1
|
Ueda M, Ueno K, Inoue T, Sakiyama M, Shiroma C, Ishii R, Naito Y. Detection of motor-related mu rhythm desynchronization by ear EEG. PLoS One 2025; 20:e0321107. [PMID: 40198632 PMCID: PMC11977992 DOI: 10.1371/journal.pone.0321107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/01/2025] [Indexed: 04/10/2025] Open
Abstract
Event-related desynchronization (ERD) of the mu rhythm (8-13 Hz) is an important indicator of motor execution, neurofeedback, and brain-computer interface in EEG. This study investigated the feasibility of an ear electroencephalography (EEG) device monitoring mu-ERD during hand grasp and release movements. The EEG data of the right hand movement and the eye opened resting condition were measured with an ear EEG device. We calculated and compared mu rhythm power and time-frequency data from 20 healthy participants during right hand movement and eye opened resting. Our results showed a significant difference of mean mu rhythm power between the eye opened rest condition and the right hand movement condition and significant suppression in the 9-12.5 Hz frequency band in the time-frequency data. These results support the utility of ear EEG in detecting motor activity-related mu-ERD. Ear EEG could be instrumental in refining rehabilitation strategies by providing in-situ assessment of motor function and tailored feedback.
Collapse
Affiliation(s)
- Masaya Ueda
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Keita Ueno
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Takao Inoue
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Misao Sakiyama
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - China Shiroma
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
- Rehabilitation Unit, Murata Hospital, Osaka, Japan
| | - Ryouhei Ishii
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuo Naito
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
2
|
Zhang X, Zhang S, Zhang H, Wang H, Long J. Post-Movement Beta Synchronization Induced by Speed Effects IHI from Ipsilateral to Contralateral Motor Cortex. eNeuro 2025; 12:ENEURO.0370-24.2025. [PMID: 40068876 PMCID: PMC11927053 DOI: 10.1523/eneuro.0370-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/03/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Beta event-related spectral perturbation (ERSP), including bilateral movement-related beta desynchronization (MRBD) and post-movement beta synchronization (PMBS), can be evoked by unilateral speed movement. A potential correlation might exist between power (de)synchronization and interhemispheric coherence during movement execution. However, during the PMBS phase, the existence of interhemispheric coupling and the effect of speed on it are largely undiscovered. This study aimed to answer this question. In the present study, we investigated eight healthy, right-handed volunteers using a combination of electroencephalography (EEG), transcranial magnetic stimulation (TMS), and electromyography (EMG). We explored interhemispheric (directed) coherence during isotonic right index finger abduction movements at two speeds: ballistic and self-paced. We discovered that: (i) Compared to the MRBD period, interhemispheric coherence was greater during the PMBS period. Furthermore, ballistic movement induced a larger coherence during the PMBS period, but not during the MRBD period. (ii) In the MRBD phase, directed coherence from the contralateral motor cortex (CM1) to the ipsilateral motor cortex (IM1) was larger, with a reverse tendency observed during the PMBS period. Additionally, in ballistic movement, directed coherence from IM1 to CM1 was stronger and positively correlated with coherence, with no effect of speed on directed coherence detected in the MRBD phase. To advance the understanding of neural mechanisms and the causality of interhemispheric coherence during the PMBS period, we investigated the interhemispheric inhibition (IHI) from IM1 to CM1 at different speeds. A stronger IHI from IM1 to CM1 at PMBS peak time was demonstrated, which was enhanced during ballistic movement. Additionally, IHI was negatively correlated with PMBS, and movement speed was positively associated with interhemispheric coupling during the PMBS period and IHI from IM1 to CM1.Significance Statement The present study explored interhemispheric (directed)coherence during isotonic right index finger abduction movements at two speeds: ballistic and self-paced. We discovered a dominance of interhemispheric coherence during the PMBS period of ballistic movement. Furthermore, directed coherence from the CM1 to the IM1 was more predominant in the MRBD phase, with a reverse tendency observed during the PMBS period. Additionally, directed coherence from IM1 to CM1 was stronger and positively correlated with coherence in ballistic movement. Advanced exploration revealed a stronger IHI from IM1 to CM1 at PMBS peak time, which was enhanced during ballistic movement. Additionally, IHI was negatively correlated with PMBS, and movement speed was positively associated with interhemispheric coupling during the PMBS period and IHI.
Collapse
Affiliation(s)
- Xiangzi Zhang
- School of Psychology, Northwest Normal University, Lanzhou, Gansu, China,730070
| | - Shengyao Zhang
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China, 121001
| | - Haoyuan Zhang
- School of Psychology, Northwest Normal University, Lanzhou, Gansu, China,730070
| | - Houmin Wang
- School of Computer Science and Engineering, Guangdong Ocean University, Yangjiang, Guangdong, China, 529500
| | - Jinyi Long
- College of Information Science and Technology, Jinan University, Guangzhou, Guangdong, China, 510632.
| |
Collapse
|
3
|
Isfahani SA, McGurrin P, Vial F, Hallett M. Patterns of brain activity in choice or instructed go and no-go tasks. Exp Brain Res 2025; 243:73. [PMID: 39982468 PMCID: PMC11845411 DOI: 10.1007/s00221-025-07027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
The goal of this study was to investigate the decision making process for choosing what movements to make. We used electroencephalography (EEG) to investigate patterns of the contingent negative variation (CNV) associated with free-choice decisions to move or abstain, comparing them to conditions where actions were commanded. Our primary hypothesis was that choice tasks would differ significantly from each other and exhibit EEG patterns akin to their command-driven counterparts after the decisions were made, at least, in the 50 ms block of time prior to movement. A secondary analysis evaluated post hoc comparisons of time, in 50 ms blocks, to understand the temporal development of the CNV for each condition. We also conducted an exploratory analysis of EEG event-related desynchronization (ERD) to identify patterns of brain activity associated with the decision-making process. This approach was taken due to the exploratory nature of our hypotheses concerning the spatial and temporal characteristics of EEG activity during these free-choice versus commanded tasks. We studied 12 right-handed healthy volunteers (7 women, mean age 53 years, range 39-73 years) with no prior history of neurological or major psychiatric illness. A CNV paradigm encompassing commanded and choice tasks was devised, with a 2500 ms interval between S1 and S2, while recording EEG and electromyography (EMG). S1 provided full information about the upcoming task, which was to be executed at the time of S2. We assessed CNV and explored whole scalp EEG activity, including both voltage as well as power in the alpha and beta frequency ranges. Clear and similar CNVs were observed for command and choice go tasks prior to the movements, contrasting with near-zero CNVs for the command and choice no-go tasks. Separation of CNVs for command go and no-go tasks occurred around 1600 ms post-S1, and choice CNVs separated about 2150 ms post-S1. Exploratory analysis revealed that beta power provided information about decision and preparation processes much earlier. The left dorsolateral prefrontal cortex (DLPFC) exhibited the initial sign of decision approximately 500 ms post-S1 for all tasks, with subsequent preparation for movement or restraint involving distinct activity in various brain regions. The localization of effects in the left DLPFC was determined by visual analysis of the informative electrode sites. The CNVs separate about 2 s after S1, and it appears that this process represents preparation for movement (or no movement). Exploration of the beta activity suggests an earlier decision process which leads eventually to subsequent task preparation and activation. Choice decisions lag slightly behind command decisions, with the CNV apparently reflecting motor implementation rather than the decision-making process. In a simple motor task with an exploratory analysis, both commanded and choice-based decisions are rapidly initiated in the left DLPFC. While the CNV distinguishes between go and no-go conditions, it primarily appears to signify preparation for implementation of the task following the earlier decision. Further controlled studies will be needed to confirm these results.
Collapse
Affiliation(s)
- Sanaz Attaripour Isfahani
- Human Motor Control Section, National Institutes of Health, National Insitute of Neurological Disorders and Stroke, Building 10, Room 7D37, 10 Center Drive, Bethesda, MD, 20892-1428, USA
- Department of Neurology, University of California, Irvine. 200 S. Manchester Ave., Ste 206, Orange, CA, 92868, USA
| | - Patrick McGurrin
- Human Motor Control Section, National Institutes of Health, National Insitute of Neurological Disorders and Stroke, Building 10, Room 7D37, 10 Center Drive, Bethesda, MD, 20892-1428, USA
| | - Felipe Vial
- Human Motor Control Section, National Institutes of Health, National Insitute of Neurological Disorders and Stroke, Building 10, Room 7D37, 10 Center Drive, Bethesda, MD, 20892-1428, USA
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, 5951, Av Vitacura, Vitacura, Región Metropolitana, Chile
| | - Mark Hallett
- Human Motor Control Section, National Institutes of Health, National Insitute of Neurological Disorders and Stroke, Building 10, Room 7D37, 10 Center Drive, Bethesda, MD, 20892-1428, USA.
| |
Collapse
|
4
|
Sugata H, Iwane F, Hayward W, Azzollini V, Dash D, Salamanca-Giron RF, Bönstrup M, Buch ER, Cohen LG. Cingulate and striatal hubs are linked to early skill learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624544. [PMID: 39803559 PMCID: PMC11722315 DOI: 10.1101/2024.11.20.624544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Early skill learning develops in the context of activity changes in distributed cortico-subcortical regions. Here, we investigated network hubs-centers of information integration and transmission-within the brain network supporting early skill learning. We recorded magnetoencephalographic (MEG) brain activity in healthy human subjects who learned a moderately difficult sequence skill with their non-dominant left hand. We then computed network hub strength by summing top 10% functional connectivity over 86 parcellated brain regions (AAL3 atlas) and five brain oscillatory frequency bands (alpha, low-, high-beta, low- and high-gamma). Virtually all skill gains developed during rest intervals of early learning (micro-offline gains). MEG hub strength in the alpha band (8-13Hz) in bilateral anterior cingulate (ACC) and caudate and in the low-beta band (13-16Hz) in bilateral caudate and right putamen correlated with micro-offline gains. These regions linked strongly with the hippocampus, parahippocampal cortex, and lingual and fusiform gyri. Thus, alpha and low-beta brain oscillatory activity in cingulate and striatal regions appear to contribute as hubs of information integration and transmission during early skill learning.
Collapse
Affiliation(s)
- Hisato Sugata
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
- Faculty of Welfare and Health Science, Oita University, Oita, Japan
- Equal Contribution
- Lead Contact
| | - Fumiaki Iwane
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
- Equal Contribution
| | - William Hayward
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Valentina Azzollini
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Debadatta Dash
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | | | - Marlene Bönstrup
- Department of Neurology, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Ethan R Buch
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
- Lead Contact
| |
Collapse
|
5
|
Balasubramanian P, De Leon RP, Snyder DB, Beardsley SA, Hyngstrom AS, Schmit BD. Altered Cortical Activity during a Finger Tap in People with Stroke. Brain Topogr 2024; 37:907-920. [PMID: 38722465 DOI: 10.1007/s10548-024-01049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/28/2024] [Indexed: 09/14/2024]
Abstract
This study describes electroencephalography (EEG) measurements during a simple finger movement in people with stroke to understand how temporal patterns of cortical activation and network connectivity align with prolonged muscle contraction at the end of a task. We investigated changes in the EEG temporal patterns in the beta band (13-26 Hz) of people with chronic stroke (N = 10, 7 F/3 M) and controls (N = 10, 7 F/3 M), during and after a cued movement of the index finger. We quantified the change in beta band EEG power relative to baseline as activation at each electrode and the change in task-based phase-locking value (tbPLV) and beta band task-based coherence (tbCoh) relative to baseline coherence as connectivity between EEG electrodes. Finger movements were associated with a decrease in beta power (event related desynchronization (ERD)) followed by an increase in beta power (event related resynchronization (ERS)). The ERS in the post task period was lower in the stroke group (7%), compared to controls (44%) (p < 0.001) and the transition from ERD to ERS was delayed in the stroke group (1.43 s) compared to controls (0.90 s) in the C3 electrode (p = 0.007). In the same post movement period, the stroke group maintained a heightened tbPLV (p = 0.030 for time to baseline of the C3:Fz electrode pair) and did not show the decrease in connectivity in electrode pair C3:Fz that was observed in controls (tbPLV: p = 0.006; tbCoh: p = 0.023). Our results suggest that delays in cortical deactivation patterns following movement coupled with changes in the time course of connectivity between the sensorimotor and frontal cortices in the stroke group might explain clinical observations of prolonged muscle activation in people with stroke. This prolonged activation might be attributed to the combination of cortical reorganization and changes to sensory feedback post-stroke.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Roxanne P De Leon
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Dylan B Snyder
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Scott A Beardsley
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Allison S Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, WI, 53201, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA.
| |
Collapse
|
6
|
Long Z, Fu Q, Fu X. How mind wandering influences motor control: The modulating role of movement difficulty. Neuroimage 2024; 294:120638. [PMID: 38719153 DOI: 10.1016/j.neuroimage.2024.120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024] Open
Abstract
It has been found that mind wandering can impair motor control. However, it remains unclear whether the impact of mind wandering on motor control is modulated by movement difficulty and its associated neural mechanisms. To address this issue, we manipulated movement difficulty using handedness and finger dexterity separately in two signal-response tasks with identical experiment designs, in which right-handed participants performed key-pressing and key-releasing movements with the specified fingers, and they had to intermittently report whether their attention was "On task" or "Off task." Key-releasing with the right index finger (RI) had a faster reaction time and stronger contralateral delta-theta (1-7 Hz) functional connectivity than with the left index (LI) in Experiment 1, and mind wandering only reduced the contralateral delta-theta functional connectivity and midfrontal delta-theta activity for key-releasing with RI. Key-pressing with right index and middle fingers (RIR) had a faster reaction time and stronger midfrontal delta-theta activity than with right index and ring fingers (RIR) in Experiment 2, and mind wandering only reduced the midfrontal delta-theta activity for key-pressing with RIM. Theta oscillations are vital in motor control. These findings suggest that mind wandering only impairs the motor control of relatively simple movements without affecting the difficult ones. It supports the notion that mind wandering competes for executive resources with the primary task. Moreover, the quantity of executive resources recruited for a task and how these resources are allocated is contingent upon the task difficulty, which may determine whether mind wandering would interfere with motor control.
Collapse
Affiliation(s)
- Zhengkun Long
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiufang Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolan Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Mustile M, Kourtis D, Edwards MG, Donaldson DI, Ietswaart M. Neural correlates of motor imagery and execution in real-world dynamic behavior: evidence for similarities and differences. Front Hum Neurosci 2024; 18:1412307. [PMID: 38974480 PMCID: PMC11224467 DOI: 10.3389/fnhum.2024.1412307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024] Open
Abstract
A large body of evidence shows that motor imagery and action execution behaviors result from overlapping neural substrates, even in the absence of overt movement during motor imagery. To date it is unclear how neural activations in motor imagery and execution compare for naturalistic whole-body movements, such as walking. Neuroimaging studies have not directly compared imagery and execution during dynamic walking movements. Here we recorded brain activation with mobile EEG during walking compared to during imagery of walking, with mental counting as a control condition. We asked 24 healthy participants to either walk six steps on a path, imagine taking six steps, or mentally count from one to six. We found beta and alpha power modulation during motor imagery resembling action execution patterns; a correspondence not found performing the control task of mental counting. Neural overlap occurred early in the execution and imagery walking actions, suggesting activation of shared action representations. Remarkably, a distinctive walking-related beta rebound occurred both during action execution and imagery at the end of the action suggesting that, like actual walking, motor imagery involves resetting or inhibition of motor processes. However, we also found that motor imagery elicits a distinct pattern of more distributed beta activity, especially at the beginning of the task. These results indicate that motor imagery and execution of naturalistic walking involve shared motor-cognitive activations, but that motor imagery requires additional cortical resources.
Collapse
Affiliation(s)
- Magda Mustile
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
- The Psychological Sciences Research Institute, University of Louvain, Louvain-la-Neuve, Belgium
| | - Dimitrios Kourtis
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Martin G. Edwards
- The Psychological Sciences Research Institute, University of Louvain, Louvain-la-Neuve, Belgium
| | - David I. Donaldson
- School of Psychology and Neuroscience, University of St Andrews, St. Andrews, United Kingdom
| | - Magdalena Ietswaart
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
8
|
Kida T, Kaneda T, Nishihira Y. ERP evidence of attentional somatosensory processing and stimulus-response coupling under different hand and arm postures. Front Hum Neurosci 2023; 17:1252686. [PMID: 38021238 PMCID: PMC10676239 DOI: 10.3389/fnhum.2023.1252686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
We investigated (1) the effects of divided and focused attention on event-related brain potentials (ERPs) elicited by somatosensory stimulation under different response modes, (2) the effects of hand position (closely-placed vs. separated hands) and arm posture (crossed vs. uncrossed forearms) on the attentional modulation of somatosensory ERPs, and (3) changes in the coupling of stimulus- and response-related processes by somatosensory attention using a single-trial analysis of P300 latency and reaction times. Electrocutaneous stimulation was presented randomly to the thumb or middle finger of the left or right hand at random interstimulus intervals (700-900 ms). Subjects attended unilaterally or bilaterally to stimuli in order to detect target stimuli by a motor response or counting. The effects of unilaterally-focused attention were also tested under different hand and arm positions. The amplitude of N140 in the divided attention condition was intermediate between unilaterally attended and unattended stimuli in the unilaterally-focused attention condition in both the mental counting and motor response tasks. Attended infrequent (target) stimuli elicited greater P300 in the unilaterally attention condition than in the divided attention condition. P300 latency was longer in the divided attention condition than in the unilaterally-focused attention condition in the motor response task, but remained unchanged in the counting task. Closely locating the hands had no impact, whereas crossing the forearms decreased the attentional enhancement in N140 amplitude. In contrast, these two manipulations uniformly decreased P300 amplitude and increased P300 latency. The correlation between single-trial P300 latency and RT was decreased by crossed forearms, but not by divided attention or closely-placed hands. Therefore, the present results indicate that focused and divided attention differently affected middle latency and late processing, and that hand position and arm posture also differently affected attentional processes and stimulus-response coupling.
Collapse
Affiliation(s)
- Tetsuo Kida
- Higher Brain Function Unit, Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | | | - Yoshiaki Nishihira
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Neural processing of goal and non-goal-directed movements on the smartphone. NEUROIMAGE: REPORTS 2023. [DOI: 10.1016/j.ynirp.2023.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
10
|
Inamoto T, Ueda M, Ueno K, Shiroma C, Morita R, Naito Y, Ishii R. Motor-Related Mu/Beta Rhythm in Older Adults: A Comprehensive Review. Brain Sci 2023; 13:brainsci13050751. [PMID: 37239223 DOI: 10.3390/brainsci13050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Mu rhythm, also known as the mu wave, occurs on sensorimotor cortex activity at rest, and the frequency range is defined as 8-13Hz, the same frequency as the alpha band. Mu rhythm is a cortical oscillation that can be recorded from the scalp over the primary sensorimotor cortex by electroencephalogram (EEG) and magnetoencephalography (MEG). The subjects of previous mu/beta rhythm studies ranged widely from infants to young and older adults. Furthermore, these subjects were not only healthy people but also patients with various neurological and psychiatric diseases. However, very few studies have referred to the effect of mu/beta rhythm with aging, and there was no literature review about this theme. It is important to review the details of the characteristics of mu/beta rhythm activity in older adults compared with young adults, focusing on age-related mu rhythm changes. By comprehensive review, we found that, compared with young adults, older adults showed mu/beta activity change in four characteristics during voluntary movement, increased event-related desynchronization (ERD), earlier beginning and later end, symmetric pattern of ERD and increased recruitment of cortical areas, and substantially reduced beta event-related desynchronization (ERS). It was also found that mu/beta rhythm patterns of action observation were changing with aging. Future work is needed in order to investigate not only the localization but also the network of mu/beta rhythm in older adults.
Collapse
Affiliation(s)
- Takashi Inamoto
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka 583-8555, Japan
- Faculty of Health Sciences, Kansai University of Health Sciences, Osaka 590-0482, Japan
| | - Masaya Ueda
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Keita Ueno
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - China Shiroma
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Rin Morita
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Yasuo Naito
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Ryouhei Ishii
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| |
Collapse
|
11
|
Mustile M, Kourtis D, Edwards MG, Donaldson DI, Ietswaart M. The neural response is heightened when watching a person approaching compared to walking away: Evidence for dynamic social neuroscience. Neuropsychologia 2022; 175:108352. [PMID: 36007672 DOI: 10.1016/j.neuropsychologia.2022.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/30/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
The action observation network has been proposed to play a key role in predicting the action intentions (or goals) of others, thereby facilitating social interaction. Key information when interacting with others is whether someone (an agent) is moving towards or away from us, indicating whether we are likely to interact with the person. In addition, to determine the nature of a social interaction, we also need to take into consideration the distance of the agent relative to us as the observer. How this kind of information is processed within the brain is unknown, at least in part because prior studies have not involved live whole-body motion. Consequently, here we recorded mobile EEG in 18 healthy participants, assessing the neural response to the modulation of direction (walking towards or away) and distance (near vs. far distance) during the observation of an agent walking. We evaluated whether cortical alpha and beta oscillations were modulated differently by direction and distance during action observation. We found that alpha was only modulated by distance, with a stronger decrease of power when the agent was further away from the observer, regardless of direction. Critically, by contrast, beta was found to be modulated by both distance and direction, with a stronger decrease of power when the agent was near and facing the participant (walking towards) compared to when they were near but viewed from the back (walking away). Analysis revealed differences in both the timing and distribution of alpha and beta oscillations. We argue that these data suggest a full understanding of action observation requires a new dynamic neuroscience, investigating actual interactions between real people, in real world environments.
Collapse
Affiliation(s)
- Magda Mustile
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK.
| | - Dimitrios Kourtis
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Martin G Edwards
- Institute of Research in the Psychological Sciences, Université Catholique de Louvain, Louvain- la- Neuve, Belgium
| | - David I Donaldson
- School of Psychology and Neuroscience, University of St Andrews, St. Andrews, UK
| | - Magdalena Ietswaart
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
12
|
Rothwell J, Antal A, Burke D, Carlsen A, Georgiev D, Jahanshahi M, Sternad D, Valls-Solé J, Ziemann U. Central nervous system physiology. Clin Neurophysiol 2021; 132:3043-3083. [PMID: 34717225 PMCID: PMC8863401 DOI: 10.1016/j.clinph.2021.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
This is the second chapter of the series on the use of clinical neurophysiology for the study of movement disorders. It focusses on methods that can be used to probe neural circuits in brain and spinal cord. These include use of spinal and supraspinal reflexes to probe the integrity of transmission in specific pathways; transcranial methods of brain stimulation such as transcranial magnetic stimulation and transcranial direct current stimulation, which activate or modulate (respectively) the activity of populations of central neurones; EEG methods, both in conjunction with brain stimulation or with behavioural measures that record the activity of populations of central neurones; and pure behavioural measures that allow us to build conceptual models of motor control. The methods are discussed mainly in relation to work on healthy individuals. Later chapters will focus specifically on changes caused by pathology.
Collapse
Affiliation(s)
- John Rothwell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK,Corresponding author at: Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, (J. Rothwell)
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Germany
| | - David Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney 2050, Australia
| | - Antony Carlsen
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Dagmar Sternad
- Departments of Biology, Electrical & Computer Engineering, and Physics, Northeastern University, Boston, MA 02115, USA
| | - Josep Valls-Solé
- Institut d’Investigació Biomèdica August Pi I Sunyer, Villarroel, 170, Barcelona, Spain
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
13
|
Hervault M, Zanone PG, Buisson JC, Huys R. Cortical sensorimotor activity in the execution and suppression of discrete and rhythmic movements. Sci Rep 2021; 11:22364. [PMID: 34785710 PMCID: PMC8595306 DOI: 10.1038/s41598-021-01368-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
Although the engagement of sensorimotor cortices in movement is well documented, the functional relevance of brain activity patterns remains ambiguous. Especially, the cortical engagement specific to the pre-, within-, and post-movement periods is poorly understood. The present study addressed this issue by examining sensorimotor EEG activity during the performance as well as STOP-signal cued suppression of movements pertaining to two distinct classes, namely, discrete vs. ongoing rhythmic movements. Our findings indicate that the lateralized readiness potential (LRP), which is classically used as a marker of pre-movement processing, indexes multiple pre- and in- movement-related brain dynamics in a movement-class dependent fashion. In- and post-movement event-related (de)synchronization (ERD/ERS) observed in the Mu (8-13 Hz) and Beta (15-30 Hz) frequency ranges were associated with estimated brain sources in both motor and somatosensory cortical areas. Notwithstanding, Beta ERS occurred earlier following cancelled than actually performed movements. In contrast, Mu power did not vary. Whereas Beta power may reflect the evaluation of the sensory predicted outcome, Mu power might engage in linking perception to action. Additionally, the rhythmic movement forced stop (only) showed a post-movement Mu/Beta rebound, which might reflect an active "clearing-out" of the motor plan and its feedback-based online control. Overall, the present study supports the notion that sensorimotor EEG modulations are key markers to investigate control or executive processes, here initiation and inhibition, which are exerted when performing distinct movement classes.
Collapse
Affiliation(s)
- Mario Hervault
- Centre de Recherche Cerveau et Cognition, UMR 5549, Pavillon Baudot CHU Purpan, CNRS - Université Toulouse 3 Paul Sabatier, Toulouse, France.
| | - Pier-Giorgio Zanone
- Centre de Recherche Cerveau et Cognition, UMR 5549, Pavillon Baudot CHU Purpan, CNRS - Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Christophe Buisson
- Institut de Recherche en Informatique de Toulouse - UMR 5505, CNRS - Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Raoul Huys
- Centre de Recherche Cerveau et Cognition, UMR 5549, Pavillon Baudot CHU Purpan, CNRS - Université Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|
14
|
Scaltritti M, Job R, Alario FX, Sulpizio S. On the Boundaries between Decision and Action: Effector-selective Lateralization of Beta-frequency Power Is Modulated by the Lexical Frequency of Printed Words. J Cogn Neurosci 2020; 32:2131-2144. [PMID: 32662730 DOI: 10.1162/jocn_a_01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Current computational and neuroscientific models of decision-making posit a discrete, serial processing distinction between upstream decisional stages and downstream processes of motor-response implementation. We investigated this framework in the context of two-alternative forced-choice tasks on linguistic stimuli, words and pseudowords. In two experiments, we assessed the impact of lexical frequency and action semantics on two effector-selective EEG indexes of motor-response activation: the lateralized readiness potential and the lateralization of beta-frequency power. This allowed us to track potentially continuous streams of processing progressively mapping the evaluation of linguistic stimuli onto corresponding response channels. Whereas action semantics showed no influence on EEG indexes of motor-response activation, lexical frequency affected the lateralization of response-locked beta-frequency power. We argue that these observations point toward a continuity between linguistic processing of word input stimuli and implementation of corresponding choice in terms of motor behavior. This interpretation challenges the commonly held assumption of a discrete processing distinction between decisional and motor-response processes in the context of decisions based on symbolic stimuli.
Collapse
Affiliation(s)
- Michele Scaltritti
- Università degli Studi di Trento, Italy.,Fondazione Marica De Vincenzi, ONLUS, Trento, Italy
| | - Remo Job
- Università degli Studi di Trento, Italy.,Fondazione Marica De Vincenzi, ONLUS, Trento, Italy
| | - F-Xavier Alario
- Aix-Marseille University, CNRS, LPC, France.,University of Pittsburgh
| | - Simone Sulpizio
- Università Vita-Salute San Raffaele, Milan, Italy.,Università degli Studi di Milano-Bicocca, Italy
| |
Collapse
|
15
|
Sugata H, Yagi K, Yazawa S, Nagase Y, Tsuruta K, Ikeda T, Nojima I, Hara M, Matsushita K, Kawakami K, Kawakami K. Role of beta-band resting-state functional connectivity as a predictor of motor learning ability. Neuroimage 2020; 210:116562. [DOI: 10.1016/j.neuroimage.2020.116562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/27/2019] [Accepted: 01/14/2020] [Indexed: 01/12/2023] Open
|
16
|
Aoh Y, Hsiao HJ, Lu MK, Macerollo A, Huang HC, Hamada M, Tsai CH, Chen JC. Event-Related Desynchronization/Synchronization in Spinocerebellar Ataxia Type 3. Front Neurol 2019; 10:822. [PMID: 31417491 PMCID: PMC6684955 DOI: 10.3389/fneur.2019.00822] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant, cerebellar degeneration predominant disease caused by excessive CAG repeats. We examined event-related dysynchronization/synchronization (ERD/ERS) in patients with SCA3. Methods: We assessed ERD/ERS of self-paced voluntary hand movements in 15 patients with genetically proven SCA3 in comparison with healthy controls. Results: In ERS, a significant interaction effect between group, frequency, and period (F = 1.591; p = 0.005; ρI = 0.86) was observed. The post-hoc two-tailed independent t-test showed significant differences in high beta and low beta ERS. By contrast, in ERD, no apparent differences were observed in the pattern of patients with SCA3 in comparison with healthy controls (F = 1.01; p = 0.442). Conclusion: The study revealed a decreased ERS in patients with SCA3, especially at the frequency of 20–30 Hz. This study elucidates the significant role of cerebellum in motor control.
Collapse
Affiliation(s)
- Yu Aoh
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung City, Taiwan
| | - Han-Jun Hsiao
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung City, Taiwan
| | - Ming-Kuei Lu
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung City, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Antonella Macerollo
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Hui-Chun Huang
- School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Masashi Hamada
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chon-Haw Tsai
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung City, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Jui-Cheng Chen
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung City, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan.,Department of Neurology, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
17
|
Detection of Driver Braking Intention Using EEG Signals During Simulated Driving. SENSORS 2019; 19:s19132863. [PMID: 31252666 PMCID: PMC6651726 DOI: 10.3390/s19132863] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 11/17/2022]
Abstract
In this work, we developed a novel system to detect the braking intention of drivers in emergency situations using electroencephalogram (EEG) signals. The system acquired eight-channel EEG and motion-sensing data from a custom-designed EEG headset during simulated driving. A novel method for accurately labeling the training data during an extremely short period after the onset of an emergency stimulus was introduced. Two types of features, including EEG band power-based and autoregressive (AR)-based, were investigated. It turned out that the AR-based feature in combination with artificial neural network classifier provided better detection accuracy of the system. Experimental results for ten subjects indicated that the proposed system could detect the emergency braking intention approximately 600 ms before the onset of the executed braking event, with high accuracy of 91%. Thus, the proposed system demonstrated the feasibility of developing a brain-controlled vehicle for real-world applications.
Collapse
|
18
|
Naro A, Calabrò RS, La Rosa G, Andronaco VA, Billeri L, Lauria P, Bramanti A, Bramanti P. Toward understanding the neurophysiological basis of peripersonal space: An EEG study on healthy individuals. PLoS One 2019; 14:e0218675. [PMID: 31233542 PMCID: PMC6590804 DOI: 10.1371/journal.pone.0218675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/06/2019] [Indexed: 11/18/2022] Open
Abstract
The subcortical mechanisms subtending the sensorimotor processes related to the peripersonal space (PPS) have been well characterized, whereas less evidence is available concerning the cortical mechanisms. We investigated the theta, alpha and beta event-related spectral perturbations (ERSP) while holding the forearm in different positions into the PPS of the face. Fifty healthy individuals were subjected to EEG recording while being provided with median nerve electric stimulation at the wrist of the right hand held at different hand-to-face distances. Theta and beta rhythms were significantly perturbed depending on the hand-to-face distance, whereas alpha oscillations reflected a more general, non-specific oscillatory response to the motor task. The perturbation of theta and beta frequency bands may reflect the processes of top-down modulation overseeing the conscious spatiotemporal encoding of sensory-motor information within the PPS. In other words, such perturbation reflects the continuous update of the conscious internal representations of the PPS to build up a purposeful and reflexive motor response.
Collapse
Affiliation(s)
- Antonino Naro
- Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | - Gianluca La Rosa
- Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | - Luana Billeri
- Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Paola Lauria
- Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Alessia Bramanti
- Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Placido Bramanti
- Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| |
Collapse
|
19
|
Ricci S, Tatti E, Mehraram R, Panday P, Ghilardi MF. Beta band frequency differences between motor and frontal cortices in reaching movements. IEEE Int Conf Rehabil Robot 2019; 2019:1254-1259. [PMID: 31374801 PMCID: PMC11062591 DOI: 10.1109/icorr.2019.8779373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Movement is associated with power changes over sensory-motor areas in different frequency ranges, including beta (15-30 Hz). In fact, beta power starts decreasing before the movement onset (event-related desynchronization, ERD) and rebounds after its end (event-related synchronization, ERS). There is increasing evidence that beta modulation depth (measured as ERD-ERS difference) increases with practice in a planar reaching task, suggesting that this measure may reflect plasticity processes. In the present work, we analyzed beta ERD, ERS and modulation depth in healthy subjects to determine their changes over three regions of interest (ROIs): right and left sensorimotor and frontal areas, during a reaching task with the right arm. We found that ERD, ERS and modulation depth increased with practice with lower values over the right sensory-motor area. Timing of peak ERD and ERS were similar across ROIs, with ERS peak occurring earlier in later sets. Finally, we found that beta ERS of the frontal ROI involved higher beta range (23-29 Hz) than the sensory-motor ROIs (15-18 Hz). Altogether these results suggest that practice in a reaching task is associated with modification of beta power and timing. Additionally, beta ERS may have different functional meaning in the three ROIs, as suggested by the involvement of upper and lower beta bands in the frontal and sensorimotor ROIs, respectively.
Collapse
|
20
|
Attenuated NoGo-related beta desynchronisation and synchronisation in Parkinson's disease revealed by magnetoencephalographic recording. Sci Rep 2019; 9:7235. [PMID: 31076640 PMCID: PMC6510752 DOI: 10.1038/s41598-019-43762-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/01/2019] [Indexed: 11/08/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterised by motor abnormalities. Many non-demented patients with PD have cognitive impairment especially in executive functions. Using magnetoencephalographic (MEG) recording combined with event-related desynchronisation/synchronisation (ERD/ERS) analysis, we investigated cortical executive functions during a Go/NoGo task in PD patients and matched healthy subjects. PD patients had a longer reaction time in the Go condition and had a higher error ratio in both Go and NoGo conditions. The MEG analysis showed that the PD patients had a significant reduction in beta ERD during the NoGo condition and in beta ERS during both Go and NoGo conditions compared with the healthy subjects (all p < 0.05). Moreover, in the Go condition, the onsets of beta ERD and ERS were delayed in PD patients. Notably, NoGo ERS was negatively correlated with the Unified Parkinson’s Disease Rating Scale (UPDRS) score in PD patients. The present study demonstrated abnormalities in motor programming, response inhibition, and frontal inhibitory modulation in PD. Further extensive investigations are necessary to confirm the longitudinal treatment responses in PD.
Collapse
|
21
|
Analysis of the Emotional-Cognitive Processes using a Modified Multisource Interference Task and Recording of EEG and Behavioral Responses. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Visani E, Mariotti C, Nanetti L, Mongelli A, Castaldo A, Panzica F, Franceschetti S, Canafoglia L. Different patterns of movement-related cortical oscillations in patients with myoclonus and in patients with spinocerebellar ataxia. Clin Neurophysiol 2019; 130:714-721. [PMID: 30889419 DOI: 10.1016/j.clinph.2019.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To assess whether different patterns of EEG rhythms during a Go/No-go motor task characterize patients with cortical myoclonus (EPM1) or with spinocerebellar ataxia (SCA). METHODS We analyzed event-related desynchronization (ERD) and synchronization (ERS) in the alpha and beta-bands during visually cued Go/No-go task in 22 patients (11 with EPM1, 11 with SCA) and 11 controls. RESULTS In the Go condition, the only significant difference was a reduced contralateral beta-ERS in the EPM1 patients compared with controls; in the No-go condition, the EPM1 patients showed prolonged alpha-ERD in comparison with both controls and SCA patients, and reduced or delayed alpha- and beta-ERS in comparison with controls. In both conditions, the SCA patients, unlike EPM1 patients and controls, showed minimal or absent lateralization of alpha- and beta-ERD. CONCLUSIONS EPM1 patients showed abnormal ERD/ERS dynamics, whereas SCA patients mainly showed defective ERD lateralization. SIGNIFICANCE A different behavior of ERS/ERD distinguished the two patient groups: the pattern observed in EPM1 suggests a prominent defect of inhibition occurring in motor cortex contralateral to activated segment, whereas the pattern observed in SCA suggested a defective lateralization attributable to the damage of cerebello-cortical network, which is instead marginal in patients with cortical myoclonus.
Collapse
Affiliation(s)
- E Visani
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - C Mariotti
- Department of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - L Nanetti
- Department of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - A Mongelli
- Department of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - A Castaldo
- Department of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - F Panzica
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - S Franceschetti
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - L Canafoglia
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
23
|
Ono Y, Wada K, Kurata M, Seki N. Enhancement of motor-imagery ability via combined action observation and motor-imagery training with proprioceptive neurofeedback. Neuropsychologia 2018; 114:134-142. [PMID: 29698736 DOI: 10.1016/j.neuropsychologia.2018.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
Abstract
Varied individual ability to control the sensory-motor rhythms may limit the potential use of motor-imagery (MI) in neurorehabilitation and neuroprosthetics. We employed neurofeedback training of MI under action observation (AO: AOMI) with proprioceptive feedback and examined whether it could enhance MI-induced event-related desynchronization (ERD). Twenty-eight healthy young adults participated in the neurofeedback training. They performed MI while watching a video of hand-squeezing motion from a first-person perspective. Eleven participants received correct proprioceptive feedback of the same hand motion with the video, via an exoskeleton robot attached to their hand, upon their successful generation of ERD. Another nine participants received random feedback. The training lasted for approximately 20 min per day and continued for 6 days within an interval of 2 weeks. MI-ERD power was evaluated separately, without AO, on each experimental day. The MI-ERD power of the participants receiving correct feedback, as opposed to random feedback, was significantly increased after training. An additional experiment in which the remaining eight participants were trained with auditory instead of proprioceptive feedback failed to show statistically significant increase in MI-ERD power. The significant training effect obtained in shorter training time relative to previously proposed methods suggests the superiority of AOMI training and physiologically-congruent proprioceptive feedback to enhance the MI-ERD power. The proposed neurofeedback training could help patients with motor deficits to attain better use of brain-machine interfaces for rehabilitation and/or prosthesis.
Collapse
Affiliation(s)
- Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 213-8571, Japan; Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 213-8571, Japan.
| | - Kenya Wada
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 213-8571, Japan.
| | - Masaya Kurata
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 213-8571, Japan.
| | - Naoto Seki
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 213-8571, Japan.
| |
Collapse
|
24
|
Miyagishi Y, Ikeda T, Takahashi T, Kudo K, Morise H, Minabe Y, Kikuchi M. Gamma-band auditory steady-state response after frontal tDCS: A double-blind, randomized, crossover study. PLoS One 2018; 13:e0193422. [PMID: 29489895 PMCID: PMC5830999 DOI: 10.1371/journal.pone.0193422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/10/2018] [Indexed: 11/19/2022] Open
Abstract
The effects of transcranial direct current stimulation (tDCS) likely depend on cortical N-methyl-D-aspartic acid (NMDA) neurotransmission; however, no previous studies have reported tDCS-mediated modulation of cortical NMDA neurotransmission in humans. The gamma-band auditory steady-state response (ASSR) to a 40 Hz stimulation likely reflects the integrity of cortical NMDA neurotransmission. The present study tested whether the effect of tDCS is reflected in gamma-band ASSRs during a 40 Hz stimulation. Using a double-blind, randomized, crossover study, we performed magnetoencephalography (MEG) and measured the ASSR in 24 healthy participants during 40 Hz of auditory stimulation after prefrontal tDCS (2 mA) or sham (i.e., placebo) treatment. Our results failed to reveal significant differences in any brain between the two conditions after the application of a frequency of approximately 40 Hz. Based on these results, the ASSR is an insufficient method to detect the effect of tDCS on cortical NMDA neurotransmission. Unexpectedly, the results revealed an enhanced beta-band event-related spectral perturbation (ERSP) in the left motor cortex after tDCS compared with that observed after the sham stimuli. Given that beta-band oscillations reflect many functions in motor cortices, the tDCS for the frontal areas had some effect on the left motor cortex while the participants were focusing on not pressing the button with their right index finger. An additional study with an adequate psychological task is necessary to draw a conclusion regarding this unexpected result.
Collapse
Affiliation(s)
- Yoshiaki Miyagishi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- * E-mail:
| | | | - Kiwamu Kudo
- Ricoh Institute of Future Technology, Research and Development Division, Ricoh Company, Ltd., Kanazawa, Japan
| | - Hirofumi Morise
- Ricoh Institute of Future Technology, Research and Development Division, Ricoh Company, Ltd., Kanazawa, Japan
| | - Yoshio Minabe
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
25
|
Gardony AL, Eddy MD, Brunyé TT, Taylor HA. Cognitive strategies in the mental rotation task revealed by EEG spectral power. Brain Cogn 2017; 118:1-18. [DOI: 10.1016/j.bandc.2017.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 11/15/2022]
|
26
|
Jantzen KJ, Ratcliff BR, Jantzen MG. Cortical Networks for Correcting Errors in Sensorimotor Synchronization Depend on the Direction of Asynchrony. J Mot Behav 2017; 50:235-248. [PMID: 28813229 DOI: 10.1080/00222895.2017.1327414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recent work provides clues that different cortical mechanisms may be employed when correcting for errors in sensorimotor synchronization that increase tap-tone asynchrony compared with those that decrease it. The authors tested this hypothesis by recording 64-channel electroencephalography while participants synchronized with an auditory metronome. We systematically introduced positive and negative phase-shift perturbations that were either liminal (10%) and subliminal (3%). We used a distributed source modeling approach to evaluate oscillatory activity and connectivity of discrete cortical sources. Three key findings support our hypothesis. First was a theta band response indicative of error detection and top-down control observed in frontomedial presupplementary motor area (pre-SMA) and anterior cingulate for liminal positive perturbations. Second was an increase in theta band coupling between the SMA and contralateral motor cortex exclusively for positive perturbations suggesting a top-down modulation of motor parameters. Third, when compared with other conditions, liminal positive perturbations result in an increase in postmovement beta rebound within contralateral primary motor cortex. The authors propose that frontomedial motor areas exert a top-down inhibitory influence over the primary motor cortex to effectively lengthen tap intervals in response to lengthening tap-tone asynchronies.
Collapse
Affiliation(s)
- K J Jantzen
- a Psychology , Western Washington University , Bellingham
| | | | | |
Collapse
|
27
|
High Working Memory Load Increases Intracortical Inhibition in Primary Motor Cortex and Diminishes the Motor Affordance Effect. J Neurosci 2017; 36:5544-55. [PMID: 27194334 DOI: 10.1523/jneurosci.0284-16.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/09/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. SIGNIFICANCE STATEMENT Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures of the motor affordance while working memory load was varied. We observed a typical motor affordance signature when working memory load was low; however, it was abolished when load was high. Further, there was increased intracortical inhibition in primary motor cortex under high working memory load. This suggests that being in a state of high cognitive load "sets" the motor system to be imperturbable to distracting motor influences. This makes a novel link between working memory load and the balance of excitatory/inhibitory activity in the motor cortex and potentially has implications for disorders of impulsivity.
Collapse
|
28
|
Sugata H, Hirata M, Tamura Y, Onishi H, Goto T, Araki T, Yorifuji S. Frequency-dependent oscillatory neural profiles during imitation. Sci Rep 2017; 7:45806. [PMID: 28393878 PMCID: PMC5385530 DOI: 10.1038/srep45806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/06/2017] [Indexed: 11/21/2022] Open
Abstract
Imitation is a complex process that includes higher-order cognitive and motor function. This process requires an observation-execution matching system that transforms an observed action into an identical movement. Although the low-gamma band is thought to reflect higher cognitive processes, no studies have focused on it. Here, we used magnetoencephalography (MEG) to examine the neural oscillatory changes including the low-gamma band during imitation. Twelve healthy, right-handed participants performed a finger task consisting of four conditions (imitation, execution, observation, and rest). During the imitation and execution conditions, significant event-related desynchronizations (ERDs) were observed at the left frontal, central, and parietal MEG sensors in the alpha, beta, and low-gamma bands. Functional connectivity analysis at the sensor level revealed an imitation-related connectivity between a group of frontal sensors and a group of parietal sensors in the low-gamma band. Furthermore, source reconstruction with synthetic aperture magnetometry showed significant ERDs in the low-gamma band in the left sensorimotor area and the middle frontal gyrus (MFG) during the imitation condition when compared with the other three conditions. Our results suggest that the oscillatory neural activities of the low-gamma band at the sensorimotor area and MFG play an important role in the observation-execution matching system related to imitation.
Collapse
Affiliation(s)
- Hisato Sugata
- Department of Neurosurgery, Osaka University Medical School, 2-2 E6 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Faculty of Welfare and Health Science, Oita University, 700 Dannoharu, Oita, 870-1192, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Medical School, 2-2 E6 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Endowed Research Department of Clinical Neuroengineering, Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| | - Yuichi Tamura
- Division of Functional Diagnostic Science, Osaka University Graduate School of Medicine, 1-7 Yamadaka, Suita, Osaka, 565-0871, Japan
| | - Hisao Onishi
- Department of Occupational Therapy, Osaka Prefecture University, 3-7-30 Habikino, Habikino, Osaka, 583-8555, Japan
| | - Tetsu Goto
- Department of Neurosurgery, Osaka University Medical School, 2-2 E6 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Division of Functional Diagnostic Science, Osaka University Graduate School of Medicine, 1-7 Yamadaka, Suita, Osaka, 565-0871, Japan
| | - Toshihiko Araki
- Division of Functional Diagnostic Science, Osaka University Graduate School of Medicine, 1-7 Yamadaka, Suita, Osaka, 565-0871, Japan
| | - Shiro Yorifuji
- Division of Functional Diagnostic Science, Osaka University Graduate School of Medicine, 1-7 Yamadaka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
29
|
Chung JW, Ofori E, Misra G, Hess CW, Vaillancourt DE. Beta-band activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance. Neuroimage 2016; 144:164-173. [PMID: 27746389 DOI: 10.1016/j.neuroimage.2016.10.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 11/15/2022] Open
Abstract
Accurate motor performance may depend on the scaling of distinct oscillatory activity within the motor cortex and effective neural communication between the motor cortex and other brain areas. Oscillatory activity within the beta-band (13-30Hz) has been suggested to provide distinct functional roles for attention and sensorimotor control, yet it remains unclear how beta-band and other oscillatory activity within and between cortical regions is coordinated to enhance motor performance. We explore this open issue by simultaneously measuring high-density cortical activity and elbow flexor and extensor neuromuscular activity during ballistic movements, and manipulating error using high and low visual gain across three target distances. Compared with low visual gain, high visual gain decreased movement errors at each distance. Group analyses in 3D source-space revealed increased theta-, alpha-, and beta-band desynchronization of the contralateral motor cortex and medial parietal cortex in high visual gain conditions and this corresponded to reduced movement error. Dynamic causal modeling was used to compute connectivity between motor cortex and parietal cortex. Analyses revealed that gain affected the directionally-specific connectivity across broadband frequencies from parietal to sensorimotor cortex but not from sensorimotor cortex to parietal cortex. These new findings provide support for the interpretation that broad-band oscillations in theta, alpha, and beta frequency bands within sensorimotor and parietal cortex coordinate to facilitate accurate upper limb movement. SUMMARY STATEMENT Our findings establish a link between sensorimotor oscillations in the context of online motor performance in common source space across subjects. Specifically, the extent and distinct role of medial parietal cortex to sensorimotor beta connectivity and local domain broadband activity combine in a time and frequency manner to assist ballistic movements. These findings can serve as a model to examine whether similar source space EEG dynamics exhibit different time-frequency changes in individuals with neurological disorders that cause movement errors.
Collapse
Affiliation(s)
- Jae W Chung
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Edward Ofori
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Gaurav Misra
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Christopher W Hess
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; Department of Neurology, University of Florida, Gainesville, FL 32610, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
30
|
Aging differentially affects alpha and beta sensorimotor rhythms in a go/nogo task. Clin Neurophysiol 2016; 127:3234-42. [DOI: 10.1016/j.clinph.2016.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 11/19/2022]
|
31
|
Duann JR, Chiou JC. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation. PLoS One 2016; 11:e0162546. [PMID: 27636359 PMCID: PMC5026344 DOI: 10.1371/journal.pone.0162546] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation.
Collapse
Affiliation(s)
- Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Zhongli, Taoyuan District, Taiwan
- Institute for Neural Computation, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Jin-Chern Chiou
- Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
32
|
Houdayer E, Comi G, Leocani L. The Neurophysiologist Perspective into MS Plasticity. Front Neurol 2015; 6:193. [PMID: 26388835 PMCID: PMC4558527 DOI: 10.3389/fneur.2015.00193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/18/2015] [Indexed: 01/17/2023] Open
Abstract
Multiple sclerosis (MS) is a frequent, highly debilitating inflammatory demyelinating disease, starting to manifest in early adulthood and presenting a wide variety of symptoms, which are often resistant to pharmacological treatments. Cortical dysfunctions have been demonstrated to be key components of MS condition, and plasticity of the corticospinal motor system is highly involved in major MS symptoms, such as fatigue, spasticity, or pain. Cortical dysfunction in MS can be studied with neurophysiological tools, such as electroencephalography (EEG) and related techniques (evoked potentials) or transcranial magnetic stimulation (TMS). These techniques are now widely used to provide essential elements of MS diagnosis and can also be used to modulate plasticity. Indeed, the recent development of non-invasive brain stimulation techniques able to induce cortical plasticity, such as repetitive TMS or transcranial direct current stimulation, has brought promising results as add-on treatments. In this review, we will focus on the use of these tools (EEG and TMS) to study plasticity in MS and on the major techniques used to modulate plasticity in MS.
Collapse
Affiliation(s)
- Elise Houdayer
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute , Milan , Italy
| | - Giancarlo Comi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute , Milan , Italy ; University Vita-Salute San Raffaele, San Raffaele Scientific Institute , Milan , Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute , Milan , Italy ; University Vita-Salute San Raffaele, San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
33
|
Iijima M, Mase R, Osawa M, Shimizu S, Uchiyama S. Event-Related Synchronization and Desynchronization of High-Frequency Electroencephalographic Activity during a Visual Go/No-Go Paradigm. Neuropsychobiology 2015; 71:17-24. [PMID: 25766641 DOI: 10.1159/000363341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/28/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE High-frequency electroencephalography (EEG) activity has been observed in association with cognitive processing, including stimulus perception, consciousness and selective attention, in humans. The aim of this study was to compare visual-motor integrated processing between execution and inhibition of a motor response using event-related synchronization (ERS) and desynchronization (ERD) in the 15- to 80-Hz range and to investigate a relationship between event-related potentials (ERPs) and ERS/ERD in 10 normal young subjects. METHODS EEGs were recorded from 21 scalp sites during a visual go/no-go paradigm. For ERPs, 40 artifact-free trials were averaged off-line referenced to linked ear lobes. In the β and γ bands, ERS and ERD were calculated by time-frequency analysis. RESULTS Go N2 and no-go N2 were elicited 200-250 ms after stimuli, and their distributions were predominant at Fz. Go P3 was predominantly elicited 340-360 ms after stimuli at Pz, whereas no-go P3 was predominantly elicited 360-380 ms after stimuli at Cz. ERD of the β band at Fz and Cz during 300-600 ms showed in the go condition, whereas ERD showed between 39 and 42 Hz at F3 in the no-go condition. CONCLUSION Oscillatory cortical response-related β and γ activities differ between the processing of execution and inhibition in motor responses. β ERDs in the sensorimotor areas with go stimuli may be related to motor responses, and γ ERDs in the left frontal area with no-go stimuli may be involved in the processing of inhibition of motor responses. © 2015 S. Karger AG, Basel.
Collapse
|
34
|
Action observation and motor imagery in performance of complex movements: Evidence from EEG and kinematics analysis. Behav Brain Res 2015; 281:290-300. [DOI: 10.1016/j.bbr.2014.12.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/03/2014] [Accepted: 12/07/2014] [Indexed: 12/24/2022]
|
35
|
Meziane HB, Moisello C, Perfetti B, Kvint S, Isaias IU, Quartarone A, Di Rocco A, Ghilardi MF. Movement preparation and bilateral modulation of beta activity in aging and Parkinson's disease. PLoS One 2015; 10:e0114817. [PMID: 25635777 PMCID: PMC4312096 DOI: 10.1371/journal.pone.0114817] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/24/2014] [Indexed: 11/18/2022] Open
Abstract
In previous studies of young subjects performing a reaction-time reaching task, we found that faster reaction times are associated with increased suppression of beta power over primary sensorimotor areas just before target presentation. Here we ascertain whether such beta decrease similarly occurs in normally aging subjects and also in patients with Parkinson’s disease (PD), where deficits in movement execution and abnormalities of beta power are usually present. We found that in both groups, beta power decreased during the motor task in the electrodes over the two primary sensorimotor areas. However, before target presentation, beta decreases in PD were significantly smaller over the right than over the left areas, while they were symmetrical in controls. In both groups, functional connectivity between the two regions, measured with imaginary coherence, increased before the target appearance; however, in PD, it decreased immediately after, while in controls, it remained elevated throughout motor planning. As in previous studies with young subjects, the degree of beta power before target appearance correlated with reaction time. The values of coherence during motor planning, instead, correlated with movement time, peak velocity and acceleration. We conclude that planning of prompt and fast movements partially depends on coordinated beta activity of both sensorimotor areas, already at the time of target presentation. The delayed onset of beta decreases over the right region observed in PD is possibly related to a decreased functional connectivity between the two areas, and this might account for deficits in force programming, movement duration and velocity modulation.
Collapse
Affiliation(s)
- Hadj Boumediene Meziane
- Dept. of Physiology, Pharmacology & Neuroscience, CUNY Medical School, New York, New York, United States of America
| | - Clara Moisello
- Dept. of Physiology, Pharmacology & Neuroscience, CUNY Medical School, New York, New York, United States of America
| | - Bernardo Perfetti
- Dept. of Physiology, Pharmacology & Neuroscience, CUNY Medical School, New York, New York, United States of America
| | - Svetlana Kvint
- Dept. of Physiology, Pharmacology & Neuroscience, CUNY Medical School, New York, New York, United States of America
| | - Ioannis Ugo Isaias
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Angelo Quartarone
- Department of Neurosciences, Psychiatry and Anaesthesiological Sciences, University of Messina, Messina, Italy
- Department of Neurology, Movement Disorders Center, NYU-Langone School of Medicine, New York, New York, United States of America
| | - Alessandro Di Rocco
- Department of Neurology, Movement Disorders Center, NYU-Langone School of Medicine, New York, New York, United States of America
| | - Maria Felice Ghilardi
- Dept. of Physiology, Pharmacology & Neuroscience, CUNY Medical School, New York, New York, United States of America
- Department of Neurology, Movement Disorders Center, NYU-Langone School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Kasuga S, Matsushika Y, Kasashima-Shindo Y, Kamatani D, Fujiwara T, Liu M, Ushiba J. Transcranial direct current stimulation enhances mu rhythm desynchronization during motor imagery that depends on handedness. Laterality 2015; 20:453-68. [PMID: 25599261 DOI: 10.1080/1357650x.2014.998679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Transcranial direct current stimulation (tDCS) can modulate the amplitude of event-related desynchronization (ERD) that appears on the electroencephalogram (EEG) during motor imagery. To study the effect of handedness on the modulating effect of tDCS, we compared the difference in tDCS-boosted ERD during dominant and non-dominant hand motor imagery. EEGs were recorded over the left sensorimotor cortex of seven healthy right-handed volunteers, and we measured ERD induced either by dominant or non-dominant hand motor imagery. Ten minutes of anodal tDCS was then used to increase the cortical excitability of the contralateral primary motor cortex (M1), and ERD was measured again. With anodal tDCS, we observed only a small increase in ERD during non-dominant hand motor imagery, whereas the same stimulation induced a prominent increase in ERD during dominant hand motor imagery. This trend was most obvious in the participants who used their dominant hand more frequently. Although our study is preliminary because of a small sample size, these results suggest that the increase in ERD by applying anodal tDCS was stronger on the dominant side than on the non-dominant side. The background excitability of M1 may determine the strength of the effect of anodal tDCS on ERD by hand motor imagery.
Collapse
Affiliation(s)
- Shoko Kasuga
- a Department of Biosciences and Informatics, Faculty of Science and Technology , Keio University , Yokohama , Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Language-motor interference reflected in MEG beta oscillations. Neuroimage 2015; 109:438-48. [PMID: 25576646 DOI: 10.1016/j.neuroimage.2014.12.077] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/04/2014] [Accepted: 12/29/2014] [Indexed: 11/21/2022] Open
Abstract
The involvement of the brain's motor system in action-related language processing can lead to overt interference with simultaneous action execution. The aim of the current study was to find evidence for this behavioural interference effect and to investigate its neurophysiological correlates using oscillatory MEG analysis. Subjects performed a semantic decision task on single action verbs, describing actions executed with the hands or the feet, and abstract verbs. Right hand button press responses were given for concrete verbs only. Therefore, longer response latencies for hand compared to foot verbs should reflect interference. We found interference effects to depend on verb imageability: overall response latencies for hand verbs did not differ significantly from foot verbs. However, imageability interacted with effector: while response latencies to hand and foot verbs with low imageability were equally fast, those for highly imageable hand verbs were longer than for highly imageable foot verbs. The difference is reflected in motor-related MEG beta band power suppression, which was weaker for highly imageable hand verbs compared with highly imageable foot verbs. This provides a putative neuronal mechanism for language-motor interference where the involvement of cortical hand motor areas in hand verb processing interacts with the typical beta suppression seen before movements. We found that the facilitatory effect of higher imageability on action verb processing time is perturbed when verb and motor response relate to the same body part. Importantly, this effect is accompanied by neurophysiological effects in beta band oscillations. The attenuated power suppression around the time of movement, reflecting decreased cortical excitability, seems to result from motor simulation during action-related language processing. This is in line with embodied cognition theories.
Collapse
|
38
|
Kim IH, Kim JW, Haufe S, Lee SW. Detection of braking intention in diverse situations during simulated driving based on EEG feature combination. J Neural Eng 2014; 12:016001. [PMID: 25426805 DOI: 10.1088/1741-2560/12/1/016001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We developed a simulated driving environment for studying neural correlates of emergency braking in diversified driving situations. We further investigated to what extent these neural correlates can be used to detect a participant's braking intention prior to the behavioral response. APPROACH We measured electroencephalographic (EEG) and electromyographic signals during simulated driving. Fifteen participants drove a virtual vehicle and were exposed to several kinds of traffic situations in a simulator system, while EEG signals were measured. After that, we extracted characteristic features to categorize whether the driver intended to brake or not. MAIN RESULTS Our system shows excellent detection performance in a broad range of possible emergency situations. In particular, we were able to distinguish three different kinds of emergency situations (sudden stop of a preceding vehicle, sudden cutting-in of a vehicle from the side and unexpected appearance of a pedestrian) from non-emergency (soft) braking situations, as well as from situations in which no braking was required, but the sensory stimulation was similar to stimulations inducing an emergency situation (e.g., the sudden stop of a vehicle on a neighboring lane). SIGNIFICANCE We proposed a novel feature combination comprising movement-related potentials such as the readiness potential, event-related desynchronization features besides the event-related potentials (ERP) features used in a previous study. The performance of predicting braking intention based on our proposed feature combination was superior compared to using only ERP features. Our study suggests that emergency situations are characterized by specific neural patterns of sensory perception and processing, as well as motor preparation and execution, which can be utilized by neurotechnology based braking assistance systems.
Collapse
Affiliation(s)
- Il-Hwa Kim
- Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-ku, Seoul 136-713, Korea
| | | | | | | |
Collapse
|
39
|
Pinet S, Hamamé CM, Longcamp M, Vidal F, Alario FX. Response planning in word typing: Evidence for inhibition. Psychophysiology 2014; 52:524-31. [DOI: 10.1111/psyp.12373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/18/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Svetlana Pinet
- Laboratoire de Psychologie Cognitive; Aix-Marseille Université & CNRS; Marseille France
| | - Carlos M. Hamamé
- Laboratoire de Psychologie Cognitive; Aix-Marseille Université & CNRS; Marseille France
| | - Marieke Longcamp
- Laboratoire de Neurosciences Cognitives; Aix-Marseille Université & CNRS; Marseille France
| | - Franck Vidal
- Laboratoire de Neurosciences Cognitives; Aix-Marseille Université & CNRS; Marseille France
| | - F.-Xavier Alario
- Laboratoire de Psychologie Cognitive; Aix-Marseille Université & CNRS; Marseille France
| |
Collapse
|
40
|
Suntrup S, Teismann I, Wollbrink A, Winkels M, Warnecke T, Pantev C, Dziewas R. Pharyngeal electrical stimulation can modulate swallowing in cortical processing and behavior - magnetoencephalographic evidence. Neuroimage 2014; 104:117-24. [PMID: 25451471 DOI: 10.1016/j.neuroimage.2014.10.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/15/2014] [Accepted: 10/06/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The act of swallowing is a complex neuromuscular function that is processed in a distributed network involving cortical, subcortical and brainstem structures. Difficulty in swallowing arises from a variety of neurologic diseases for which therapeutic options are currently limited. Pharyngeal electrical stimulation (PES) is a novel intervention designed to promote plastic changes in the pharyngeal motor cortex to aid dysphagia rehabilitation. In the present study we evaluate the effect of PES on cortical swallowing network activity and associated changes in swallowing performance. METHODS In a randomized, crossover study design 10min of real (0.2-ms pulses, 5Hz, 280V, stimulation intensity at 75% of maximum tolerated threshold) or sham PES were delivered to 14 healthy volunteers in two separate sessions. Stimulation was delivered via a pair of bipolar ring electrodes mounted on an intraluminal catheter positioned in the pharynx. Before and after each intervention swallowing capacity (ml/s) was tested using a 150ml-water swallowing stress test. Event-related desynchronization (ERD) of cortical oscillatory activity during volitional swallowing was recorded applying whole-head magnetoencephalography before, immediately after and 45min past the intervention. RESULTS A prominent reduction of ERD in sensorimotor brain areas occurred in the alpha and beta frequency ranges immediately after real PES but not after sham stimulation (p<0.05) and had faded after 45min. Volume per swallow and swallowing capacity significantly increased following real stimulation only. CONCLUSION Attenuation of ERD following PES reflects stimulation-induced increased swallowing processing efficiency, which is associated with subtle changes in swallowing function in healthy subjects. Our data contribute evidence that swallowing network organization and behavior can effectively be modulated by PES.
Collapse
Affiliation(s)
- Sonja Suntrup
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany; Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149 Muenster, Germany.
| | - Inga Teismann
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Andreas Wollbrink
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149 Muenster, Germany
| | - Martin Winkels
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149 Muenster, Germany
| | - Tobias Warnecke
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Christo Pantev
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149 Muenster, Germany
| | - Rainer Dziewas
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| |
Collapse
|
41
|
Olfactory short-term memory encoding and maintenance — An event-related potential study. Neuroimage 2014; 98:475-86. [DOI: 10.1016/j.neuroimage.2014.04.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/21/2014] [Accepted: 04/30/2014] [Indexed: 11/17/2022] Open
|
42
|
Sugata H, Hirata M, Yanagisawa T, Shayne M, Matsushita K, Goto T, Yorifuji S, Yoshimine T. Alpha band functional connectivity correlates with the performance of brain-machine interfaces to decode real and imagined movements. Front Hum Neurosci 2014; 8:620. [PMID: 25152729 PMCID: PMC4126375 DOI: 10.3389/fnhum.2014.00620] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/23/2014] [Indexed: 11/13/2022] Open
Abstract
Brain signals recorded from the primary motor cortex (M1) are known to serve a significant role in coding the information brain–machine interfaces (BMIs) need to perform real and imagined movements, and also to form several functional networks with motor association areas. However, whether functional networks between M1 and other brain regions, such as these motor association areas, are related to the performance of BMIs is unclear. To examine the relationship between functional connectivity and performance of BMIs, we analyzed the correlation coefficient between performance of neural decoding and functional connectivity over the whole brain using magnetoencephalography. Ten healthy participants were instructed to execute or imagine three simple right upper limb movements. To decode the movement type, we extracted 40 virtual channels in the left M1 via the beam forming approach, and used them as a decoding feature. In addition, seed-based functional connectivities of activities in the alpha band during real and imagined movements were calculated using imaginary coherence. Seed voxels were set as the same virtual channels in M1. After calculating the imaginary coherence in individuals, the correlation coefficient between decoding accuracy and strength of imaginary coherence was calculated over the whole brain. The significant correlations were distributed mainly to motor association areas for both real and imagined movements. These regions largely overlapped with brain regions that had significant connectivity to M1. Our results suggest that use of the strength of functional connectivity between M1 and motor association areas has the potential to improve the performance of BMIs to perform real and imagined movements.
Collapse
Affiliation(s)
- Hisato Sugata
- Department of Neurosurgery, Osaka University Medical School Suita, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Medical School Suita, Japan ; Division of Functional Diagnostic Science, Graduate School of Medicine, Osaka University Suita, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Osaka University Medical School Suita, Japan ; Division of Functional Diagnostic Science, Graduate School of Medicine, Osaka University Suita, Japan ; ATR Computational Neuroscience Laboratories Kyoto, Japan
| | - Morris Shayne
- Department of Neurosurgery, Osaka University Medical School Suita, Japan
| | - Kojiro Matsushita
- Department of Neurosurgery, Osaka University Medical School Suita, Japan
| | - Tetsu Goto
- Department of Neurosurgery, Osaka University Medical School Suita, Japan ; Division of Functional Diagnostic Science, Graduate School of Medicine, Osaka University Suita, Japan
| | - Shiro Yorifuji
- Division of Functional Diagnostic Science, Graduate School of Medicine, Osaka University Suita, Japan
| | - Toshiki Yoshimine
- Department of Neurosurgery, Osaka University Medical School Suita, Japan
| |
Collapse
|
43
|
Jenson D, Bowers AL, Harkrider AW, Thornton D, Cuellar M, Saltuklaroglu T. Temporal dynamics of sensorimotor integration in speech perception and production: independent component analysis of EEG data. Front Psychol 2014; 5:656. [PMID: 25071633 PMCID: PMC4091311 DOI: 10.3389/fpsyg.2014.00656] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/08/2014] [Indexed: 11/17/2022] Open
Abstract
Activity in anterior sensorimotor regions is found in speech production and some perception tasks. Yet, how sensorimotor integration supports these functions is unclear due to a lack of data examining the timing of activity from these regions. Beta (~20 Hz) and alpha (~10 Hz) spectral power within the EEG μ rhythm are considered indices of motor and somatosensory activity, respectively. In the current study, perception conditions required discrimination (same/different) of syllables pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required covert and overt syllable productions and overt word production. Independent component analysis was performed on EEG data obtained during these conditions to (1) identify clusters of μ components common to all conditions and (2) examine real-time event-related spectral perturbations (ERSP) within alpha and beta bands. 17 and 15 out of 20 participants produced left and right μ-components, respectively, localized to precentral gyri. Discrimination conditions were characterized by significant (pFDR < 0.05) early alpha event-related synchronization (ERS) prior to and during stimulus presentation and later alpha event-related desynchronization (ERD) following stimulus offset. Beta ERD began early and gained strength across time. Differences were found between quiet and noisy discrimination conditions. Both overt syllable and word productions yielded similar alpha/beta ERD that began prior to production and was strongest during muscle activity. Findings during covert production were weaker than during overt production. One explanation for these findings is that μ-beta ERD indexes early predictive coding (e.g., internal modeling) and/or overt and covert attentional/motor processes. μ-alpha ERS may index inhibitory input to the premotor cortex from sensory regions prior to and during discrimination, while μ-alpha ERD may index sensory feedback during speech rehearsal and production.
Collapse
Affiliation(s)
- David Jenson
- Department of Audiology and Speech Pathology, University of Tennessee Health Science CenterKnoxville, TN, USA
| | - Andrew L. Bowers
- Department of Communication Disorders, University of ArkansasFayetteville, AR, USA
| | - Ashley W. Harkrider
- Department of Audiology and Speech Pathology, University of Tennessee Health Science CenterKnoxville, TN, USA
| | - David Thornton
- Department of Audiology and Speech Pathology, University of Tennessee Health Science CenterKnoxville, TN, USA
| | - Megan Cuellar
- Speech-Language Pathology Program, College of Health Sciences, Midwestern UniversityChicago, IL, USA
| | - Tim Saltuklaroglu
- Department of Audiology and Speech Pathology, University of Tennessee Health Science CenterKnoxville, TN, USA
| |
Collapse
|
44
|
Nakata H, Sakamoto K, Honda Y, Kakigi R. Somato-motor inhibitory processing in humans: evidence from neurophysiology and neuroimaging. J Physiol Sci 2014; 64:233-52. [PMID: 24859317 PMCID: PMC10717630 DOI: 10.1007/s12576-014-0320-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
Motor execution processing has been examined using an index of behavioral performance such as reaction times, kinetics, and kinematics. However, difficulties have been associated with the study of motor inhibitory processing because of the absence of actual behavioral performance. Therefore, non-invasive neurophysiological and neuroimaging methods including electroencephalography, magnetoencephalography, transcranial magnetic stimulation, and functional magnetic resonance imaging have been used to investigate neural processes in the central nervous system. We mainly reviewed research on somato-motor inhibitory processing based on data obtained by using these techniques, which can examine 'when', 'where, and 'how' motor inhibition occurs in the brain. Although to date a number of studies have used these techniques separately, few studies have utilized them in a comprehensive manner. In this review, we provide evidence that combining neurophysiological and neuroimaging methods should contribute to our understanding of how executive and inhibitory functions are implemented.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Health Sciences, Faculty of Human Life and Environment, Nara Women's University, Kitauoya-Nishi Machi, Nara, 630-8506, Japan,
| | | | | | | |
Collapse
|
45
|
Magon S, Chakravarty MM, Amann M, Weier K, Naegelin Y, Andelova M, Radue EW, Stippich C, Lerch JP, Kappos L, Sprenger T. Label-fusion-segmentation and deformation-based shape analysis of deep gray matter in multiple sclerosis: the impact of thalamic subnuclei on disability. Hum Brain Mapp 2014; 35:4193-203. [PMID: 24510715 DOI: 10.1002/hbm.22470] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 12/03/2013] [Accepted: 01/06/2014] [Indexed: 11/11/2022] Open
Abstract
Deep gray matter (DGM) atrophy has been reported in patients with multiple sclerosis (MS) already at early stages of the disease and progresses throughout the disease course. We studied DGM volume and shape and their relation to disability in a large cohort of clinically well-described MS patients using new subcortical segmentation methods and shape analysis. Structural 3D magnetic resonance images were acquired at 1.5 T in 118 patients with relapsing remitting MS. Subcortical structures were segmented using a multiatlas technique that relies on the generation of an automatically generated template library. To localize focal morphological changes, shape analysis was performed by estimating the vertex-wise displacements each subject must undergo to deform to a template. Multiple linear regression analysis showed that the volume of specific thalamic nuclei (the ventral nuclear complex) together with normalized gray matter volume explains a relatively large proportion of expanded disability status scale (EDSS) variability. The deformation-based displacement analysis confirmed the relation between thalamic shape and EDSS scores. Furthermore, white matter lesion volume was found to relate to the shape of all subcortical structures. This novel method for the analysis of subcortical volume and shape allows depicting specific contributions of DGM abnormalities to neurological deficits in MS patients. The results stress the importance of ventral thalamic nuclei in this respect.
Collapse
Affiliation(s)
- Stefano Magon
- Department of Neurology, University Hospital Basel, Switzerland; Medical Image Analysis Center, University Hospital Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The availability of new treatments able to modify the natural course of multiple sclerosis (MS) has generated interest in paraclinical measures to monitor disease evolution. Among these, neurophysiologic measures, mainly evoked potentials (EPs), are used in the functional assessment of central sensorimotor and cognitive networks affected by MS. EP abnormalities may reveal subclinical lesions, objectivate the involvement of sensory and motor pathways in the presence of vague disturbances, and provide indications of the demyelinating nature of the disease process. However, their diagnostic value is much lower than that of magnetic resonance imaging, and is more sensitive to brain and cervical spinal cord lesions. The application of EPs in assessing disease severity and monitoring the evolution of nervous damage is more promising, thanks to their good correlation with disability in cross-sectional and longitudinal studies, and potential use as paraclinical endpoints in clinical trials. Recent evidence indicates that EPs performed early in the disease may help to predict a worse future progression in the long term. If confirmed, these data suggest the possible usefulness of EPs in the early identification of patients who are more likely to develop future disability, thus requiring more frequent monitoring or being potential candidates for more aggressive disease-modifying treatments.
Collapse
Affiliation(s)
- Letizia Leocani
- Department of Neurology, Clinical Neurophysiology and Neurorehabilitation, University Hospital San Raffaele, Milan, Italy.
| | - Giancarlo Comi
- Department of Neurology, Clinical Neurophysiology and Neurorehabilitation, University Hospital San Raffaele, Milan, Italy
| |
Collapse
|
47
|
Yamanaka K, Nozaki D. Neural mechanisms underlying stop-and-restart difficulties: involvement of the motor and perceptual systems. PLoS One 2013; 8:e82272. [PMID: 24312411 PMCID: PMC3842301 DOI: 10.1371/journal.pone.0082272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022] Open
Abstract
The ability to suddenly stop a planned movement or a movement being performed and restart it after a short interval is an important mechanism that allows appropriate behavior in response to contextual or environmental changes. However, performing such stop-and-restart movements smoothly is difficult at times. We investigated performance (response time) of stop-and-restart movements using a go/stop/re-go task and found consistent stop-and-restart difficulties after short (∼100 ms) stop-to-restart intervals (SRSI), and an increased probability of difficulties after longer (>200 ms) SRSIs, suggesting that two different mechanisms underlie stop-and-restart difficulties. Next, we investigated motor evoked potentials (MEPs) in a moving muscle induced by transcranial magnetic stimulation during a go/stop/re-go task. In re-go trials with a short SRSI (100 ms), the MEP amplitude continued to decrease after the re-go-signal onset, indicating that stop-and-restart difficulties with short SRSIs might be associated with a neural mechanism in the human motor system, namely, stop-related suppression of corticomotor (CM) excitability. Finally, we recorded electroencephalogram (EEG) activity during a go/stop/re-go task and performed a single-trial-based EEG power and phase time-frequency analysis. Alpha-band EEG phase locking to re-go-signal, which was only observed in re-go trials with long SRSI (250 ms), weakened in the delayed re-go response trials. These EEG phase dynamics indicate an association between stop-and-restart difficulties with long SRSIs and a neural mechanism in the human perception system, namely, decreased probability of EEG phase locking to visual stimuli. In contrast, smooth stop-and-restart human movement can be achieved in re-go trials with sufficient SRSI (150–200 ms), because release of stop-related suppression and simultaneous counter-activation of CM excitability may occur as a single task without second re-go-signal perception. These results suggest that skilled motor behavior is subject to various constraints in not only motor, but also perceptual (and attentional), systems.
Collapse
Affiliation(s)
- Kentaro Yamanaka
- Graduate School of Human Life Sciences, Showa Women's University, Tokyo, Japan
- * E-mail:
| | - Daichi Nozaki
- Graduate School of Education, University of Tokyo, Tokyo, Japan
| |
Collapse
|
48
|
The relationship between self-awareness of attentional status, behavioral performance and oscillatory brain rhythms. PLoS One 2013; 8:e74962. [PMID: 24069368 PMCID: PMC3775752 DOI: 10.1371/journal.pone.0074962] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
High-level cognitive factors, including self-awareness, are believed to play an important role in human visual perception. The principal aim of this study was to determine whether oscillatory brain rhythms play a role in the neural processes involved in self-monitoring attentional status. To do so we measured cortical activity using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) while participants were asked to self-monitor their internal status, only initiating the presentation of a stimulus when they perceived their attentional focus to be maximal. We employed a hierarchical Bayesian method that uses fMRI results as soft-constrained spatial information to solve the MEG inverse problem, allowing us to estimate cortical currents in the order of millimeters and milliseconds. Our results show that, during self-monitoring of internal status, there was a sustained decrease in power within the 7-13 Hz (alpha) range in the rostral cingulate motor area (rCMA) on the human medial wall, beginning approximately 430 msec after the trial start (p < 0.05, FDR corrected). We also show that gamma-band power (41-47 Hz) within this area was positively correlated with task performance from 40–640 msec after the trial start (r = 0.71, p < 0.05). We conclude: (1) the rCMA is involved in processes governing self-monitoring of internal status; and (2) the qualitative differences between alpha and gamma activity are reflective of their different roles in self-monitoring internal states. We suggest that alpha suppression may reflect a strengthening of top-down interareal connections, while a positive correlation between gamma activity and task performance indicates that gamma may play an important role in guiding visuomotor behavior.
Collapse
|
49
|
Pfurtscheller G, Solis-Escalante T, Barry RJ, Klobassa DS, Neuper C, Müller-Putz GR. Brisk heart rate and EEG changes during execution and withholding of cue-paced foot motor imagery. Front Hum Neurosci 2013; 7:379. [PMID: 23908614 PMCID: PMC3726939 DOI: 10.3389/fnhum.2013.00379] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 07/01/2013] [Indexed: 11/30/2022] Open
Abstract
Cue-paced motor imagery (MI) is a frequently used mental strategy to realize a Brain-Computer Interface (BCI). Recently it has been reported that two MI tasks can be separated with a high accuracy within the first second after cue presentation onset. To investigate this phenomenon in detail we studied the dynamics of motor cortex beta oscillations in EEG and the changes in heart rate (HR) during visual cue-paced foot MI using a go (execution of imagery) vs. nogo (withholding of imagery) paradigm in 16 healthy subjects. Both execution and withholding of MI resulted in a brisk centrally localized beta event-related desynchronization (ERD) with a maximum at ~400 ms and a concomitant HR deceleration. We found that response patterns within the first second after stimulation differed between conditions. The ERD was significantly larger in go as compared to nogo. In contrast the HR deceleration was somewhat smaller and followed by an acceleration in go as compared to nogo. These findings suggest that the early beta ERD reflects visually induced preparatory activity in motor cortex networks. Both the early beta ERD and the HR deceleration are the result of automatic operating processes that are likely part of the orienting reflex (OR). Of interest, however, is that the preparatory cortical activity is strengthened and the HR modulated already within the first second after stimulation during the execution of MI. The subtraction of the HR time course of the nogo from the go condition revealed a slight HR acceleration in the first seconds most likely due to the increased mental effort associated with the imagery process.
Collapse
Affiliation(s)
- Gert Pfurtscheller
- Faculty of Computer Sciences, Laboratory of Brain-Computer Interfaced, Institute for Knowledge Discovery, Graz University of Technology Graz, Austria
| | | | | | | | | | | |
Collapse
|
50
|
Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity. Proc Natl Acad Sci U S A 2013; 110:13636-41. [PMID: 23898206 DOI: 10.1073/pnas.1221287110] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
fMRI is the foremost technique for noninvasive measurement of human brain function. However, its utility is limited by an incomplete understanding of the relationship between neuronal activity and the hemodynamic response. Though the primary peak of the hemodynamic response is modulated by neuronal activity, the origin of the typically negative poststimulus signal is poorly understood and its amplitude assumed to covary with the primary response. We use simultaneous recordings of EEG with blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF) fMRI during unilateral median nerve stimulation to show that the poststimulus fMRI signal is neuronally modulated. We observe high spatial agreement between concurrent BOLD and CBF responses to median nerve stimulation, with primary signal increases in contralateral sensorimotor cortex and primary signal decreases in ipsilateral sensorimotor cortex. During the poststimulus period, the amplitude and directionality (positive/negative) of the BOLD signal in both contralateral and ipsilateral sensorimotor cortex depends on the poststimulus synchrony of 8-13 Hz EEG neuronal activity, which is often considered to reflect cortical inhibition, along with concordant changes in CBF and metabolism. Therefore we present conclusive evidence that the fMRI time course represents a hemodynamic signature of at least two distinct temporal phases of neuronal activity, substantially improving understanding of the origin of the BOLD response and increasing the potential measurements of brain function provided by fMRI. We suggest that the poststimulus EEG and fMRI responses may be required for the resetting of the entire sensory network to enable a return to resting-state activity levels.
Collapse
|