1
|
Csala D, Kovács BM, Bali P, Reha G, Pánics G. The influence of external load variables on creatine kinase change during preseason training period. Physiol Int 2021; 108:371-382. [PMID: 34534103 DOI: 10.1556/2060.2021.30019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
Objective The aim of the present study was to analyse the relationships between creatine kinase (CK) concentration, an indirect marker of muscle damage, and global positioning system (GPS)-derived metrics of a continuous two-week-long preseason training period in elite football. Design Twenty-one elite male professional soccer players were assessed during a 14-day preseason preparatory period. CK concentrations were determined each morning, and a GPS system was used to quantify the external load. A generalized estimating equation (GEE) model was established to determine the extent to which the external load parameter explained post-training CK levels. Results The GEE model found that higher numbers of decelerations (χ 2 = 7.83, P = 0.005) were most strongly associated with the post-training CK level. Decelerations and accelerations accounted for 62% and 11% of the post-training CK level, respectively, and considerable interindividual variability existed in the data. Conclusion The use of GPS to predict muscle damage could be of use to coaches and practitioners in prescribing recovery practices. Based on GPS data, more individualized strategies could be devised and could potentially result in better subsequent performance.
Collapse
Affiliation(s)
- Dániel Csala
- 1 University of Physical Education, Budapest, Hungary.,2 Sports Science Department, Ferencvárosi TC, Budapest, Hungary
| | - Bence Márk Kovács
- 1 University of Physical Education, Budapest, Hungary.,2 Sports Science Department, Ferencvárosi TC, Budapest, Hungary
| | - Péter Bali
- 2 Sports Science Department, Ferencvárosi TC, Budapest, Hungary
| | - Gábor Reha
- 2 Sports Science Department, Ferencvárosi TC, Budapest, Hungary.,4 Department of Orthopedics & Traumatology, Uzsoki Hospital, Budapest, Hungary
| | - Gergely Pánics
- 2 Sports Science Department, Ferencvárosi TC, Budapest, Hungary.,3 Department of Traumatology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Merrigan JJ, Jones MT, Malecek J, Padecky J, Omcirk D, Xu N, Peñailillo L, Tufano JJ. Comparison of Traditional and Rest-Redistribution Sets on Indirect Markers of Muscle Damage Following Eccentric Exercise. J Strength Cond Res 2020; 36:1810-1818. [DOI: 10.1519/jsc.0000000000003740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Kim BR, Kim JH. Effect of Different Resistance Intensities on Changes of Inflammatory and Muscle Damage Markers in Man. THE ASIAN JOURNAL OF KINESIOLOGY 2018. [DOI: 10.15758/ajk.2018.20.4.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
4
|
Warren GL, Call JA, Farthing AK, Baadom-Piaro B. Minimal Evidence for a Secondary Loss of Strength After an Acute Muscle Injury: A Systematic Review and Meta-Analysis. Sports Med 2018; 47:41-59. [PMID: 27100114 PMCID: PMC5214801 DOI: 10.1007/s40279-016-0528-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND An immediate loss of strength follows virtually all types of muscle injury but there is debate whether the initial strength loss is maximal or if a secondary loss of strength occurs during the first 3 days post-injury. OBJECTIVE The objective of this analysis was to conduct a systematic review and meta-analysis of the research literature to determine if a secondary loss of strength occurs after an injurious initiating event. METHODS Literature searches were performed using eight electronic databases (e.g., PubMed, Cochrane Library). Search terms included skeletal muscle AND (injur* OR damage*) AND (strength OR force OR torque). The extracted strength data were converted to a standard format by calculating the standardized mean difference, which is reported as the effect size (ES) along with its 95 % confidence interval (CI). The calculation of ES was designed so that a negative ES that was statistically less than zero would be interpreted as indicating a secondary loss of strength. RESULTS A total of 223 studies with over 4000 human and animal subjects yielded data on 262 independent groups and a total of 936 separate ESs. Our overall meta-analysis yielded a small-to-medium, positive overall ES that was statistically greater than zero (overall ES = +0.34, 95 % CI 0.27-0.40; P < 0.00000001). Considerable variation in ES was observed among studies (I 2 = 86 %), which could be partially explained by the research group conducting the study, sex of the subject, day of post-injury strength assessment, whether fatigue was present immediately post-injury, and the muscle group injured. From the subgroup meta-analyses probing these variables, 36 subgroup ESs were calculated and none were statistically less than zero. CONCLUSION Overall, our findings do not support the presence of a secondary loss of strength following an acute muscle injury, and strongly suggest that strength, on average, recovers steadily over the first 3 days post-injury.
Collapse
Affiliation(s)
- Gordon L Warren
- Department of Physical Therapy, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, PO Box 4019, Atlanta, GA, 30302, USA.
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Amy K Farthing
- Department of Physical Therapy, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, PO Box 4019, Atlanta, GA, 30302, USA
| | | |
Collapse
|
5
|
Contraction induced muscle injury: towards personalized training and recovery programs. Ann Biomed Eng 2014; 43:388-403. [PMID: 25352440 DOI: 10.1007/s10439-014-1173-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 10/20/2014] [Indexed: 12/25/2022]
Abstract
Skeletal muscles can be injured by their own contractions. Such contraction-induced injury, often accompanied by delayed onset of muscle soreness, is a leading cause of the loss of mobility in the rapidly increasing population of elderly people. Unlike other types of muscle injuries which hurt almost exclusively those who are subjected to intensive exercise such as professional athletes and soldiers in training, contraction induced injury is a phenomenon which may be experienced by people of all ages while performing a variety of daily-life activities. Subjects that experience contraction induced injury report on soreness that usually increases in intensity in the first 24 h after the activity, peaks from 24 to 72 h, and then subsides and disappears in a few days. Despite their clinical importance and wide influence, there are almost no studies, clinical, experimental or computational, that quantitatively relate between the extent of contraction induced injury and activity factors, such as number of repetitions, their frequency and magnitude. The lack of such quantitative information is even more emphasized by the fact that contraction induced injury can be used, if moderate and controlled, to improve muscle performance in the long term. Thus, if properly understood and carefully implemented, contraction induced injury can be used for the purpose of personalized training and recovery programs. In this paper, we review experimental, clinical, and theoretical works, attempting towards drawing a more quantitative description of contraction induced injury and related phenomena.
Collapse
|
6
|
Fouré A, Nosaka K, Wegrzyk J, Duhamel G, Le Troter A, Boudinet H, Mattei JP, Vilmen C, Jubeau M, Bendahan D, Gondin J. Time course of central and peripheral alterations after isometric neuromuscular electrical stimulation-induced muscle damage. PLoS One 2014; 9:e107298. [PMID: 25215511 PMCID: PMC4162582 DOI: 10.1371/journal.pone.0107298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022] Open
Abstract
Isometric contractions induced by neuromuscular electrostimulation (NMES) have been shown to result in a prolonged force decrease but the time course of the potential central and peripheral factors have never been investigated. This study examined the specific time course of central and peripheral factors after isometric NMES-induced muscle damage. Twenty-five young healthy men were subjected to an NMES exercise consisting of 40 contractions for both legs. Changes in maximal voluntary contraction force of the knee extensors (MVC), peak evoked force during double stimulations at 10 Hz (Db10) and 100 Hz (Db100), its ratio (10∶100), voluntary activation, muscle soreness and plasma creatine kinase activity were assessed before, immediately after and throughout four days after NMES session. Changes in knee extensors volume and T2 relaxation time were also assessed at two (D2) and four (D4) days post-exercise. MVC decreased by 29% immediately after NMES session and was still 19% lower than the baseline value at D4. The decrease in Db10 was higher than in Db100 immediately and one day post-exercise resulting in a decrease (−12%) in the 10∶100 ratio. On the contrary, voluntary activation significantly decreased at D2 (−5%) and was still depressed at D4 (−5%). Muscle soreness and plasma creatine kinase activity increased after NMES and peaked at D2 and D4, respectively. T2 was also increased at D2 (6%) and D4 (9%). Additionally, changes in MVC and peripheral factors (e.g., Db100) were correlated on the full recovery period, while a significant correlation was found between changes in MVC and VA only from D2 to D4. The decrease in MVC recorded immediately after the NMES session was mainly due to peripheral changes while both central and peripheral contributions were involved in the prolonged force reduction. Interestingly, the chronological events differ from what has been reported so far for voluntary exercise-induced muscle damage.
Collapse
Affiliation(s)
- Alexandre Fouré
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
- * E-mail:
| | - Kazunori Nosaka
- Edith Cowan University, School of Exercise and Health Sciences, WA 6027, Joondalup, Australia
| | - Jennifer Wegrzyk
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
| | - Guillaume Duhamel
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
| | - Arnaud Le Troter
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
| | - Hélène Boudinet
- APHM, La Timone Hospital, CEMEREM, Imaging Center, Marseille, France
| | - Jean-Pierre Mattei
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
- APHM, La Conception Hospital, Department of Rheumatology, Marseille, France
| | - Christophe Vilmen
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
| | - Marc Jubeau
- University of Nantes, Laboratory “Motricité, Interactions, Performance” (EA 4334), UFR STAPS, Nantes, France
| | - David Bendahan
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
| | - Julien Gondin
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
| |
Collapse
|
7
|
Chapman DW, Newton MJ, McGuigan MR, Nosaka K. Effect of Slow-Velocity Lengthening Contractions on Muscle Damage Induced by Fast-Velocity Lengthening Contractions. J Strength Cond Res 2011; 25:211-9. [DOI: 10.1519/jsc.0b013e3181bac2bd] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Sesto ME, Chourasia AO, Block WF, Radwin RG. Mechanical and magnetic resonance imaging changes following eccentric or concentric exertions. Clin Biomech (Bristol, Avon) 2008; 23:961-8. [PMID: 18485551 PMCID: PMC2581652 DOI: 10.1016/j.clinbiomech.2008.03.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 11/15/2007] [Accepted: 03/25/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prior work has shown that changes in mechanical parameters and magnetic resonance imaging parameters occur following submaximal eccentric activity but it is unclear whether similar changes occur following submaximal concentric activity. This study compared mechanical response parameters and MRI relaxation parameters following submaximal concentric or eccentric exertions. METHODS This single site, randomized study investigated in vivo changes in human upper limb dynamic mechanical properties following exposure to short term repetitive submaximal eccentric or concentric exertions. Eighteen subjects were assigned to either an eccentric or concentric group and exercised for 30 min at 50% of isometric forearm maximum voluntary contraction. Changes in strength, symptom intensity, magnetic resonance imaging T2 relaxation measurements, which are indicative of edema, and dynamic mechanical parameters (stiffness, effective mass, and damping) were ascertained prior to exercise, 1h after, and 24h later. FINDINGS Strength decreased following exercise (P<0.01), however only the eccentric exercise group exhibited a reduction in mechanical stiffness (55%, P<0.01) and damping (31%, P<0.05), and an increase (17%, P<0.05) in magnetic resonance imaging T2 relaxation time. INTERPRETATION The changes in mechanical parameters and magnetic resonance imaging findings following repetitive submaximal eccentric activity could negatively impact the ability of the arm to react to rapid forceful loading during repetitive industrial work activities and may result in increased strain on the upper limb. Similar changes were not observed following concentric exercise.
Collapse
Affiliation(s)
- Mary E. Sesto
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA,Trace Center, University of Wisconsin, Madison, WI 53706, USA
| | - Amrish O. Chourasia
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA
| | - Walter F. Block
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA
| | - Robert G. Radwin
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA,Contact Information: Corresponding Author, Robert G. Radwin, Ph.D., University of Wisconsin-Madison, Department of Biomedical Engineering, 1550 Engineering Drive, Madison, WI 53706-1608, USA,
| |
Collapse
|
9
|
Chapman DW, Newton M, McGuigan MR, Nosaka K. Comparison between old and young men for responses to fast velocity maximal lengthening contractions of the elbow flexors. Eur J Appl Physiol 2008; 104:531-9. [DOI: 10.1007/s00421-008-0806-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
|
10
|
High day-to-day reliability in lower leg volume measured by water displacement. Eur J Appl Physiol 2008; 103:393-8. [DOI: 10.1007/s00421-008-0719-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
|
11
|
Chen TC. Variability in muscle damage after eccentric exercise and the repeated bout effect. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2006; 77:362-71. [PMID: 17020080 DOI: 10.1080/02701367.2006.10599370] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The first purpose of this study was to determine a possible explanation for the variability in the response to eccentric exercise by having participants repeat the same exercise 1 year apart. The second purpose was to examine whether initial injury in response to eccentric exercise was associated with the extent of the repeated bout effect (RBE). Male students performed 30 eccentric contractions (ECC) of the elbow flexors using a dumbbell set at 80% of the pre-exercise maximal isometric force (MIF). Participants were then classified into low (LR; n=6), medium (MR; n=6), high (HR; n=5), and higher (HrR; n=7) based on the increase in blood creatine kinase (CK) activity. A year later, participants repeated this exercise (ECC30). Four days after ECC30, participants performed 70 eccentric contractions (ECC70). Range of motion, MFI upper arm circumference, soreness, and blood CK activity were measured before and up to 9 days after each bout. The change in the criterion measures following ECC and ECC30 were similar for each group. There were no further changes in all parameters after ECC70 for MR, HR, and HrR, although there was a small increase in CK after ECC70 for LR. LR showed a smaller RBE after ECC70 compared with the other groups. It is concluded that participants who exercised 1 year apart showed remarkably similar responses between the bouts. The extent of the RBE following the second bout for the LR group is less for participants who demonstrate the least evidence of muscle damage after a first exercise bout.
Collapse
Affiliation(s)
- Trevor C Chen
- Department of Physical Education, National Chiayi University, Mingsuin Shiang, Taiwan.
| |
Collapse
|
12
|
Kraemer WJ, Ratamess NA, Volek JS, Häkkinen K, Rubin MR, French DN, Gómez AL, McGuigan MR, Scheett TP, Newton RU, Spiering BA, Izquierdo M, Dioguardi FS. The effects of amino acid supplementation on hormonal responses to resistance training overreaching. Metabolism 2006; 55:282-91. [PMID: 16483870 DOI: 10.1016/j.metabol.2005.08.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 08/14/2005] [Indexed: 11/21/2022]
Abstract
The purpose of this investigation was to examine the effects of amino acid supplementation on muscular performance and resting hormone concentrations during resistance training overreaching. Seventeen resistance-trained men were randomly assigned to either an amino acid (AA) or a placebo (P) group and underwent 4 weeks of total-body resistance training designed to induce a state of overreaching. The protocol consisted of two 2-week phases (phase 1, 3 sets of 8 exercises performed for 8-12 repetitions; phase 2, 5 sets of 5 exercises performed for 3-5 repetitions). Muscle strength and resting blood samples were determined before (T1) and at the end of each training week (T2-T5). One-repetition maximum squat and bench press decreased at T2 in the P group but not in the AA group; both groups showed similar increases in strength at T3 to T5. Significant elevations in serum creatine kinase and uric acid were observed at T2 in the P group; the elevation in creatine kinase correlated highly to reductions in 1-repetition maximum squat (r = -0.67, r(2) = 0.45). Significant elevations in serum sex hormone-binding globulin were observed during overreaching in the P group from T2 to T5; this response was abolished in the AA group. Significant reductions in total testosterone were observed in the P group at T4 compared with T1, and total testosterone values were higher for the AA group than for the P group from T2 to T4. Serum 22-kd growth hormone concentrations were elevated at T2 to T5 in P group only. No differences were observed in resting cortisol and insulinlike growth factor 1. Hemoglobin concentrations were significantly reduced at T2 to T5 in the P group. These results indicate that the initial impact of high-volume resistance training is muscle strength reduction and hormonal/biochemical alterations. It appears that amino acid supplementation is effective for attenuating muscle strength loss during initial high-volume stress, possibly by reducing muscle damage by maintaining an anabolic environment.
Collapse
Affiliation(s)
- William J Kraemer
- Department of Kinesiology, Human Performance Laboratory, University of Connecticut, Storrs, CT 06269-1110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
While various models for exercise-induced muscle damage (EIMD) have been introduced, many of them use maximal voluntary contractions of the elbow flexors and knee extensors performed on isokinetic dynamometers. Few studies have used exercise protocols that attempt to replicate submaximal eccentric muscle actions that commonly occur during daily activities. Downhill backwards walking has been used previously as an EIMD model. However, the common markers of muscle damage have not been systematically examined for this model. The purpose of this study was to determine the magnitude of muscle damage induced by downhill backward walking with regard to changes in commonly-used indirect markers of EIMD. Twenty subjects aged between 19 y and 42 y completed a bout of 60 min of downhill (-15%) backward walking in which a single limb performed submaximal eccentric actions at a stepping rate of 30 - 35 strides per min. A repeated measures ANOVA revealed significant (p < 0.05) increases from baseline for soreness (24 hr- 96 hr), tenderness (24 hr - 96 hr), and plasma creatine kinase activity (0.5 hr - 96 hr), and significant decreases (p < 0.05) in maximal voluntary isometric (approximately 25%) and isokinetic (-15%) strength (0.5 hr - 96 hr) post-walk for the exercised limb. The time course of observed changes in these markers was similar to that reported for EIMD models of the elbow flexors and knee extensors. However, the magnitude of muscle damage appeared more consistent with that demonstrated following submaximal eccentric exercise.
Collapse
Affiliation(s)
- C Nottle
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, Western Australia.
| | | |
Collapse
|
14
|
|
15
|
|