1
|
Newcomer K, Robbins KJ, Perone J, Hinojosa FL, Chen D, Jones S, Kaufman CK, Weiser R, Fields RC, Tyler DS. Malignant melanoma: evolving practice management in an era of increasingly effective systemic therapies. Curr Probl Surg 2022; 59:101030. [PMID: 35033317 PMCID: PMC9798450 DOI: 10.1016/j.cpsurg.2021.101030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Ken Newcomer
- Department of Surgery, Barnes-Jewish Hospital, Washington University, St. Louis, MO
| | | | - Jennifer Perone
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | | | - David Chen
- e. Department of Medicine, Washington University, St. Louis, MO
| | - Susan Jones
- f. Department of Pediatrics, Washington University, St. Louis, MO
| | | | - Roi Weiser
- University of Texas Medical Branch, Galveston, TX
| | - Ryan C Fields
- Department of Surgery, Washington University, St. Louis, MO
| | - Douglas S Tyler
- Department of Surgery, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
2
|
Neoadjuvant talimogene laherparepvec plus surgery versus surgery alone for resectable stage IIIB-IVM1a melanoma: a randomized, open-label, phase 2 trial. Nat Med 2021; 27:1789-1796. [PMID: 34608333 DOI: 10.1038/s41591-021-01510-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022]
Abstract
Talimogene laherparepvec (T-VEC) is a herpes simplex virus type 1-based intralesional oncolytic immunotherapy approved for the treatment of unresectable melanoma. The present, ongoing study aimed to estimate the treatment effect of neoadjuvant T-VEC on recurrence-free survival (RFS) of patients with advanced resectable melanoma. An open-label, phase 2 trial (NCT02211131) was conducted in 150 patients with resectable stage IIIB-IVM1a melanoma who were randomized to receive T-VEC followed by surgery (arm 1, n = 76) or surgery alone (arm 2, n = 74). The primary endpoint was a 2-year RFS in the intention-to-treat population. Secondary and exploratory endpoints included overall survival (OS), pathological complete response (pCR), safety and biomarker analyses. The 2-year RFS was 29.5% in arm 1 and 16.5% in arm 2 (overall hazard ratio (HR) = 0.75, 80% confidence interval (CI) = 0.58-0.96). The 2-year OS was 88.9% for arm 1 and 77.4% for arm 2 (overall HR = 0.49, 80% CI = 0.30-0.79). The RFS and OS differences between arms persisted at 3 years. In arm 1, 17.1% achieved a pCR. Increased CD8+ density correlated with clinical outcomes in an exploratory analysis. Arm 1 adverse events were consistent with previous reports for T-VEC. The present study met its primary endpoint and estimated a 25% reduction in the risk of disease recurrence for neoadjuvant T-VEC plus surgery versus upfront surgery for patients with resectable stage IIIB-IVM1a melanoma.
Collapse
|
4
|
Nie RC, Yuan SQ, Wang Y, Chen YB, Cai YY, Chen S, Li SM, Zhou J, Chen GM, Luo TQ, Zhou ZW, Li YF. Robust immunoscore model to predict the response to anti-PD1 therapy in melanoma. Aging (Albany NY) 2019; 11:11576-11590. [PMID: 31796647 PMCID: PMC6932919 DOI: 10.18632/aging.102556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
This study aimed to construct immune-related predictors to identify responders to anti-PD1 therapy of melanoma through CIBERSORT algorithm. Using the least absolute shrinkage and selection operator (LASSO) logistic regression, we constructed an immunoscore consisting of 8 immune subsets to predict the anti-PD1 response. This score achieved an overall accuracy of AUC = 0.77, 0.80 and 0.73 in the training cohort, validation cohort and on-anti-PD1 cohort, respectively. Patients with high immunoscores had significantly higher objective response rates (ORRs) than did those with low immunoscores (ORR: 53.8% vs 17.7%, P < 0.001 for entire pre-anti-PD1 cohort; 42.1% vs 15.1%, P = 0.022 for on-anti-PD1 cohort; 66.7% vs 16.7%, P = 0.038 for neoadjuvant anti-PD1 cohort). Prolonged survival trends were observed in high-immunoscore group (1-year PFS: 42.4% vs 14.3%, P = 0.059; 3-year OS: 41.5% vs 31.6%, P = 0.057). Furthermore, we found that high-immunoscore group exhibited higher fractions of tumor-infiltrating lymphocytes and an increased IFN-γ response. Analysis of the results of the GSEA indicated a significant enrichment of antitumor immunity pathways in the high-immunoscore group. Therefore, this study indicated that we constructed a robust immunoscore model to predict the anti-PD1 response of metastatic melanoma and the neoadjuvant anti-PD1 response of resectable melanoma.
Collapse
Affiliation(s)
- Run-Cong Nie
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shu-Qiang Yuan
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yun Wang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying-Bo Chen
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yan-Yu Cai
- VIP Department, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shi Chen
- Department of Gastric Surgery, The 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shu-Man Li
- Department of Experimental Research (Cancer Institute), Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jie Zhou
- Department of Experimental Research (Cancer Institute), Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guo-Ming Chen
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tian-Qi Luo
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhi-Wei Zhou
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuan-Fang Li
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
5
|
Miura JT, Zager JS. Neo-DREAM study investigating Daromun for the treatment of clinical stage IIIB/C melanoma. Future Oncol 2019; 15:3665-3674. [PMID: 31538818 DOI: 10.2217/fon-2019-0433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
High-risk resectable melanoma poses therapeutic challenges as this subgroup remains most vulnerable for disease recurrence. Immunotherapy has established its efficacy in cases of advanced melanoma, and now is actively being investigated in the multimodal management of resectable disease. Daromun, an intralesional immunocytokine, has emerged as a unique immunotherapy in its ability to preferentially target tumor cells, resulting in direct destruction, while generating a bystander effect that leads to a distant treatment effect. On the basis of its mechanism of action, there is growing interest in delivering immune-based therapies in a neoadjuvant setting. In this review, the neo-DREAM study, a Phase III trial comparing the safety and efficacy of neoadjuvant Daromun for resectable stage IIIB/C melanoma will be described. Clinical Trial Registration Number: NCT03567889.
Collapse
Affiliation(s)
- John T Miura
- Departments of Cutaneous Oncology & Sarcoma, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Surgery, University of South Florida School of Medicine, Tampa FL, USA
| | - Jonathan S Zager
- Departments of Cutaneous Oncology & Sarcoma, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Surgery, University of South Florida School of Medicine, Tampa FL, USA
| |
Collapse
|
6
|
Li J, Chen L, Yan L, Gu Z, Chen Z, Zhang A, Zhao F. A Novel Drug Design Strategy: An Inspiration from Encaging Tumor by Metallofullerenol Gd@C 82(OH) 22. Molecules 2019; 24:molecules24132387. [PMID: 31252662 PMCID: PMC6650816 DOI: 10.3390/molecules24132387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022] Open
Abstract
Cancer remains a major threat to human health worldwide. Cytotoxicity has imposed restrictions on the conventional cytotoxic drug-based chemotherapy. The rapidly-developing nanomedicine has shown great promise in revolutionizing chemotherapy with improved efficiency and reduced toxicity. Gd@C82(OH)22, a novel endohedral metallofullerenol, was first reported by our research group to suppress tumor growth and metastasis efficiently without obvious toxicity. Gd@C82(OH)22 imprisons tumors by facilitating the formation of surrounding fibrous layers which is different from chemotherapeutics that poison tumor cells. In this review, the authors first reported the antineoplastic activity of metallofullerenol Gd@C82(OH)22 followed by further discussions on its new anti-cancer molecular mechanism—tumor encaging. On this basis, the unparalleled advantages of nanomedicine in the future drug design are discussed. The unique interaction modes of Gd@C82(OH)22 with specific targeted biomolecules may shed light on a new avenue for drug design. Depending on the surface characteristics of target biomolecules, nanomedicine, just like a transformable and dynamic key, can self-assemble into suitable shapes to match several locks for the thermodynamic stability, suggesting the target-tailoring ability of nanomedicine.
Collapse
Affiliation(s)
- Jinxia Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Linlin Chen
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Zhaofang Chen
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Aiping Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| |
Collapse
|