ. Oxidative status and reduced glutathione levels in premature coronary artery disease and coronary artery disease. Free Radic Res 2017; 51:787-798. [PMID: 28899235 DOI: 10.1080/10715762.2017.1379602] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Identifying patients at risk of developing premature coronary artery disease (PCAD) which occurs at age below 45 years old and constitutes approximately 7-10% of coronary artery disease (CAD) worldwide remains a problem. Oxidative stress has been proposed as a crucial step in the early development of PCAD. This study was conducted to determine the oxidative status of PCAD in comparison to CAD patients. PCAD (<45 years old) and CAD (>60 years old) patients were recruited with age-matched controls (n = 30, each group). DNA damage score, plasma malondialdehyde (MDA) and protein carbonyl content were measured for oxidative damage markers. Antioxidants such as erythrocyte glutathione (GSH), oxidised glutathione (GSSG), and glutathione peroxidase activity (GPx), superoxide dismutase (SOD) and catalase (CAT) were also determined. DNA damage score and protein carbonyl content were significantly higher in both PCAD and CAD when compared to age-matched controls while MDA level was increased only in PCAD (p<.05). In contrast, GSH, GSH/GSSG ratio, α-tocotrienol isomer, and GPx activity were significantly decreased, but only in PCAD when compared to age-matched controls. The decrease in GSH was associated with PCAD (OR = 0.569 95%CI [0.375 - 0.864], p = .008) and cut-off values of 6.69 μM with areas under the ROC curves (AUROC) 95%CI: 0.88 [0.80-0.96] (sensitivity of 83.3%; specificity of 80%). However, there were no significant differences in SOD and CAT activities in all groups. A higher level of oxidative stress indicated by elevated MDA levels and low levels of GSH, α-tocotrienol and GPx activity in patients below 45 years old may play a role in the development of PCAD and has potential as biomarkers for PCAD.
Collapse
Affiliation(s)
- Qurratu Aini Musthafa
- a Department of Biochemistry, Faculty of Medicine , Universiti Kebangsaan Malaysia Medical Centre , Cheras , Malaysia
| | - Muhd Faizan Abdul Shukor
- a Department of Biochemistry, Faculty of Medicine , Universiti Kebangsaan Malaysia Medical Centre , Cheras , Malaysia
| | - Noor Akmal Shareela Ismail
- a Department of Biochemistry, Faculty of Medicine , Universiti Kebangsaan Malaysia Medical Centre , Cheras , Malaysia
| | - Azmee Mohd Ghazi
- b National Heart Institute of Malaysia , Kuala Lumpur , Malaysia
| | - Rosli Mohd Ali
- b National Heart Institute of Malaysia , Kuala Lumpur , Malaysia
| | | | - Mohd Zamrin Dimon
- c Department of Medicine , UiTM Private Specialist Centre , Selangor , Malaysia
| | - Wan Zurinah Wan Ngah
- a Department of Biochemistry, Faculty of Medicine , Universiti Kebangsaan Malaysia Medical Centre , Cheras , Malaysia
| |
Collapse
|
35
|
Mistriotis P, Andreadis ST. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 2017; 37:94-116. [PMID: 28579130 DOI: 10.1016/j.arr.2017.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Aging is the main risk factor contributing to vascular dysfunction and the progression of vascular diseases. In this review, we discuss the causes and mechanisms of vascular aging at the tissue and cellular level. We focus on Endothelial Cell (EC) and Smooth Muscle Cell (SMC) aging due to their critical role in mediating the defective vascular phenotype. We elaborate on two categories that contribute to cellular dysfunction: cell extrinsic and intrinsic factors. Extrinsic factors reflect systemic or environmental changes which alter EC and SMC homeostasis compromising vascular function. Intrinsic factors induce EC and SMC transformation resulting in cellular senescence. Replenishing or rejuvenating the aged/dysfunctional vascular cells is critical to the effective repair of the vasculature. As such, this review also elaborates on recent findings which indicate that stem cell and gene therapies may restore the impaired vascular cell function, reverse vascular aging, and prolong lifespan.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
36
|
Meloche J, Lampron MC, Nadeau V, Maltais M, Potus F, Lambert C, Tremblay E, Vitry G, Breuils-Bonnet S, Boucherat O, Charbonneau E, Provencher S, Paulin R, Bonnet S. Implication of Inflammation and Epigenetic Readers in Coronary Artery Remodeling in Patients With Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2017; 37:1513-1523. [DOI: 10.1161/atvbaha.117.309156] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/25/2017] [Indexed: 01/08/2023]
Abstract
Objective—
Pulmonary arterial hypertension (PAH) is a vascular disease not restricted to the lungs. Many signaling pathways described in PAH are also of importance in other vascular remodeling diseases, such as coronary artery disease (CAD). Intriguingly, CAD is 4× more prevalent in PAH compared with the global population, suggesting a link between these 2 diseases. Both PAH and CAD are associated with sustained inflammation and smooth muscle cell proliferation/apoptosis imbalance and we demonstrated in PAH that this phenotype is, in part, because of the miR-223/DNA damage/Poly[ADP-ribose] polymerase 1/miR-204 axis activation and subsequent bromodomain protein 4 (BRD4) overexpression. Interestingly, BRD4 is also a trigger for calcification and remodeling processes, both of which are important in CAD. Thus, we hypothesize that BRD4 activation in PAH influences the development of CAD.
Approach and Results—
PAH was associated with significant remodeling of the coronary arteries in both human and experimental models of the disease. As observed in PAH distal pulmonary arteries, coronary arteries of patients with PAH also exhibited increased DNA damage, inflammation, and BRD4 overexpression. In vitro, using human coronary artery smooth muscle cells from PAH, CAD and non-PAH–non-CAD patients, we showed that both PAH and CAD smooth muscle cells exhibited increased proliferation and suppressed apoptosis in a BRD4-dependent manner. In vivo, improvement of PAH by BRD4 inhibitor was associated with a reduction in coronary remodeling and interleukin-6 expression.
Conclusions—
Overall, this study demonstrates that increased BRD4 expression in coronary arteries of patient with PAH contributes to vascular remodeling and comorbidity development.
Collapse
Affiliation(s)
- Jolyane Meloche
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Marie-Claude Lampron
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Valérie Nadeau
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Mélanie Maltais
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - François Potus
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Caroline Lambert
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Eve Tremblay
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Géraldine Vitry
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Sandra Breuils-Bonnet
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Olivier Boucherat
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Eric Charbonneau
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Steeve Provencher
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Roxane Paulin
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Sébastien Bonnet
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| |
Collapse
|
37
|
Polymorphism in ERCC1 confers susceptibility of coronary artery disease and severity of coronary artery atherosclerosis in a Chinese Han population. Sci Rep 2017; 7:6407. [PMID: 28743890 PMCID: PMC5526898 DOI: 10.1038/s41598-017-06732-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/15/2017] [Indexed: 11/08/2022] Open
Abstract
Excision repair cross-complementing 1 (ERCC1) gene encodes ERCC1 protein, which is mainly responsible for the repair of DNA damage in different diseases including coronary artery atherosclerosis by acting as a rate-limiting element in nucleotide excision repair (NER). Using a three-stage case-control study with 3037 coronary artery disease (CAD) patients and 3002 controls, we investigated associations of three single nucleotide polymorphisms (SNPs) with CAD risk and severity of coronary artery atherosclerosis in Chinese Han population. In the discovery set, the variant allele T of rs11615 was significantly associated with higher CAD risk (adjusted OR = 1.27, P = 0.006) and severity of coronary artery atherosclerosis (adjusted OR = 1.54, P = 0.003). These associations were more remarkable in the merged set (adjusted OR = 1.23, P = 8 × 10-6 for CAD risk; adjusted OR = 1.36, P = 4.3 × 10-5 for severity of coronary artery atherosclerosis). And the expression level of ERCC1 was significantly higher in CAD cases than controls. Multiplicative interactions among SNP rs11615, alcohol drinking, history of T2DM, and history of hyperlipidemia could increase 5.06-fold risk of CAD (P = 1.59 × 10-9). No significant association of rs2298881 and rs3212986 with CAD risk was identified. Taken together, SNP rs11615 in ERCC1 gene might confer susceptibility to CAD and severity of coronary atherosclerosis in a Chinese Han population.
Collapse
|
38
|
The Aging Cardiovascular System. J Am Coll Cardiol 2017; 69:1952-1967. [DOI: 10.1016/j.jacc.2017.01.064] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/31/2022]
|
39
|
DNA damage-dependent mechanisms of ageing and disease in the macro- and microvasculature. Eur J Pharmacol 2017; 816:116-128. [PMID: 28347738 DOI: 10.1016/j.ejphar.2017.03.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/07/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
A decline in the function of the macro- and micro-vasculature occurs with ageing. DNA damage also accumulates with ageing, and thus DNA damage and repair have important roles in physiological ageing. Considerable evidence also supports a crucial role for DNA damage in the development and progression of macrovascular disease such as atherosclerosis. These findings support the concept that prolonged exposure to risk factors is a major stimulus for DNA damage within the vasculature, in part via the generation of reactive oxygen species. Genomic instability can directly affect vascular cellular function, leading to cell cycle arrest, apoptosis and premature vascular cell senescence. In contrast, the study of age-related impaired function and DNA damage mechanisms in the microvasculature is limited, although ageing is associated with microvessel endothelial dysfunction. This review examines current knowledge on the role of DNA damage and DNA repair systems in macrovascular disease such as atherosclerosis and microvascular disease. We also discuss the cellular responses to DNA damage to identify possible strategies for prevention and treatment.
Collapse
|
40
|
The relationship of micronucleus frequency and nuclear division index with coronary artery disease SYNTAX and Gensini scores. Anatol J Cardiol 2017; 17:483-489. [PMID: 28315571 PMCID: PMC5477082 DOI: 10.14744/anatoljcardiol.2017.7582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objective: We aimed to evaluate the relationship of micronucleus (MN) frequency and nuclear division index (NDI) with SYNTAX and Gensini scores and thrombolysis in myocardial infarction (TIMI) frame counts of coronary arteries in patients undergoing coronary angiography. Methods: In a single-center prospective observational study, a total of 63 individuals, 48 consecutive patients with coronary artery disease (CAD) and 15 healthy people were included. Before coronary angiography (exposure to X-ray), blood samples were collected for lymphocyte cultures, MN and NDI measurements. According to the SYNTAX and Gensini scores, patients were allocated into two groups. Group 1 and 2 included the patients with SYNTAX scores <22 and ≥22 points, respectively. Similarly, groups according to Gensini scores included the ones <23 and ≥23 points. MN test was used for in vitro studies in human peripheral lymphocytes. Binucleated lymphocytes were calculated for each patient. Results: MN frequency was significantly higher in group 2 than group 1 and in group 1 than control group (p<0.001). NDI was significantly higher in control group than group 1 and in group 1 than group 2 (p=0.003). MN frequency had positive but moderate correlation with SYNTAX and Gensini scores and TFCs of left anterior descending (LAD), circumflex and right coronary arteries (r=0.394, p=0.003; r=0.458, p<0.001; r=0.425, p<0.001; r=0.469, p<0.001; and r=0.475, p<0.001, respectively). Conclusion: We can conclude that as the degree of atherosclerosis increases and coronary flow worsens, MN frequency increases and NDI decreases. Our results may help to elucidate the relationship of DNA damage in pathophysiology of atherosclerosis and endothelial dysfunction in patients with stable CAD.
Collapse
|
41
|
Genomic health status assessed by a cytokinesis-block micronucleus cytome assay in a healthy middle-aged Korean population. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 814:7-13. [DOI: 10.1016/j.mrgentox.2016.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/09/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022]
|
42
|
Kisurina-Evgenieva OP, Sutiagina OI, Onishchenko GE. Biogenesis of Micronuclei. BIOCHEMISTRY (MOSCOW) 2017; 81:453-64. [PMID: 27297896 DOI: 10.1134/s0006297916050035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The presence of micronuclei in a cell is an indicator of DNA damage and genetic instability. In this review, mechanisms of emergence of micronuclei, their functional activity, and pathways of elimination are discussed. It is supposed that morphological and functional varieties of micronuclei as well as their degradation pathways can be determined by the chromosomal material localized inside these cell structures.
Collapse
|
43
|
Bhat MA, Gandhi G. Assessment of DNA Damage in Leukocytes of Patients With Coronary Artery Disease by Comet Assay. Int Heart J 2017; 58:271-274. [DOI: 10.1536/ihj.16-190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Complex interplay of DNA damage, DNA repair genes, and oxidative stress in coronary artery disease. Anatol J Cardiol 2016; 16:939. [PMID: 28005022 PMCID: PMC5324913 DOI: 10.14744/anatoljcardiol.2016.21234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Wo D, Peng J, Ren DN, Qiu L, Chen J, Zhu Y, Yan Y, Yan H, Wu J, Ma E, Zhong TP, Chen Y, Liu Z, Liu S, Ao L, Liu Z, Jiang C, Peng J, Zou Y, Qian Q, Zhu W. Opposing Roles of Wnt Inhibitors IGFBP-4 and Dkk1 in Cardiac Ischemia by Differential Targeting of LRP5/6 and β-catenin. Circulation 2016; 134:1991-2007. [PMID: 27803037 DOI: 10.1161/circulationaha.116.024441] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
Background:
Myocardial infarction is one of the leading causes of morbidity and mortality worldwide, triggering irreversible myocardial cell damage and heart failure. The role of low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) as coreceptors of the Wnt/β-catenin pathway in the adult heart remain unknown. Insulin-like growth factor binding protein 4 and dickkopf-related protein 1 (Dkk1) are 2 secreted LRP5/6 binding proteins that play a crucial role in heart development through preventing Wnt/β-catenin pathway activation. However, their roles in the adult heart remain unexplored.
Methods:
To understand the role of LRP5/6 and β-catenin in the adult heart, we constructed conditional cardiomyocyte-specific LRP5/6 and β-catenin knockout mice and induced surgical myocardial infarction. We also directly injected recombinant proteins of insulin-like growth factor binding protein 4 and Dkk1 into the heart immediately following myocardial infarction to further examine the mechanisms through which these proteins regulate LRP5/6 and β-catenin.
Results:
Deletion of LRP5/6 promoted cardiac ischemic insults. Conversely, deficiency of β-catenin, a downstream target of LRP5/6, was beneficial in ischemic injury. It is interesting to note that although both insulin-like growth factor binding protein 4 and Dkk1 are secreted Wnt/β-catenin pathway inhibitors, insulin-like growth factor binding protein 4 protected the ischemic heart by inhibiting β-catenin, whereas Dkk1 enhanced the injury response mainly through inducing LRP5/6 endocytosis and degradation.
Conclusions:
Our findings reveal previously unidentified dual roles of LRP5/6 involved in the cardiomyocyte response to ischemic injury. These findings suggest new therapeutic strategies in ischemic heart disease by fine-tuning LRP5/6 and β-catenin signaling within the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Da Wo
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Jinhui Peng
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Dan-ni Ren
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Liman Qiu
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Jinxiao Chen
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Ye Zhu
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Yingjing Yan
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Hongwei Yan
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Jian Wu
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - En Ma
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Tao P. Zhong
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Yihan Chen
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Zhongmin Liu
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Shangfeng Liu
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Luoquan Ao
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Zhenping Liu
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Cizhong Jiang
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Jun Peng
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Yunzeng Zou
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Qirong Qian
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| | - Weidong Zhu
- From Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, China (D.W., Jinhui Peng, D.-n.R., J.C., Y. Zhu, Y.Y., H.Y., E.M., Y.C., Zhongmin Liu, S.L., L.A., W.Z.); Department of Orthopedics, Changzheng Hospital, Shanghai, China (Jinhui Peng, Q.Q.); Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (L.Q., Jun Peng); Shanghai Key Laboratory
| |
Collapse
|
46
|
Tumurkhuu G, Shimada K, Dagvadorj J, Crother TR, Zhang W, Luthringer D, Gottlieb RA, Chen S, Arditi M. Ogg1-Dependent DNA Repair Regulates NLRP3 Inflammasome and Prevents Atherosclerosis. Circ Res 2016; 119:e76-90. [PMID: 27384322 DOI: 10.1161/circresaha.116.308362] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022]
Abstract
RATIONALE Activation of NLRP3 (nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3) inflammasome-mediating interleukin (IL)-1β secretion has emerged as an important component of inflammatory processes in atherosclerosis. Mitochondrial DNA (mtDNA) damage is detrimental in atherosclerosis, and mitochondria are central regulators of the nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3 inflammasome. Human atherosclerotic plaques express increased mtDNA damage. The major DNA glycosylase, 8-oxoguanine glycosylase (OGG1), is responsible for removing the most abundant form of oxidative DNA damage. OBJECTIVE To test the role of OGG1 in the development of atherosclerosis in mouse. METHODS AND RESULTS We observed that Ogg1 expression decreases over time in atherosclerotic lesion macrophages of low-density lipoprotein receptor (Ldlr) knockout mice fed a Western diet. Ogg1(-/-)Ldlr(-/-) mice fed a Western diet resulted in an increase in plaque size and lipid content. We found increased oxidized mtDNA, inflammasome activation, and apoptosis in atherosclerotic lesions and also higher serum IL-1β and IL-18 in Ogg1(-/-)Ldlr(-/-) mice than in Ldlr(-/-). Transplantation with Ogg1(-/-) bone marrow into Ldlr(-/-) mice led to larger atherosclerotic lesions and increased IL-1β production. However, transplantation of Ogg1(-/-)Nlrp3(-/-) bone marrow reversed the Ogg1(-/-) phenotype of increased plaque size. Ogg1(-/-) macrophages showed increased oxidized mtDNA and had greater amounts of cytosolic mtDNA and cytochrome c, increased apoptosis, and more IL-1β secretion. Finally, we found that proatherogenic miR-33 can directly inhibit human OGG1 expression and indirectly suppress both mouse and human OGG1 via AMP-activated protein kinase. CONCLUSIONS OGG1 plays a protective role in atherogenesis by preventing excessive inflammasome activation. Our study provides insight into a new target for therapeutic intervention based on a link between oxidative mtDNA damage, OGG1, and atherosclerosis via NLRP3 inflammasome.
Collapse
Affiliation(s)
- Gantsetseg Tumurkhuu
- From the Departments of Pediatrics, Biomedical Sciences, and Infectious and Immunologic Diseases Research Center (IIDRC) (G.T., K.S., J.D., T.R.C., W.Z., S.C.), Department of Pathology (D.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai (R.A.G.), Cedars-Sinai Medical Center, Los Angeles, CA; and David Geffen School of Medicine, University of California, Los Angeles (M.A.)
| | - Kenichi Shimada
- From the Departments of Pediatrics, Biomedical Sciences, and Infectious and Immunologic Diseases Research Center (IIDRC) (G.T., K.S., J.D., T.R.C., W.Z., S.C.), Department of Pathology (D.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai (R.A.G.), Cedars-Sinai Medical Center, Los Angeles, CA; and David Geffen School of Medicine, University of California, Los Angeles (M.A.)
| | - Jargalsaikhan Dagvadorj
- From the Departments of Pediatrics, Biomedical Sciences, and Infectious and Immunologic Diseases Research Center (IIDRC) (G.T., K.S., J.D., T.R.C., W.Z., S.C.), Department of Pathology (D.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai (R.A.G.), Cedars-Sinai Medical Center, Los Angeles, CA; and David Geffen School of Medicine, University of California, Los Angeles (M.A.)
| | - Timothy R Crother
- From the Departments of Pediatrics, Biomedical Sciences, and Infectious and Immunologic Diseases Research Center (IIDRC) (G.T., K.S., J.D., T.R.C., W.Z., S.C.), Department of Pathology (D.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai (R.A.G.), Cedars-Sinai Medical Center, Los Angeles, CA; and David Geffen School of Medicine, University of California, Los Angeles (M.A.)
| | - Wenxuan Zhang
- From the Departments of Pediatrics, Biomedical Sciences, and Infectious and Immunologic Diseases Research Center (IIDRC) (G.T., K.S., J.D., T.R.C., W.Z., S.C.), Department of Pathology (D.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai (R.A.G.), Cedars-Sinai Medical Center, Los Angeles, CA; and David Geffen School of Medicine, University of California, Los Angeles (M.A.)
| | - Daniel Luthringer
- From the Departments of Pediatrics, Biomedical Sciences, and Infectious and Immunologic Diseases Research Center (IIDRC) (G.T., K.S., J.D., T.R.C., W.Z., S.C.), Department of Pathology (D.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai (R.A.G.), Cedars-Sinai Medical Center, Los Angeles, CA; and David Geffen School of Medicine, University of California, Los Angeles (M.A.)
| | - Roberta A Gottlieb
- From the Departments of Pediatrics, Biomedical Sciences, and Infectious and Immunologic Diseases Research Center (IIDRC) (G.T., K.S., J.D., T.R.C., W.Z., S.C.), Department of Pathology (D.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai (R.A.G.), Cedars-Sinai Medical Center, Los Angeles, CA; and David Geffen School of Medicine, University of California, Los Angeles (M.A.)
| | - Shuang Chen
- From the Departments of Pediatrics, Biomedical Sciences, and Infectious and Immunologic Diseases Research Center (IIDRC) (G.T., K.S., J.D., T.R.C., W.Z., S.C.), Department of Pathology (D.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai (R.A.G.), Cedars-Sinai Medical Center, Los Angeles, CA; and David Geffen School of Medicine, University of California, Los Angeles (M.A.)
| | - Moshe Arditi
- From the Departments of Pediatrics, Biomedical Sciences, and Infectious and Immunologic Diseases Research Center (IIDRC) (G.T., K.S., J.D., T.R.C., W.Z., S.C.), Department of Pathology (D.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai (R.A.G.), Cedars-Sinai Medical Center, Los Angeles, CA; and David Geffen School of Medicine, University of California, Los Angeles (M.A.).
| |
Collapse
|
47
|
The role of oxidative DNA damage and GSTM1, GSTT1, and hOGG1 gene polymorphisms in coronary artery disease risk. Anatol J Cardiol 2016; 16:931-938. [PMID: 27182613 PMCID: PMC5324912 DOI: 10.14744/anatoljcardiol.2016.6697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective: Atherosclerotic coronary artery disease (CAD) appears to be a multifactorial process caused by the interaction of environmental risk factors with multiple predisposing genes. Therefore, in this study we aimed to determine the role of oxidative DNA damage and some variations in glutathione S-transferase (GSTM1 and GSTT1) and DNA repair (hOGG1) genes in CAD risk. Methods: A case-control study was conducted on 59 individuals who had undergone coronary angiographic evaluation. Of these, 29 were patients diagnosed with CAD (mean age =61.5±10.3) and 30 were controls examined for reasons other than suspected CAD and who had angiographically documented normal coronary arteries (mean age =60.4±11.6). Basal DNA damage as well as pyrimidine and purine base damage were evaluated in peripheral blood lymphocytes using the modified comet assay. Polymerase chain reaction-restriction length polymorphism (PCR-RFLP)-based assay was used for genotyping. Results: Basal DNA damage levels in patients [9.16 (3.26)] were significantly higher than those in controls [7.59 (3.23); p=0.017], and basal DNA and pyrimidine base damage levels were significantly correlated with disease severity based on Gensini scoring (r=0.352, p=0.006; r=0.318, p=0.014, respectively). However, no significant differences were observed in terms of oxidized DNA bases between patients and controls. The frequencies of studied genotypes (GSTM1, GSTT1, and hOGG1) were similar between groups. Conclusion: The results of this study pointed out the role of DNA damage in CAD and its severity. However, GSTM1, GSTT1, and hOGG1 gene polymorphisms seemed to have no effect on individual susceptibility for disease progression. (Anatol J Cardiol 2016; 16: 931-8)
Collapse
|
48
|
Subash P. Assessment of Oxidative DNA Damage by Alkaline Comet Assay in Human Essential Hypertension. Indian J Clin Biochem 2016; 31:185-93. [PMID: 27069326 PMCID: PMC4820420 DOI: 10.1007/s12291-015-0521-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/18/2015] [Indexed: 01/24/2023]
Abstract
The objective of the present study was to investigate the antioxidant status and the extent of oxidative DNA damage in lymphocytes and their relation with essential hypertension (EHT). A total of 100 South Indian subjects aged 30-65 were included for the study. Of these 50 were normotensive controls (group-1) with blood pressure ≥120/80 mm Hg, 50 were newly diagnosed (group-2) and were not on any antihypertensive drugs, but had systolic blood pressure ranging between 140 and 160 mmHg and diastolic blood pressure 95-100 mmHg and 50 newly diagnosed essential hypertensive patients underwent drug therapy for 1 year was considered as group-3. Enzymatic and non-enzymatic antioxidants significantly decreased and lymphocyte DNA damage was significantly increased in newly diagnosed hypertensive patients compared with control group. The major decrease in DNA damage and significant improvement in enzymatic and non-enzymatic antioxidants were observed after 1 year of antihypertensive therapy in treated group compared with newly diagnosed hypertensive patients. Total antioxidant status and lymphocyte DNA damage showed a strong negative correlation in all the three groups. Essential hypertension associated with oxidative stress which in turn causes genotoxic susceptibility to variety of disease including cancer. In the absence of DNA repair process and DNA checkpoint mechanisms, the genomic integrity is susceptible to extensive damage. In our study, increased oxidative DNA damage and decreased antioxidant levels were frequently observed in the newly diagnosed essential hypertensive patients, suggesting that oxidative stress is important in the pathogenesis of EHT. Therefore, the present study has additional clinical implication. Further investigations with large number of patients along with antioxidant supplement are highly warranted.
Collapse
Affiliation(s)
- P. Subash
- Department of Biochemistry, KMCT Medical College, Manassery, Calicut, Kerala 673 602 India
| |
Collapse
|
49
|
Affiliation(s)
- Anna Uryga
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; ,
| | - Kelly Gray
- Cardiovascular Safety, AstraZeneca, Cambridge CB4 0FZ, United Kingdom;
| | - Martin Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; ,
| |
Collapse
|
50
|
Li R, Jen N, Wu L, Lee J, Fang K, Quigley K, Lee K, Wang S, Zhou B, Vergnes L, Chen YR, Li Z, Reue K, Ann DK, Hsiai TK. Disturbed Flow Induces Autophagy, but Impairs Autophagic Flux to Perturb Mitochondrial Homeostasis. Antioxid Redox Signal 2015; 23:1207-19. [PMID: 26120766 PMCID: PMC4657520 DOI: 10.1089/ars.2014.5896] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM Temporal and spatial variations in shear stress are intimately linked with vascular metabolic effects. Autophagy is tightly regulated in intracellular bulk degradation/recycling system for maintaining cellular homeostasis. We postulated that disturbed flow modulates autophagy with an implication in mitochondrial superoxide (mtO2(•-)) production. RESULTS In the disturbed flow or oscillatory shear stress (OSS)-exposed aortic arch, we observed prominent staining of p62, a reverse marker of autophagic flux, whereas in the pulsatile shear stress (PSS)-exposed descending aorta, p62 was attenuated. OSS significantly increased (i) microtubule-associated protein light chain 3 (LC3) II to I ratios in human aortic endothelial cells, (ii) autophagosome formation as quantified by green fluorescent protein (GFP)-LC3 dots per cell, and (iii) p62 protein levels, whereas manganese superoxide dismutase (MnSOD) overexpression by recombinant adenovirus, N-acetyl cysteine treatment, or c-Jun N-terminal kinase (JNK) inhibition reduced OSS-mediated LC3-II/LC3-I ratios and mitochondrial DNA damage. Introducing bafilomycin to Earle's balanced salt solution or to OSS condition incrementally increased both LC3-II/LC3-I ratios and p62 levels, implicating impaired autophagic flux. In the OSS-exposed aortic arch, both anti-phospho-JNK and anti-8-hydroxy-2'-deoxyguanosine (8-OHdG) staining for DNA damage were prominent, whereas in the PSS-exposed descending aorta, the staining was nearly absent. Knockdown of ATG5 with siRNA increased OSS-mediated mtO2(•-), whereas starvation or rapamycin-induced autophagy reduced OSS-mediated mtO2(•-), mitochondrial respiration, and complex II activity. INNOVATION Disturbed flow-mediated oxidative stress and JNK activation induce autophagy. CONCLUSION OSS impairs autophagic flux to interfere with mitochondrial homeostasis. Antioxid. Redox Signal. 23, 1207-1219.
Collapse
Affiliation(s)
- Rongsong Li
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Nelson Jen
- 2 Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science , Los Angeles, California
| | - Lan Wu
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Juhyun Lee
- 2 Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science , Los Angeles, California
| | - Karen Fang
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Katherine Quigley
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Katherine Lee
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Sky Wang
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Bill Zhou
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Laurent Vergnes
- 3 Department of Human Genetics, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Yun-Ru Chen
- 4 Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center , Duarte, California
| | - Zhaoping Li
- 5 Department of Medicine, VA Greater Los Angeles Healthcare System, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Karen Reue
- 3 Department of Human Genetics, UCLA David Geffen School of Medicine , Los Angeles, California
| | - David K Ann
- 4 Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center , Duarte, California
| | - Tzung K Hsiai
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California.,2 Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science , Los Angeles, California.,5 Department of Medicine, VA Greater Los Angeles Healthcare System, UCLA David Geffen School of Medicine , Los Angeles, California
| |
Collapse
|