1
|
Fu S, Ma K, Song X, Sun T, Chen L, Zhang W. Synthetic Biology Strategies and Tools to Modulate Photosynthesis in Microbes. Int J Mol Sci 2025; 26:3116. [PMID: 40243859 PMCID: PMC11989218 DOI: 10.3390/ijms26073116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The utilization of photosynthetic microbes, such as cyanobacteria and microalgae, offers sustainable solutions to addressing global resource shortages and pollution. While these microorganisms have demonstrated significant potential in biomanufacturing, their industrial application is limited by suboptimal photosynthetic efficiency. Synthetic biology integrates molecular biology, systems biology, and engineering principles to provide a powerful tool for elucidating photosynthetic mechanisms and rationally optimizing photosynthetic platforms. This review summarizes recent advancements in regulating photosynthesis in cyanobacteria and microalgae via synthetic biology, focusing on strategies to enhance light energy absorption, optimize electron transport chains, and improve carbon assimilation. Furthermore, we discuss key challenges in translating these genetic modifications to large-scale bioproduction, highlighting specific bottlenecks in strain stability, metabolic burden, and process scalability. Finally, we propose potential solutions, such as AI-assisted metabolic engineering, synthetic microbial consortia, and next-generation photobioreactor designs, to overcome these limitations. Overall, while synthetic biology holds great promise for enhancing photosynthetic efficiency in cyanobacteria and microalgae, further research is needed to refine genetic strategies and develop scalable production systems.
Collapse
Affiliation(s)
- Shujin Fu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Kaiyu Ma
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Xinyu Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Tianjin University Center for Biosafety Research and Strategy, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Tao Sun
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Tianjin University Center for Biosafety Research and Strategy, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Lei Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Weiwen Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Tianjin University Center for Biosafety Research and Strategy, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Hou Y, Zeng W, Ao C, Huang J. Integrative analysis of the transcriptome and metabolome reveals Bacillus atrophaeus WZYH01-mediated salt stress mechanism in maize (Zea mays L.). J Biotechnol 2024; 383:39-54. [PMID: 38346451 DOI: 10.1016/j.jbiotec.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Maize is an important food crop that is affected by salt stress during growth, which can hinder plant growth and result in a significant decrease in yield. The application of plant growth-promoting rhizobacteria can improve this situation to a certain extent. However, the gene network of rhizosphere-promoting bacteria regulating the response of maize to salt stress remains elusive. Here, we used metabolomics and transcriptomics techniques to elucidate potential gene networks and salt-response pathways in maize. Phenotypic analysis showed that the Bacillus atrophaeus treatment improved the plant height, leaf area, biomass, ion, nutrient and stomatal indicators of maize. Metabolomic analysis identified that differentially expressed metabolites (DEMs) were primarily concentrated in the arginine, proline and phytohormone signaling metabolic pathways. 4-Hydroxyphenylacetylglutamic acid, L-histidinol, oxoglutaric acid, L-glutamic acid, L-arginine, and L-tyrosine were significantly increased in the Bacillus atrophaeus treatment. Weighted gene coexpression network analysis (WGCNA) identified several hub genes associated with salt response: Zm00001eb155540 and Zm00001eb088790 (ABC transporter family), Zm00001eb419060 (extra-large GTP-binding protein family), Zm00001eb317200 (calcium-transporting ATPase), Zm00001eb384800 (aquaporin NIP1-4) and Zm00001eb339170 (cytochrome P450). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that genes related to plant hormone signal transduction and the MAPK signaling pathway were involved in the response to the effect of Bacillus atrophaeus under salt stress. In the plant hormone signal transduction pathway, 3 differentially expressed genes (DEGs) encoding EIN3/EILs protein, 3 DEGs encoding GH3, 1 DEG encoding PYR/PYL and 6 DEGs encoding PP2C were all upregulated in Bacillus atrophaeus treatment. In the MAPK signaling pathway, 2 DEGs encoding CAT1 and 2 DEGs encoding WRKY22/WRKY29 were significantly upregulated, and the expression of DEGs encoding RbohD was downregulated by the application of Bacillus atrophaeus. In conclusion, the application of Bacillus atrophaeus under salt stress regulated key physiological and molecular processes in plants, which could stimulate the expression of genes related to ion transport and nutrients in maize, alleviate salt stress and promote maize growth to some extent, deepening our understanding of the application of Bacillus atrophaeus under salt stress to improve the salt-response gene network of maize growth.
Collapse
Affiliation(s)
- Yaling Hou
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei Province, China
| | - Wenzhi Zeng
- College of Agricultural Science and Engineering, Hohai University, Nanjing, Jiangsu Province, China.
| | - Chang Ao
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei Province, China.
| | - Jiesheng Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Ma X, He J, Liu Y, Bai X, Leng J, Zhao Y, Chen D, Wang J. Plant Photocatalysts: Photoinduced Oxidation and Reduction Abilities of Plant Leaf Ashes under Solar Light. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2260. [PMID: 37570577 PMCID: PMC10421452 DOI: 10.3390/nano13152260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Plant leaf ashes were obtained via the high temperature calcination of the leaves of various plants, such as sugarcane, couchgrass, bracteata, garlic sprout, and the yellowish leek. Although the photosynthesis systems in plant leaves cannot exist after calcination, minerals in these ashes were found to exhibit photochemical activities. The samples showed solar light photocatalytic oxidation activities sufficient to degrade methylene blue dye. They were also shown to possess intrinsic dehydrogenase-like activities in reducing the colorless electron acceptor 2,3,5-triphenyltetrazolium chloride to a red formazan precipitate under solar light irradiation. The possible reasons behind these two unreported phenomena were also investigated. These ashes were characterized using a combination of physicochemical techniques. Moreover, our findings exemplify how the soluble and insoluble minerals in plant leaf ashes can be synergistically designed to yield next-generation photocatalysts. It may also lead to advances in artificial photosynthesis and photocatalytic dehydrogenase.
Collapse
Affiliation(s)
- Xiaoqian Ma
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Jiao He
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Yu Liu
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Xiaoli Bai
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Junyang Leng
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Yi Zhao
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Daomei Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jiaqiang Wang
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
4
|
Lang B. Photometrics of ultrafast and fast broadband electronic transient absorption spectroscopy: State of the art. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:093112. [PMID: 30278696 DOI: 10.1063/1.5039457] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
The physical limits of the photometric resolution in broadband electronic transient absorption spectroscopy are discussed together with solutions for how to reach these limits in practice. In the first part, quantitative expressions for the noise contributions to the transient absorption signal are derived and experimentally tested. Experimental approaches described in the literature are discussed and compared on this basis. Guide-lines for designing a setup are established. In the second part, a method for obtaining nearly shot-noise limited kinetics with photometric resolution of the order of 100 μOD in overall measurement times of a few minutes from femtosecond to microsecond time scale is presented. The results are discussed in view of other experiments of step-scan type which are subject to a background or to correlated noise. Finally, detailed information is provided on how to obtain transient absorption spectra where counting statistics are the sole source of noise. A method for how to suppress outliers without introducing bias is discussed. An application example is given to demonstrate the achievable signal-to-noise level and the fast acquisition time.
Collapse
Affiliation(s)
- Bernhard Lang
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Genève 4, Switzerland
| |
Collapse
|
5
|
Gao D, Aly SM, Karsenti PL, Harvey PD. What does it take to induce equilibrium in bidirectional energy transfers? Phys Chem Chem Phys 2018; 20:13682-13692. [PMID: 29745390 DOI: 10.1039/c7cp07879j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two dyads built with a co-facial slipped bis(zinc(ii)porphyrin), a free base and a bridge, [Zn2]-bridge-[Fb] (bridge = C6H4C[triple bond, length as m-dash]C, 1 and C6H4C[triple bond, length as m-dash]CC6H4, 2), exhibit S1 energy equilibrium [Zn2]* ↔ [Fb]* at 298 K, an extremely rare situation, which depends on the degree of MO coupling between the units. At 77 K, 2 becomes bi-directional due to the two large C6H4-[Zn2] and C6H4-[Fb] dihedral angles.
Collapse
Affiliation(s)
- Di Gao
- Departement de chimie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | | | | | | |
Collapse
|
6
|
Díaz R, Francois A, Leiva A, Loeb B, Norambuena E, Yañez M. Synthesis and Characterization of Polypiridine-Based Rhenium(I) Complexes with Pyrazino[2,3-f][1,10]phenanthroline. Helv Chim Acta 2006. [DOI: 10.1002/hlca.200690119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
D'Souza F, Ito O. Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines. Coord Chem Rev 2005. [DOI: 10.1016/j.ccr.2005.01.002] [Citation(s) in RCA: 344] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Intermolecular and supramolecular photoinduced electron transfer processes of fullerene–porphyrin/phthalocyanine systems. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2004. [DOI: 10.1016/j.jphotochemrev.2004.01.003] [Citation(s) in RCA: 472] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Kumazaki S, Ikegami I, Furusawa H, Yoshihara K. Energy Equilibration among the Chlorophylls in the Electron-Transfer System of Photosystem I Reaction Center from Spinach. J Phys Chem A 2002. [DOI: 10.1021/jp026532e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shigeichi Kumazaki
- School of Materials Sciences, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan, and Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-0195, Japan
| | - Isamu Ikegami
- School of Materials Sciences, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan, and Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-0195, Japan
| | - Hiroko Furusawa
- School of Materials Sciences, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan, and Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-0195, Japan
| | - Keitaro Yoshihara
- School of Materials Sciences, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan, and Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-0195, Japan
| |
Collapse
|
10
|
Kumazaki S, Ikegami I, Furusawa H, Yasuda S, Yoshihara K. Observation of the Excited State of the Primary Electron Donor Chlorophyll (P700) and the Ultrafast Charge Separation in the Spinach Photosystem I Reaction Center. J Phys Chem B 2001. [DOI: 10.1021/jp003122m] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shigeichi Kumazaki
- School of Materials Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan, and Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-0195, Japan
| | - Isamu Ikegami
- School of Materials Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan, and Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-0195, Japan
| | - Hiroko Furusawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan, and Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-0195, Japan
| | - Shuichiro Yasuda
- School of Materials Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan, and Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-0195, Japan
| | - Keitaro Yoshihara
- School of Materials Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan, and Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-0195, Japan
| |
Collapse
|