1
|
Hu B, Wen J. Electric field-driven dual-rotation in molecular motors: insights from molecular dynamics simulations. Chem Commun (Camb) 2025; 61:5794-5797. [PMID: 40125715 DOI: 10.1039/d4cc01408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Understanding the interaction between molecular motors and their environment is crucial for their practical applications. In this study, we utilized classical molecular dynamics simulations to investigate the dynamic behavior of molecular motors in solvents and their response to external electric fields. By modulating the external electric field in conjunction with the charge state of the molecular motors, the rotational direction of the molecular motors could be tuned.
Collapse
Affiliation(s)
- Bo Hu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jin Wen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Deng Y, Long G, Zhang Y, Zhao W, Zhou G, Feringa BL, Chen J. Photo-responsive functional materials based on light-driven molecular motors. LIGHT, SCIENCE & APPLICATIONS 2024; 13:63. [PMID: 38429259 PMCID: PMC10907585 DOI: 10.1038/s41377-024-01391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
In the past two decades, the research and development of light-triggered molecular machines have mainly focused on developing molecular devices at the nanoscale. A key scientific issue in the field is how to amplify the controlled motion of molecules at the nanoscale along multiple length scales, such as the mesoscopic or the macroscopic scale, or in a more practical perspective, how to convert molecular motion into changes of properties of a macroscopic material. Light-driven molecular motors are able to perform repetitive unidirectional rotation upon irradiation, which offers unique opportunities for responsive macroscopic systems. With several reviews that focus on the design, synthesis and operation of the motors at the nanoscale, photo-responsive macroscopic materials based on light-driven molecular motors have not been comprehensively summarized. In the present review, we first discuss the strategy of confining absolute molecular rotation into relative rotation by grafting motors on surfaces. Secondly, examples of self-assemble motors in supramolecular polymers with high internal order are illustrated. Moreover, we will focus on building of motors in a covalently linked system such as polymeric gels and polymeric liquid crystals to generate complex responsive functions. Finally, a perspective toward future developments and opportunities is given. This review helps us getting a more and more clear picture and understanding on how complex movement can be programmed in light-responsive systems and how man-made adaptive materials can be invented, which can serve as an important guideline for further design of complex and advanced responsive materials.
Collapse
Affiliation(s)
- Yanping Deng
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guiying Long
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Yang Zhang
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Wei Zhao
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guofu Zhou
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Ben L Feringa
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| | - Jiawen Chen
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Sahoo R, Chakrabarti R. Structure and dynamics of an active polymer chain inside a nanochannel grafted with polymers. SOFT MATTER 2023; 19:5978-5988. [PMID: 37497754 DOI: 10.1039/d3sm00618b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
We use computer simulations to investigate the complex dynamics of a polymer, made of active Brownian particles, inside a channel grafted internally with passive polymer chains. Our simulations reveal that this probe-polymer, if passive, exhibits a compact structure when its interaction is repulsive with the grafted chains as it tends to stay within the hollow space created along the axis of the channel. On increasing the attractive interaction, the passive probe-polymer is pulled towards the grafted polymeric region and adopts an extended structure. By contrast, switching on the activity helps the probe-polymer to escape from the local traps caused by the sticky grafted chains. The interplay between the activity of the probe-polymer and its sticky interaction with the grafted chains results in shrinking, followed by swelling as the activity is increased. To elucidate the dynamics we compute the mean square displacement (MSD) of the center of mass of the probe-polymer, which increases monotonically with activity and displays superdiffusive behavior at an intermediate time and enhanced diffusion at a long time period. In addition, compared with the attractive interaction, the active probe-polymer shows faster dynamics when the interaction is repulsive to the grafted polymers. We believe that our current study will provide insights into the structural changes and dynamics of active polymers in heterogeneous media and will be useful in designing polymer-based drug delivery vehicles.
Collapse
Affiliation(s)
- Rajiblochan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
4
|
Akter M, Keya JJ, Kayano K, Kabir AMR, Inoue D, Hess H, Sada K, Kuzuya A, Asanuma H, Kakugo A. Cooperative cargo transportation by a swarm of molecular machines. Sci Robot 2022; 7:eabm0677. [PMID: 35442703 DOI: 10.1126/scirobotics.abm0677] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cooperation is a strategy that has been adopted by groups of organisms to execute complex tasks more efficiently than single entities. Cooperation increases the robustness and flexibility of the working groups and permits sharing of the workload among individuals. However, the utilization of this strategy in artificial systems at the molecular level, which could enable substantial advances in microrobotics and nanotechnology, remains highly challenging. Here, we demonstrate molecular transportation through the cooperative action of a large number of artificial molecular machines, photoresponsive DNA-conjugated microtubules driven by kinesin motor proteins. Mechanical communication via conjugated photoresponsive DNA enables these microtubules to organize into groups upon photoirradiation. The groups of transporters load and transport cargo, and cargo unloading is achieved by dissociating the groups into single microtubules. The group formation permits the loading and transport of cargoes with larger sizes and in larger numbers over long distances compared with single transporters. We also demonstrate that cargo can be collected at user-determined locations defined by ultraviolet light exposure. This work demonstrates cooperative task performance by molecular machines, which will help to construct molecular robots with advanced functionalities in the future.
Collapse
Affiliation(s)
- M Akter
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - J J Keya
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - K Kayano
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - A M R Kabir
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - D Inoue
- Faculty of Design, Kyushu University, Fukuoka 815-8540, Japan
| | - H Hess
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - K Sada
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - A Kuzuya
- Department of Chemistry and Materials Engineering, Kansai University, Osaka 564-8680, Japan
| | - H Asanuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - A Kakugo
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
5
|
Inaba H, Matsuura K. Modulation of Microtubule Properties and Functions by Encapsulation of Nanomaterials Using a Tau-Derived Peptide. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| |
Collapse
|
6
|
Castagnola E, Garg R, Rastogi SK, Cohen-Karni T, Cui XT. 3D fuzzy graphene microelectrode array for dopamine sensing at sub-cellular spatial resolution. Biosens Bioelectron 2021; 191:113440. [PMID: 34171734 DOI: 10.1016/j.bios.2021.113440] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/28/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
The development of a high sensitivity real-time sensor for multi-site detection of dopamine (DA) with high spatial and temporal resolution is of fundamental importance to study the complex spatial and temporal pattern of DA dynamics in the brain, thus improving the understanding and treatments of neurological and neuropsychiatric disorders. In response to this need, here we present high surface area out-of-plane grown three-dimensional (3D) fuzzy graphene (3DFG) microelectrode arrays (MEAs) for highly selective, sensitive, and stable DA electrochemical sensing. 3DFG microelectrodes present a remarkable sensitivity to DA (2.12 ± 0.05 nA/nM, with LOD of 364.44 ± 8.65 pM), the highest reported for nanocarbon MEAs using Fast Scan Cyclic Voltammetry (FSCV). The high surface area of 3DFG allows for miniaturization of electrode down to 2 × 2 μm2, without compromising the electrochemical performance. Moreover, 3DFG MEAs are electrochemically stable under 7.2 million scans of continuous FSCV cycling, present exceptional selectivity over the most common interferents in vitro with minimum fouling by electrochemical byproducts and can discriminate DA and serotonin (5-HT) in response to the injection of their 50:50 mixture. These results highlight the potential of 3DFG MEAs as a promising platform for FSCV based multi-site detection of DA with high sensitivity, selectivity, and spatial resolution.
Collapse
Affiliation(s)
- Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260 Pittsburgh, PA, USA
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Sahil K Rastogi
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Pittsburgh, PA, 15219-3110, USA.
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260 Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Pittsburgh, PA, 15219-3110, USA; Center for Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, Pittsburgh, PA 15213, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
7
|
McGlynn E, Nabaei V, Ren E, Galeote‐Checa G, Das R, Curia G, Heidari H. The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002693. [PMID: 34026431 PMCID: PMC8132070 DOI: 10.1002/advs.202002693] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/15/2021] [Indexed: 05/04/2023]
Abstract
Neurological diseases are a prevalent cause of global mortality and are of growing concern when considering an ageing global population. Traditional treatments are accompanied by serious side effects including repeated treatment sessions, invasive surgeries, or infections. For example, in the case of deep brain stimulation, large, stiff, and battery powered neural probes recruit thousands of neurons with each pulse, and can invoke a vigorous immune response. This paper presents challenges in engineering and neuroscience in developing miniaturized and biointegrated alternatives, in the form of microelectrode probes. Progress in design and topology of neural implants has shifted the goal post toward highly specific recording and stimulation, targeting small groups of neurons and reducing the foreign body response with biomimetic design principles. Implantable device design recommendations, fabrication techniques, and clinical evaluation of the impact flexible, integrated probes will have on the treatment of neurological disorders are provided in this report. The choice of biocompatible material dictates fabrication techniques as novel methods reduce the complexity of manufacture. Wireless power, the final hurdle to truly implantable neural interfaces, is discussed. These aspects are the driving force behind continued research: significant breakthroughs in any one of these areas will revolutionize the treatment of neurological disorders.
Collapse
Affiliation(s)
- Eve McGlynn
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Vahid Nabaei
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Elisa Ren
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Gabriel Galeote‐Checa
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Rupam Das
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Giulia Curia
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Hadi Heidari
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| |
Collapse
|
8
|
Mestre R, Patiño T, Sánchez S. Biohybrid robotics: From the nanoscale to the macroscale. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1703. [PMID: 33533200 DOI: 10.1002/wnan.1703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/17/2020] [Accepted: 01/10/2021] [Indexed: 12/11/2022]
Abstract
Biohybrid robotics is a field in which biological entities are combined with artificial materials in order to obtain improved performance or features that are difficult to mimic with hand-made materials. Three main level of integration can be envisioned depending on the complexity of the biological entity, ranging from the nanoscale to the macroscale. At the nanoscale, enzymes that catalyze biocompatible reactions can be used as power sources for self-propelled nanoparticles of different geometries and compositions, obtaining rather interesting active matter systems that acquire importance in the biomedical field as drug delivery systems. At the microscale, single enzymes are substituted by complete cells, such as bacteria or spermatozoa, whose self-propelling capabilities can be used to transport cargo and can also be used as drug delivery systems, for in vitro fertilization practices or for biofilm removal. Finally, at the macroscale, the combinations of millions of cells forming tissues can be used to power biorobotic devices or bioactuators by using muscle cells. Both cardiac and skeletal muscle tissue have been part of remarkable examples of untethered biorobots that can crawl or swim due to the contractions of the tissue and current developments aim at the integration of several types of tissue to obtain more realistic biomimetic devices, which could lead to the next generation of hybrid robotics. Tethered bioactuators, however, result in excellent candidates for tissue models for drug screening purposes or the study of muscle myopathies due to their three-dimensional architecture. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Rafael Mestre
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Tania Patiño
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Chemistry Department, University of Rome, Rome, Italy
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| |
Collapse
|
9
|
Kalra AP, Eakins BB, Patel SD, Ciniero G, Rezania V, Shankar K, Tuszynski JA. All Wired Up: An Exploration of the Electrical Properties of Microtubules and Tubulin. ACS NANO 2020; 14:16301-16320. [PMID: 33213135 DOI: 10.1021/acsnano.0c06945] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microtubules are hollow, cylindrical polymers of the protein α, β tubulin, that interact mechanochemically with a variety of macromolecules. Due to their mechanically robust nature, microtubules have gained attention as tracks for precisely directed transport of nanomaterials within lab-on-a-chip devices. Primarily due to the unusually negative tail-like C-termini of tubulin, recent work demonstrates that these biopolymers are also involved in a broad spectrum of intracellular electrical signaling. Microtubules and their electrostatic properties are discussed in this Review, followed by an evaluation of how these biopolymers respond mechanically to electrical stimuli, through microtubule migration, electrorotation and C-termini conformation changes. Literature focusing on how microtubules act as nanowires capable of intracellular ionic transport, charge storage, and ionic signal amplification is reviewed, illustrating how these biopolymers attenuate ionic movement in response to electrical stimuli. The Review ends with a discussion on the important questions, challenges, and future opportunities for intracellular microtubule-based electrical signaling.
Collapse
Affiliation(s)
- Aarat P Kalra
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2M9, Canada
| | - Boden B Eakins
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Sahil D Patel
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Gloria Ciniero
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Torino 10129, Italy
| | - Vahid Rezania
- Department of Physical Sciences, MacEwan University, Edmonton, Alberta T5J 4S2, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2M9, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Torino 10129, Italy
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
10
|
Zhou Y, Yu S, Shang J, Chen Y, Wang Q, Liu X, Wang F. Construction of an Exonuclease III-Propelled Integrated DNAzyme Amplifier for Highly Efficient microRNA Detection and Intracellular Imaging with Ultralow Background. Anal Chem 2020; 92:15069-15078. [DOI: 10.1021/acs.analchem.0c03073] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yangjie Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shanshan Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qing Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
11
|
Bassir Kazeruni NM, Rodriguez JB, Saper G, Hess H. Microtubule Detachment in Gliding Motility Assays Limits the Performance of Kinesin-Driven Molecular Shuttles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7901-7907. [PMID: 32551689 DOI: 10.1021/acs.langmuir.0c01002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The creation of complex active nanosystems integrating cytoskeletal filaments propelled by surface-adhered motor proteins often relies on the filaments' ability to glide over up to meter-long distances. While theoretical considerations support this ability, we show that microtubule detachment (either spontaneous or triggered by a microtubule crossing event) is a non-negligible phenomenon that has been overlooked until now. The average gliding distance before spontaneous detachment was measured to be 30 ± 10 mm for a functional kinesin-1 density of 500 μm-2 and 9 ± 4 mm for a functional kinesin-1 density of 100 μm-2 at 1 mM ATP. Even microtubules longer than 3 μm detached, suggesting that spontaneous detachment is not caused by the stochastic absence of motors or their stochastic release due to a limited run length.
Collapse
Affiliation(s)
- Neda M Bassir Kazeruni
- Columbia University, 351L Engineering Terrace, MC 8904 1210 Amsterdam Avenue, New York, New York 10027, United States
| | - Juan B Rodriguez
- Columbia University, 351L Engineering Terrace, MC 8904 1210 Amsterdam Avenue, New York, New York 10027, United States
| | - Gadiel Saper
- Columbia University, 351L Engineering Terrace, MC 8904 1210 Amsterdam Avenue, New York, New York 10027, United States
| | - Henry Hess
- Columbia University, 351L Engineering Terrace, MC 8904 1210 Amsterdam Avenue, New York, New York 10027, United States
| |
Collapse
|
12
|
Inaba H, Yamada M, Rashid MR, Kabir AMR, Kakugo A, Sada K, Matsuura K. Magnetic Force-Induced Alignment of Microtubules by Encapsulation of CoPt Nanoparticles Using a Tau-Derived Peptide. NANO LETTERS 2020; 20:5251-5258. [PMID: 32525681 DOI: 10.1021/acs.nanolett.0c01573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Construction of magnetotactic materials is a significant challenge in nanotechnology applications such as nanodevices and nanotransportation. Artificial magnetotactic materials can be designed from magnetotactic bacteria because these bacteria use magnetic nanoparticles for aligning with and moving within magnetic fields. Microtubules are attractive scaffolds to construct magnetotactic materials because of their intrinsic motility. Nonetheless, it is challenging to magnetically control their orientation while retaining their motility by conjugating magnetic nanoparticles on their outer surface. Here we solve the issue by encapsulating magnetic cobalt-platinum nanoparticles inside microtubules using our developed Tau-derived peptide that binds to their internal pockets. The in situ growth of cobalt-platinum nanoparticles resulted in the formation of a linear-chain assembly of nanoparticles inside the microtubules. The magnetic microtubules significantly aligned with a high order parameter (0.71) along the weak magnetic field (0.37 T) and showed increased motility. This work provides a new concept for designing magnetotactic materials.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| | - Mayuki Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| | - Mst Rubaya Rashid
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Arif Md Rashedul Kabir
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Akira Kakugo
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| |
Collapse
|
13
|
Translation of the long-term fundamental studies on viral DNA packaging motors into nanotechnology and nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1103-1129. [DOI: 10.1007/s11427-020-1752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
14
|
Inaba H, Nagata M, Miyake KJ, Kabir AMR, Kakugo A, Sada K, Matsuura K. Cyclic Tau-derived peptides for stabilization of microtubules. Polym J 2020. [DOI: 10.1038/s41428-020-0356-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Keya JJ, Kabir AMR, Kakugo A. Synchronous operation of biomolecular engines. Biophys Rev 2020; 12:401-409. [PMID: 32125657 PMCID: PMC7242543 DOI: 10.1007/s12551-020-00651-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022] Open
Abstract
Biomolecular motor systems are the smallest natural machines with an ability to convert chemical energy into mechanical work with remarkably high efficiency. Such attractive features enabled biomolecular motors to become classic tools in soft matter research over the past decade. For designing suitably engineered biomimetic systems, the biomolecular motors can potentially be used as molecular engines that can transform energy and ensure great advantages for the construction of bio-nanodevices and molecular robots. From the optimization of their prolonged lifetime to coordinate them into highly complex and ordered structures, enormous efforts have been devoted to make them useful in the synthetic environment. Synchronous operation of the biomolecular engines is one of the key criteria to coordinate them into certain different patterns, which depends on the local interaction of biomolecular motors. Utilizing chemical and physical stimuli, synchronization of biomolecular motor systems has become possible, which allows them to coordinate into different higher ordered patterns with different modes of functionality. Recently, programmed synchronous operation of the biomolecular engines has also been demonstrated, using a smart biomaterial to build up swarms reminiscent of nature. Here, we review the recent progress in the synchronized operation of biomolecular motors in engineered systems to explicitly program their interaction and further their applications. Such developments in the coordination of biomolecular motors have opened a broad way to explore the construction of future autonomous molecular machines and robots based on synchronization of biomolecular engines.
Collapse
Affiliation(s)
- Jakia Jannat Keya
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | | | - Akira Kakugo
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
| |
Collapse
|
16
|
Chattaraj KG, Paul R, Paul S. Switching of Self-Assembly to Solvent-Assisted Assembly of Molecular Motor: Unveiling the Mechanisms of Dynamic Control on Solvent Exchange. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1773-1792. [PMID: 32024360 DOI: 10.1021/acs.langmuir.9b03718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Natural biological molecular motors are capable of performing several biological functions, such as fuel production, mobility, transport, and many other dynamic features. Inspired by these biological motors, scientists effectively synthesized artificial molecular motors to mimic several biological functionalities. Several molecular systems, from sensitive materials to molecular motors, are essential for controlling dynamic processes in larger assemblies. In this work, we discuss the self-assembly of molecular motors in water and how this self-assembly switches to the solvent-assisted assembly as solvent changes to a water-THF (tetrahydrofuran) mixture. We present an elaborate description of the morphological changes of molecular motor assemblies from pure water to a water-THF mixture to pure THF. Under the influence of THF solvent, molecular motors form an assembled structure by taking a sufficient number of THF molecules in between themselves, resulting in an assembled molecular motor with a softened core. So, molecular motor assembly swells in the water-THF mixture, and in pure water, it shrinks. This solvent-assisted assembled structure has a specific shape. We have confirmed this assembly as a solvent-assisted assembly with the help of molecular dynamics simulation and quantum chemical analysis. Molecular motor-THF and THF-THF interactions are the main responsible interactions for solvent-assisted assembly over self-assembly. This work is a perfect example of conversion between self-assembly (shrinking) and solvent-assisted assembly (swelling) of molecular motors by adding THF into water or vice versa. A spectacular check on the shrinking and swelling by merely altering solvents illustrates so many intriguing possibilities for an alteration of dynamic processes at the nanoscale.
Collapse
Affiliation(s)
| | - Rabindranath Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| | - Sandip Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| |
Collapse
|
17
|
Lee S, Higuchi H. 3D rotational motion of an endocytic vesicle on a complex microtubule network in a living cell. BIOMEDICAL OPTICS EXPRESS 2019; 10:6611-6624. [PMID: 31853420 PMCID: PMC6913383 DOI: 10.1364/boe.10.006611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 05/24/2023]
Abstract
The transport dynamics of endocytic vesicles in a living cell contains essential biomedical information. Although the movement mechanism of a vesicle by motor proteins has been revealed, understanding the precise movement of vesicles on the cytoskeleton in a living cell has been considered challenging, due to the complex 3D network of cytoskeletons. Here, we specify the shape of the 3D interaction between the vesicle and microtubule, based on the theoretically estimated location of the microtubule and the vesicle trajectory data acquired at high spatial and temporal precision. We detected that vesicles showed more frequent direction changes with either in very acute or in obtuse angles than right angles, on similar time scales in a microtubule network. Interestingly, when a vesicle interacted with a relatively longer (> 400 nm) microtubule filament, rotational movement along the axis of the microtubule was frequently observed. Our results are expected to give in-depth insight into understanding the actual 3D interactions between the intracellular molecule and complex cytoskeletal network.
Collapse
|
18
|
Farhana TI, Nakagawa T, Ohara S, Shintaku H, Kotera H, Yokokawa R. Spatial Patterning of Kinesin-1 and Dynein Motor Proteins in an In Vitro Assay using Aqueous Two-Phase Systems (ATPS). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13003-13010. [PMID: 31510745 DOI: 10.1021/acs.langmuir.9b01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cooperativity of motor proteins is essential for intracellular transport. Although their motion is unidirectional, they often cause bidirectional movement by different types of motors as seen in organelles. However, in vitro assessments of such cellular functions are still inadequate owing to the experimental limitations in precisely patterning multiple motors. Here, we present an approach to immobilize two motor proteins, kinesin-1 and dynein, using the aqueous two-phase system (ATPS) made of poly(ethylene glycol) and dextran polymers. The negligible influence of polymer solutions on the attachment and velocity of motor proteins ensures the compatibility of using ATPS as the patterning technique. The selective fixation of kinesin and dynein was assessed using polarity-marked microtubules (PMMTs). Our experimental results show that on a patterned kinesin surface, 72% of PMMTs display minus-end leading motility, while on a dynein surface, 79% of PMMTs display plus-end leading motility. This work offers a universal and biocompatible method to pattern motor proteins of different classes at the nanoscale, providing a new route to study different cellular functions performed by molecular motors such as the formation of mitotic spindles.
Collapse
Affiliation(s)
- Tamanna Ishrat Farhana
- Department of Micro Engineering , Kyoto University , Kyoto Daigaku-Katsura , Nishikyo-ku, Kyoto 615-8540 , Japan
| | - Tomohiro Nakagawa
- Department of Micro Engineering , Kyoto University , Kyoto Daigaku-Katsura , Nishikyo-ku, Kyoto 615-8540 , Japan
| | - Shumpei Ohara
- Department of Micro Engineering , Kyoto University , Kyoto Daigaku-Katsura , Nishikyo-ku, Kyoto 615-8540 , Japan
| | - Hirofumi Shintaku
- Cluster for Pioneering Research, RIKEN , 2-1, Hirosawa , Wako , Saitama 351-0198 , Japan
| | | | - Ryuji Yokokawa
- Department of Micro Engineering , Kyoto University , Kyoto Daigaku-Katsura , Nishikyo-ku, Kyoto 615-8540 , Japan
| |
Collapse
|
19
|
Affiliation(s)
- Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
20
|
Andorfer R, Alper JD. From isolated structures to continuous networks: A categorization of cytoskeleton-based motile engineered biological microstructures. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1553. [PMID: 30740918 PMCID: PMC6881777 DOI: 10.1002/wnan.1553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 11/06/2022]
Abstract
As technology at the small scale is advancing, motile engineered microstructures are becoming useful in drug delivery, biomedicine, and lab-on-a-chip devices. However, traditional engineering methods and materials can be inefficient or functionally inadequate for small-scale applications. Increasingly, researchers are turning to the biology of the cytoskeleton, including microtubules, actin filaments, kinesins, dyneins, myosins, and associated proteins, for both inspiration and solutions. They are engineering structures with components that range from being entirely biological to being entirely synthetic mimics of biology and on scales that range from isotropic continuous networks to single isolated structures. Motile biological microstructures trace their origins from the development of assays used to study the cytoskeleton to the array of structures currently available today. We define 12 types of motile biological microstructures, based on four categories: entirely biological, modular, hybrid, and synthetic, and three scales: networks, clusters, and isolated structures. We highlight some key examples, the unique functionalities, and the potential applications of each microstructure type, and we summarize the quantitative models that enable engineering them. By categorizing the diversity of motile biological microstructures in this way, we aim to establish a framework to classify these structures, define the gaps in current research, and spur ideas to fill those gaps. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Rachel Andorfer
- Department of Bioengineering, Clemson University, Clemson, South Carolina
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina
| | - Joshua D. Alper
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina
- Department of Biological Sciences, Clemson University, Clemson, South Carolina
- Eukaryotic Pathogen Innovations Center, Clemson University, Clemson, South Carolina
| |
Collapse
|
21
|
Martinez H, VanDelinder V, Imam ZI, Spoerke ED, Bachand GD. How non-bonding domains affect the active assembly of microtubule spools. NANOSCALE 2019; 11:11562-11568. [PMID: 31168545 DOI: 10.1039/c9nr02059d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Structural defects can determine and influence various properties of materials, and many technologies rely on the manipulation of defects (e.g., semiconductor industries). In biological systems, management of defects/errors (e.g. DNA repair) is critical to an organism's survival, which has inspired the design of artificial nanomachines that mimic nature's ability to detect defects and repair damage. Biological motors have captured considerable attention in developing such capabilities due to their ability to convert energy into directed motion in response to environmental stimuli, which maximizes their ability for detection and repair. The objective of the present study was to develop an understanding of how the presence of non-bonding domains, here considered as a "defect", in microtubule (MT) building blocks affect the kinesin-driven, active assembly of MT spools. The assembly/joining of micron-scale bonding (i.e., biotin-containing) and non-bonding (i.e., no biotin) MTs resulted in segmented MT building blocks consisting of alternating bonding and non-bonding domains. Here, the introduction of these MT building blocks into a kinesin gliding motility assay along with streptavidin-coated quantum dots resulted in the active assembly of spools with altered morphology but retained functionality. Moreover, it was noted that non-bonding domains were autonomously and preferentially released from the spools over time, representing a mechanism by which defects may be removed from these structures. Overall, our findings demonstrate that this active assembly system has an intrinsic ability for quality control, which can be potentially expanded to a wide range of applications such as self-regulation and healing of active materials.
Collapse
Affiliation(s)
- Haneen Martinez
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, USA.
| | | | | | | | | |
Collapse
|
22
|
Amrutha AS, Sunil Kumar KR, Tamaoki N. Azobenzene‐Based Photoswitches Facilitating Reversible Regulation of Kinesin and Myosin Motor Systems for Nanotechnological Applications. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ammathnadu S. Amrutha
- Research Institute for Electronic ScienceHokkaido University Kita 20, Nishi 10, Kita-ku, Sapporo Hokkaido 001-0020 Japan
| | - K. R. Sunil Kumar
- Department of Chemistry and BiotechnologySchool of EngineeringThe University of Tokyo 7-3-1 Hongo, Bunkyo-Ku Tokyo 113-8656 Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic ScienceHokkaido University Kita 20, Nishi 10, Kita-ku, Sapporo Hokkaido 001-0020 Japan
| |
Collapse
|
23
|
Dey KK. Dynamic Coupling at Low Reynolds Number. Angew Chem Int Ed Engl 2019; 58:2208-2228. [DOI: 10.1002/anie.201804599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Krishna Kanti Dey
- Discipline of PhysicsIndian Institute of Technology Gandhinagar Gandhinagar Gujarat 382355 India
| |
Collapse
|
24
|
Nagel O, Frey M, Gerhardt M, Beta C. Harnessing Motile Amoeboid Cells as Trucks for Microtransport and -Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801242. [PMID: 30775225 PMCID: PMC6364505 DOI: 10.1002/advs.201801242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Cell-driven microtransport is one of the most prominent applications in the emerging field of biohybrid systems. While bacterial cells have been successfully employed to drive the swimming motion of micrometer-sized cargo particles, the transport capacities of motile adherent cells remain largely unexplored. Here, it is demonstrated that motile amoeboid cells can act as efficient and versatile trucks to transport microcargo. When incubated together with microparticles, cells of the social amoeba Dictyostelium discoideum readily pick up and move the cargo particles. Relying on the unspecific adhesive properties of the amoeba, a wide range of different cargo materials can be used. The cell-driven transport can be directionally guided based on the chemotactic responses of amoeba to chemoattractant gradients. On the one hand, the cargo can be assembled into clusters in a self-organized fashion, relying on the developmentally induced chemotactic aggregation of cells. On the other hand, chemoattractant gradients can be externally imposed to guide the cellular microtrucks to a desired location. Finally, larger cargo particles of different shapes that exceed the size of a single cell by more than an order of magnitude, can also be transported by the collective effort of large numbers of motile cells.
Collapse
Affiliation(s)
- Oliver Nagel
- Institute of Physics and AstronomyUniversity of PotsdamKarl‐Liebknecht‐Str. 24/2514476PotsdamGermany
| | - Manuel Frey
- Institute of Physics and AstronomyUniversity of PotsdamKarl‐Liebknecht‐Str. 24/2514476PotsdamGermany
| | - Matthias Gerhardt
- Institute of Physics and AstronomyUniversity of PotsdamKarl‐Liebknecht‐Str. 24/2514476PotsdamGermany
| | - Carsten Beta
- Institute of Physics and AstronomyUniversity of PotsdamKarl‐Liebknecht‐Str. 24/2514476PotsdamGermany
| |
Collapse
|
25
|
Akay A, Hess H. Deep Learning: Current and Emerging Applications in Medicine and Technology. IEEE J Biomed Health Inform 2019; 23:906-920. [PMID: 30676989 DOI: 10.1109/jbhi.2019.2894713] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Machine learning is enabling researchers to analyze and understand increasingly complex physical and biological phenomena in traditional fields such as biology, medicine, and engineering and emerging fields like synthetic biology, automated chemical synthesis, and biomanufacturing. These fields require new paradigms toward understanding increasingly complex data and converting such data into medical products and services for patients. The move toward deep learning and complex modeling is an attempt to bridge the gap between acquiring massive quantities of complex data, and converting such data into practical insights. Here, we provide an overview of the field of machine learning, its current applications and needs in traditional and emerging fields, and discuss an illustrative attempt at using deep learning to understand swarm behavior of molecular shuttles.
Collapse
|
26
|
Affiliation(s)
- Krishna Kanti Dey
- Discipline of Physics; Indian Institute of Technology Gandhinagar; Gandhinagar Gujarat 382355 Indien
| |
Collapse
|
27
|
Inaba H, Yamamoto T, Iwasaki T, Kabir AMR, Kakugo A, Sada K, Matsuura K. Stabilization of microtubules by encapsulation of the GFP using a Tau-derived peptide. Chem Commun (Camb) 2019; 55:9072-9075. [DOI: 10.1039/c9cc04345d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Encapsulation of the GFP inside microtubules by using a Tau-derived peptide increased the stability, rigidity, and velocity of microtubules.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology
- Graduate School of Engineering, Tottori University
- Tottori 680-8552
- Japan
- Centre for Research on Green Sustainable Chemistry
| | - Takahisa Yamamoto
- Department of Chemistry and Biotechnology
- Graduate School of Engineering, Tottori University
- Tottori 680-8552
- Japan
| | - Takashi Iwasaki
- Department of Bioresources Science, Graduate School of Agricultural Sciences
- Tottori University
- Tottori 680-8553
- Japan
| | | | - Akira Kakugo
- Faculty of Science, Hokkaido University
- Sapporo 060-0810
- Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University
- Sapporo 060-0810
| | - Kazuki Sada
- Faculty of Science, Hokkaido University
- Sapporo 060-0810
- Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University
- Sapporo 060-0810
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology
- Graduate School of Engineering, Tottori University
- Tottori 680-8552
- Japan
- Centre for Research on Green Sustainable Chemistry
| |
Collapse
|
28
|
Abstract
Biomolecular motors, such as the motor protein kinesin, can be used as off-the-shelf components to power hybrid nanosystems. These hybrid systems combine elements from the biological and synthetic toolbox of the nanoengineer and can be used to explore the applications and design principles of active nanosystems. Efforts to advance nanoscale engineering benefit greatly from biological and biophysical research into the operating principles of motor proteins and their biological roles. In return, the process of creating in vitro systems outside of the context of biology can lead to an improved understanding of the physical constraints creating the fitness landscape explored by evolution. However, our main focus is a holistic understanding of the engineering principles applying to systems integrating molecular motors in general. To advance this goal, we and other researchers have designed biomolecular motor-powered nanodevices, which sense, compute, and actuate. In addition to demonstrating that biological solutions can be mimicked in vitro, these devices often demonstrate new paradigms without parallels in current technology. Long-term trends in technology toward the deployment of ever smaller and more numerous motors and computers give us confidence that our work will become increasingly relevant. Here, our discussion aims to step back and look at the big picture. From our perspective, energy efficiency is a key and underappreciated metric in the design of synthetic motors. On the basis of an analogy to ecological principles, we submit that practical molecular motors have to have energy conversion efficiencies of more than 10%, a threshold only exceeded by motor proteins. We also believe that motor and system lifetime is a critical metric and an important topic of investigation. Related questions are if future molecular motors, by necessity, will resemble biomolecular motors in their softness and fragility and have to conform to the "universal performance characteristics of motors", linking the maximum force and mass of any motor, identified by Marden and Allen. The utilization of molecular motors for computing devices emphasizes the interesting relationship among the conversion of energy, extraction of work, and production of information. Our recent work touches upon these topics and discusses molecular clocks as well as a Landauer limit for robotics. What is on the horizon? Just as photovoltaics took advantage of progress in semiconductor fabrication to become commercially viable over a century, one can envision that engineers working with biomolecular motors leverage progress in biotechnology and drug development to create the engines of the future. However, the future source of energy is going to be electricity rather than fossil or biological fuels, a fact that has to be accounted for in our future efforts. In summary, we are convinced that past, ongoing, and future efforts to engineer with biomolecular motors are providing exciting demonstrations and fundamental insights as well as opportunities to wander freely across the borders of engineering, biology, and chemistry.
Collapse
Affiliation(s)
- Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
29
|
Patiño T, Arqué X, Mestre R, Palacios L, Sánchez S. Fundamental Aspects of Enzyme-Powered Micro- and Nanoswimmers. Acc Chem Res 2018; 51:2662-2671. [PMID: 30346732 DOI: 10.1021/acs.accounts.8b00288] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Self-propulsion at the nanoscale constitutes a challenge due to the need for overcoming viscous forces and Brownian motion. Inspired by nature, artificial micro- and nanomachines powered by catalytic reactions have been developed. Due to the toxicity of the most commonly used fuels, enzyme catalysis has emerged as a versatile and biocompatible alternative to generate self-propulsion. Different swimmer sizes, ranging from the nanoscale to the microscale, and geometries, including tubular and spherical shapes, have been explored. However, there is still a lack of understanding of the mechanisms underlying enzyme-mediated propulsion. Size, shape, enzyme quantity and distribution, as well as the intrinsic enzymatic properties, may play crucial roles in motion dynamics. In this Account, we present the efforts carried out by our group and others by the community on the use of enzymes to power micro- and nanoswimmers. We examine the different structures, materials, and enzymes reported so far to fabricate biocatalytic micro- and nanoswimmers with special emphasis on their effect in motion dynamics. We discuss the development of tubular micro- and nanojets, focusing on the different fabrication methods and the effect of length and enzyme localization on their motion behavior. In the case of spherical swimmers, we highlight the role of asymmetry in enzyme coverage and how it can affect their motion dynamics. Different approaches have been described to generate asymmetric distribution of enzymes, namely, Janus particles, polymeric vesicles, and non-Janus particles with patch-like enzyme distribution that we recently reported. We also examine the correlation between enzyme kinetics and active motion. Enzyme activity, and consequently speed, can be modulated by modifying substrate concentration or adding specific inhibitors. Finally, we review the theory of active Brownian motion and how the size of the particles can influence the analysis of the results. Fundamentally, nanoscaled swimmers are more affected by Brownian fluctuations than microsized swimmers, and therefore, their motion is presented as an enhanced diffusion with respect to the passive case. Microswimmers, however, can overcome these fluctuations and show propulsive or ballistic trajectories. We provide some considerations on how to analyze the motion of these swimmers from an experimental point of view. Despite the rapid progress in enzyme-based micro- and nanoswimmers, deeper understanding of the mechanisms of motion is needed, and further efforts should be aimed to study their lifetime, long-term stability, and ability to navigate in complex media.
Collapse
Affiliation(s)
- Tania Patiño
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Xavier Arqué
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Rafael Mestre
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Lucas Palacios
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
30
|
Li P, Xie G, Liu P, Kong XY, Song Y, Wen L, Jiang L. Light-Driven ATP Transmembrane Transport Controlled by DNA Nanomachines. J Am Chem Soc 2018; 140:16048-16052. [PMID: 30372056 DOI: 10.1021/jacs.8b10527] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In nature, biological machines can perform sophisticated and subtle functions to maintain the metabolism of organisms. Inspired from these gorgeous works of nature, scientists have developed various artificial molecular motors and machines. However, selective transport of biomolecules across membrane has remained a great challenge. Here, we establish an ATP transport system by assembling photocontrolled DNA nanomachines into the artificial nanochannels. With alternant light irradiation, these ATP transport lines can selectively shepherd cargoes across the polymer membrane. These findings point to new opportunities for manipulating and improving the mass transportation and separation with light-controlled biomolecular motors, and can be used for other molecules and ions transmembrane transport powered by light.
Collapse
Affiliation(s)
- Pei Li
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , People's Republic of China.,Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry , Beihang University , Beijing 100191 , People's Republic of China
| | - Ganhua Xie
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Pei Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , People's Republic of China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Yanlin Song
- Key Laboratory of Green Printing , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Liping Wen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , People's Republic of China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , People's Republic of China.,Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry , Beihang University , Beijing 100191 , People's Republic of China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
31
|
Liu L, Dou CX, Liu JW, Wang XN, Ying ZM, Jiang JH. Cell Surface-Anchored DNA Nanomachine for Dynamically Tunable Sensing and Imaging of Extracellular pH. Anal Chem 2018; 90:11198-11202. [DOI: 10.1021/acs.analchem.8b03589] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lan Liu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Cai-Xia Dou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jin-Wen Liu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Xiang-Nan Wang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhan-Ming Ying
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jian-Hui Jiang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
32
|
Lee S, Kim H, Higuchi H. Numerical method for vesicle movement analysis in a complex cytoskeleton network. OPTICS EXPRESS 2018; 26:16236-16249. [PMID: 30119458 DOI: 10.1364/oe.26.016236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
The detection of the precise movement of a vesicle during transport in a live cell provides key information for the intracellular delivery process. Here we report a novel numerical method for analyzing three-dimensional vesicle movement. Since the vesicle moves along a linear cytoskeleton during the active transport, our method first detects the orientation and position of the cytoskeleton as a linear section based on angle correlation and linear regression, after noise reduction. Then, the precise vesicle movement is calculated using vector analysis, in terms of rotation angle and translational displacement. Using this method, various vesicle trajectories obtained via high spatiotemporal resolution microscopy can be understood..
Collapse
|
33
|
Chen J, Vachon J, Feringa BL. Design, Synthesis, and Isomerization Studies of Light-Driven Molecular Motors for Single Molecular Imaging. J Org Chem 2018; 83:6025-6034. [PMID: 29741383 PMCID: PMC5987184 DOI: 10.1021/acs.joc.8b00654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
The
design of a multicomponent system that aims at the direct visualization
of a synthetic rotary motor at the single molecule level on surfaces
is presented. The synthesis of two functional motors enabling photochemical
rotation and fluorescent detection is described. The light-driven
molecular motor is found to operate in the presence of a fluorescent
tag if a rigid long rod (32 Å) is installed between both photoactive
moieties. The photochemical isomerization and subsequent thermal helix
inversion steps are confirmed by 1H NMR and UV–vis
absorption spectroscopies. In addition, the tetra-acid functioned
motor can be successfully grafted onto amine-coated quartz and it
is shown that the light responsive rotary motion on surfaces is preserved.
Collapse
Affiliation(s)
- Jiawen Chen
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747AG Groningen , The Netherlands
| | - Jérôme Vachon
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747AG Groningen , The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747AG Groningen , The Netherlands
| |
Collapse
|
34
|
Deuerling S, Kugler S, Klotz M, Zollfrank C, Van Opdenbosch D. A Perspective on Bio-Mediated Material Structuring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703656. [PMID: 29178190 DOI: 10.1002/adma.201703656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Bioinspiration, biomorphy, biomimicry, biomimetics, bionics, and biotemplating are terms used to describe the fabrication of materials or, more generally, systems to solve technological problems by abstracting, emulating, using, or transferring structures from biological paradigms. Herein, a brief overview of how the different terminologies are being typically applied is provided. It is proposed that there is a rich field of research that can be expanded by utilizing various novel approaches for the guidance of living organisms for "bio-mediated" material structuring purposes. As examples of contact-based or contact-free guidance, such as substrate patterning, the application of light, magnetic fields, or chemical gradients, potentially interesting methods of creating hierarchically structured monolithic engineering materials, using live patterned biomass, biofilms, or extracellular substances as scaffolds, are presented. The potential advantages of such materials are discussed, and examples of live self-patterning of materials are given.
Collapse
Affiliation(s)
- Steffi Deuerling
- Technical University of Munich Chair of Biogenic Polymers, Schulgasse 16, D-94315, Straubing, Germany
| | - Sabine Kugler
- Technical University of Munich Chair of Biogenic Polymers, Schulgasse 16, D-94315, Straubing, Germany
| | - Moritz Klotz
- Technical University of Munich Chair of Biogenic Polymers, Schulgasse 16, D-94315, Straubing, Germany
| | - Cordt Zollfrank
- Technical University of Munich Chair of Biogenic Polymers, Schulgasse 16, D-94315, Straubing, Germany
| | - Daniel Van Opdenbosch
- Technical University of Munich Chair of Biogenic Polymers, Schulgasse 16, D-94315, Straubing, Germany
| |
Collapse
|
35
|
Dalmau-Mena I, Del Pino P, Pelaz B, Cuesta-Geijo MÁ, Galindo I, Moros M, de la Fuente JM, Alonso C. Nanoparticles engineered to bind cellular motors for efficient delivery. J Nanobiotechnology 2018; 16:33. [PMID: 29602307 PMCID: PMC5877387 DOI: 10.1186/s12951-018-0354-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/19/2018] [Indexed: 11/17/2022] Open
Abstract
Background Dynein is a cytoskeletal molecular motor protein that transports cellular cargoes along microtubules. Biomimetic synthetic peptides designed to bind dynein have been shown to acquire dynamic properties such as cell accumulation and active intra- and inter-cellular motion through cell-to-cell contacts and projections to distant cells. On the basis of these properties dynein-binding peptides could be used to functionalize nanoparticles for drug delivery applications. Results Here, we show that gold nanoparticles modified with dynein-binding delivery sequences become mobile, powered by molecular motor proteins. Modified nanoparticles showed dynamic properties, such as travelling the cytosol, crossing intracellular barriers and shuttling the nuclear membrane. Furthermore, nanoparticles were transported from one cell to another through cell-to-cell contacts and quickly spread to distant cells through cell projections. Conclusions The capacity of these motor-bound nanoparticles to spread to many cells and increasing cellular retention, thus avoiding losses and allowing lower dosage, could make them candidate carriers for drug delivery. Electronic supplementary material The online version of this article (10.1186/s12951-018-0354-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inmaculada Dalmau-Mena
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | - Pablo Del Pino
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Mariano Esquillor, s/n, 50018, Zaragoza, Spain.,Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Beatriz Pelaz
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Mariano Esquillor, s/n, 50018, Zaragoza, Spain.,Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Miguel Ángel Cuesta-Geijo
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | - Inmaculada Galindo
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | - María Moros
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Mariano Esquillor, s/n, 50018, Zaragoza, Spain
| | - Jesús M de la Fuente
- Aragon Materials Science Institute (ICMA), CSIC-University of Zaragoza and CIBER-BBN, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Covadonga Alonso
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña km 7.5, 28040, Madrid, Spain.
| |
Collapse
|
36
|
Chaudhuri S, Korten T, Korten S, Milani G, Lana T, Te Kronnie G, Diez S. Label-Free Detection of Microvesicles and Proteins by the Bundling of Gliding Microtubules. NANO LETTERS 2018; 18:117-123. [PMID: 29202578 DOI: 10.1021/acs.nanolett.7b03619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Development of miniaturized devices for the rapid and sensitive detection of analyte is crucial for various applications across healthcare, pharmaceutical, environmental, and other industries. Here, we report on the detection of unlabeled analyte by using fluorescently labeled, antibody-conjugated microtubules in a kinesin-1 gliding motility assay. The detection principle is based on the formation of fluorescent supramolecular assemblies of microtubule bundles and spools in the presence of multivalent analytes. We demonstrate the rapid, label-free detection of CD45+ microvesicles derived from leukemia cells. Moreover, we employ our platform for the label-free detection of multivalent proteins at subnanomolar concentrations, as well as for profiling the cross-reactivity between commercially available secondary antibodies. As the detection principle is based on the molecular recognition between antigen and antibody, our method can find general application where it identifies any analyte, including clinically relevant microvesicles and proteins.
Collapse
Affiliation(s)
- Samata Chaudhuri
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden, Germany
| | - Till Korten
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden, Germany
| | - Slobodanka Korten
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden, Germany
| | - Gloria Milani
- Department of Women's and Children's Health, University of Padova , 35128 Padova, Italy
| | - Tobia Lana
- Department of Women's and Children's Health, University of Padova , 35128 Padova, Italy
| | - Geertruy Te Kronnie
- Department of Women's and Children's Health, University of Padova , 35128 Padova, Italy
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden, Germany
| |
Collapse
|
37
|
Amrutha AS, Kumar KRS, Kikukawa T, Tamaoki N. Targeted Activation of Molecular Transportation by Visible Light. ACS NANO 2017; 11:12292-12301. [PMID: 29125732 DOI: 10.1021/acsnano.7b06059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Regulated transportation of nanoscale objects with a high degree of spatiotemporal precision is a prerequisite for the development of targeted molecular delivery. In vitro integration of the kinesin-microtubule motor system with synthetic molecules offers opportunities to develop controllable molecular shuttles for lab-on-a-chip applications. We attempted a combination of the kinesin-microtubule motor system with push-pull type azobenzene tethered inhibitory peptides (azo-peptides) through which reversible, spatiotemporal control over the kinesin motor activity was achieved locally by a single, visible wavelength. The fast thermal relaxation of the cis-isomers of azo-peptides offered us quick and complete resetting of the trans-state in the dark, circumventing the requirement of two distinct wavelengths for two-way switching of kinesin-driven microtubule motility. Herein, we report the manipulation of selected, single microtubule movement while keeping other microtubules at complete rest. The photoresponsive inhibitors discussed herein would help in realizing complex bionanodevices.
Collapse
Affiliation(s)
- Ammathnadu S Amrutha
- Research Institute for Electronic Science, Hokkaido University , N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - K R Sunil Kumar
- Research Institute for Electronic Science, Hokkaido University , N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University , Sapporo 060-0810, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo 060-0810, Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University , N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
38
|
Hess H, Ross JL. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev 2017; 46:5570-5587. [PMID: 28329028 PMCID: PMC5603359 DOI: 10.1039/c7cs00030h] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.
Collapse
Affiliation(s)
- H Hess
- Department of Biomedical Engineering, Columbia University, USA.
| | | |
Collapse
|
39
|
High-Resolution Imaging of a Single Gliding Protofilament of Tubulins by HS-AFM. Sci Rep 2017; 7:6166. [PMID: 28733669 PMCID: PMC5522458 DOI: 10.1038/s41598-017-06249-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/08/2017] [Indexed: 11/26/2022] Open
Abstract
In vitro gliding assay of microtubules (MTs) on kinesins has provided us with valuable biophysical and chemo-mechanical insights of this biomolecular motor system. Visualization of MTs in an in vitro gliding assay has been mainly dependent on optical microscopes, limited resolution of which often render them insufficient sources of desired information. In this work, using high speed atomic force microscopy (HS-AFM), which allows imaging with higher resolution, we monitored MTs and protofilaments (PFs) of tubulins while gliding on kinesins. Moreover, under the HS-AFM, we also observed splitting of gliding MTs into single PFs at their leading ends. The split single PFs interacted with kinesins and exhibited translational motion, but with a slower velocity than the MTs. Our investigation at the molecular level, using the HS-AFM, would provide new insights to the mechanics of MTs in dynamic systems and their interaction with motor proteins.
Collapse
|
40
|
Stanhope KT, Yadav V, Santangelo CD, Ross JL. Contractility in an extensile system. SOFT MATTER 2017; 13:4268-4277. [PMID: 28573293 DOI: 10.1039/c7sm00449d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Essentially all biology is active and dynamic. Biological entities autonomously sense, compute, and respond using energy-coupled ratchets that can produce force and do work. The cytoskeleton, along with its associated proteins and motors, is a canonical example of biological active matter, which is responsible for cargo transport, cell motility, division, and morphology. Prior work on cytoskeletal active matter systems showed either extensile or contractile dynamics. Here, we demonstrate a cytoskeletal system that can control the direction of the network dynamics to be either extensile, contractile, or static depending on the concentration of filaments or weak, transient crosslinkers through systematic variation of the crosslinker or microtubule concentrations. Based on these new observations and our previously published results, we created a simple one-dimensional model of the interaction of filaments within a bundle. Despite its simplicity, our model recapitulates the observed activities of our experimental system, implying that the dynamics of our finite networks of bundles are driven by the local filament-filament interactions within the bundle. Finally, we show that contractile phases can result in autonomously motile networks that resemble cells. Our results reveal a fundamentally important aspect of cellular self-organization: weak, transient interacting species can tune their interaction strength directly by tuning the local concentration to act like a rheostat. In this case, when the weak, transient proteins crosslink microtubules, they can tune the dynamics of the network to change from extensile to contractile to static. Our experiments and model allow us to gain a deeper understanding of cytoskeletal dynamics and provide an new understanding of the importance of weak, transient interactions to soft and biological systems.
Collapse
|
41
|
Affiliation(s)
- Krishna Kanti Dey
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Ayusman Sen
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
42
|
Chaudhuri S, Korten T, Diez S. Tetrazine–trans-cyclooctene Mediated Conjugation of Antibodies to Microtubules Facilitates Subpicomolar Protein Detection. Bioconjug Chem 2017; 28:918-922. [DOI: 10.1021/acs.bioconjchem.7b00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samata Chaudhuri
- B
CUBE — Center for Molecular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Till Korten
- B
CUBE — Center for Molecular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Stefan Diez
- B
CUBE — Center for Molecular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
43
|
Feldmann D, Maduar SR, Santer M, Lomadze N, Vinogradova OI, Santer S. Manipulation of small particles at solid liquid interface: light driven diffusioosmosis. Sci Rep 2016; 6:36443. [PMID: 27808170 PMCID: PMC5093767 DOI: 10.1038/srep36443] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.
Collapse
Affiliation(s)
- David Feldmann
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Salim R Maduar
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119071 Moscow, Russia.,Department of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mark Santer
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nino Lomadze
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Olga I Vinogradova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119071 Moscow, Russia.,Department of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.,DWI-Leibniz Institute for Interactive Materials, RWTH Aachen, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Svetlana Santer
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
44
|
Zoaby N, Shainsky-Roitman J, Badarneh S, Abumanhal H, Leshansky A, Yaron S, Schroeder A. Autonomous bacterial nanoswimmers target cancer. J Control Release 2016; 257:68-75. [PMID: 27744036 DOI: 10.1016/j.jconrel.2016.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 12/18/2022]
Abstract
Injectable drug delivery systems that autonomously detect, propel towards, and ultimately treat the cancerous tissue, are the future of targeted medicine. Here, we developed a drug delivery system that swims autonomously towards cancer cells, where it releases a therapeutic cargo. This platform is based on viable bacteria, loaded with nanoparticles that contain the chemotherapeutic-antibiotic drug doxorubicin. The bacteria ferry across media and invade the cancer cells, increasing their velocity in the presence of nutrients that are present within the tumor microenvironment. Inside the cancer cells, doxorubicin is released from the nanoparticles, destroying the bacterial swimmer (antibiotic activity) and executing the therapeutic activity against the cancer cells (chemotherapeutic activity). This mode of delivery, where both the carrier and the cancer cell are destroyed, supports implementing nanoswimmers in drug delivery (Fig. 1).
Collapse
Affiliation(s)
- Nour Zoaby
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Samah Badarneh
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Hanan Abumanhal
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Alex Leshansky
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Sima Yaron
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Avi Schroeder
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
45
|
|
46
|
Constructing 3D microtubule networks using holographic optical trapping. Sci Rep 2015; 5:18085. [PMID: 26657337 PMCID: PMC4674800 DOI: 10.1038/srep18085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/11/2015] [Indexed: 11/11/2022] Open
Abstract
Developing abilities to assemble nanoscale structures is a major scientific and engineering challenge. We report a technique which allows precise positioning and manipulation of individual rigid filaments, enabling construction of custom-designed 3D filament networks. This approach uses holographic optical trapping (HOT) for nano-positioning and microtubules (MTs) as network building blocks. MTs are desirable engineering components due to their high aspect ratio, rigidity, and their ability to serve as substrate for directed nano-transport, reflecting their roles in the eukaryotic cytoskeleton. The 3D architecture of MT cytoskeleton is a significant component of its function, however experimental tools to study the roles of this geometric complexity in a controlled environment have been lacking. We demonstrate the broad capabilities of our system by building a self-supporting 3D MT-based nanostructure and by conducting a MT-based transport experiment on a dynamically adjustable 3D MT intersection. Our methodology not only will advance studies of cytoskeletal networks (and associated processes such as MT-based transport) but will also likely find use in engineering nanostructures and devices.
Collapse
|
47
|
Affiliation(s)
- Sundus Erbas-Cakmak
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Charlie T. McTernan
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alina
L. Nussbaumer
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
48
|
Godec A, Metzler R. Signal focusing through active transport. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:010701. [PMID: 26274108 DOI: 10.1103/physreve.92.010701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 06/04/2023]
Abstract
The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing-faster and more precise signaling-are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.
Collapse
Affiliation(s)
- Aljaž Godec
- Institute of Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany
- Laboratory for Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany
- Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland
| |
Collapse
|
49
|
Fujimoto K, Nagai M, Shintaku H, Kotera H, Yokokawa R. Dynamic formation of a microchannel array enabling kinesin-driven microtubule transport between separate compartments on a chip. LAB ON A CHIP 2015; 15:2055-2063. [PMID: 25805147 DOI: 10.1039/c5lc00148j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microtubules driven by kinesin motors have been utilised as "molecular shuttles" in microfluidic environments with potential applications in autonomous nanoscale manipulations such as capturing, separating, and/or concentrating biomolecules. However, the conventional flow cell-based assay has difficulty in separating bound target molecules from free ones even with buffer flushing because molecular manipulations by molecular shuttles take place on a glass surface and molecular binding occurs stochastically; this makes it difficult to determine whether molecules are carried by molecular shuttles or by diffusion. To address this issue, we developed a microtubule-based transport system between two compartments connected by a single-micrometre-scale channel array that forms dynamically via pneumatic actuation of a polydimethylsiloxane membrane. The device comprises three layers-a control channel layer (top), a microfluidic channel layer (middle), and a channel array layer (bottom)-that enable selective injection of assay solutions into a target compartment and dynamic formation of the microchannel array. The pneumatic channel also serves as a nitrogen supply path to the assay area, which reduces photobleaching of fluorescently labelled microtubules and deactivation of kinesin by oxygen radicals. The channel array suppresses cross-contamination of molecules caused by diffusion or pressure-driven flow between compartments, facilitating unidirectional transport of molecular shuttles from one compartment to another. The method demonstrates, for the first time, efficient and unidirectional microtubule transport by eliminating diffusion of target molecules on a chip and thus may constitute one of the key aspects of motor-driven nanosystems.
Collapse
Affiliation(s)
- Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
| | | | | | | | | |
Collapse
|
50
|
Steuerwald D, Früh SM, Griss R, Lovchik RD, Vogel V. Nanoshuttles propelled by motor proteins sequentially assemble molecular cargo in a microfluidic device. LAB ON A CHIP 2014; 14:3729-3738. [PMID: 25008788 DOI: 10.1039/c4lc00385c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanoshuttles powered by the molecular motor kinesin have the potential to capture and concentrate rare molecules from solution as well as to transport, sort and assemble them in a high-throughput manner. One long-thought-of goal has been the realisation of a molecular assembly line with nanoshuttles as workhorses. To harness them for this purpose might allow the community to engineer novel materials and nanodevices. The central milestone towards this goal is to expose nanoshuttles to a series of different molecules or building blocks and load them sequentially to build hierarchical structures, macromolecules or materials. Here, we addressed this challenge by exploiting the synergy of two so far mostly complementary techniques, nanoshuttle-mediated active transport and pressure-driven passive transport, integrated into a single microfluidic device to demonstrate the realisation of a molecular assembly line. Multiple step protocols can thus be miniaturised to a highly parallelised and autonomous working lab-on-a-chip: in each reaction chamber, analytes or building blocks are captured from solution and are then transported by nanoshuttles across fluid flow boundaries in the next chamber. Cargo can thus be assembled, modified, analysed and eventually unloaded in a procedure that requires only one step by its operator.
Collapse
Affiliation(s)
- Dirk Steuerwald
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|