1
|
Santos T, Pires-Luís AS, Calado AM, Oliveira E, Cunha M, Silva J, Viana P, Teixeira-da-Silva J, Oliveira C, Barros A, Sá R, Sousa M. Stereological study of organelle distribution in human mature oocytes. Sci Rep 2024; 14:25816. [PMID: 39468218 PMCID: PMC11519492 DOI: 10.1038/s41598-024-76893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
The ultrastructure of human oocytes has been described only qualitatively. To offer a precise organelle spatial distribution and organelle volume during the main maturation stages, we previously conducted stereological studies on prophase-I (GV) and metaphase-I (MI) oocytes, and here we present results on metaphase-II (MII) oocytes. Five donor oocytes from different donors were processed for transmission electron microscopy, and quantification of organelle distribution was performed using point-counting stereology. Statistical tests compared the means of the relative volumes occupied by organelles among oocyte regions. The most abundant organelles were elements of the smooth endoplasmic reticulum (SER), such as SER small vesicles, SER medium vesicles, SER large vesicles and SER isolated tubules, along with mitochondria, followed by SER tubular aggregates, cortical vesicles and lysosomes. Significant differences between oocyte regions were found for lysosomes, cortical vesicles and SER large vesicles. Comparisons of MII oocytes to previous findings in GV and MI oocytes evidenced specific patterns of organelle distribution and relative volumes. This final evaluation thus enables to track organelle spatial reorganization across oocyte stages, which, in addition to gathered knowledge, may be useful to assist in improvements of stimulation protocols, in-vitro maturation media and cryopreservation techniques.
Collapse
Affiliation(s)
- Tânia Santos
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Department of Veterinarian Science, School of Veterinary and Agricultural Sciences (ECAV), Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), CECAV-Interdisciplinary Research Center in Animal Health, Universidade de Trás-Os-Montes E Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana S Pires-Luís
- Department of Pathology, Unidade Local de Saúde de Vila Nova de Gaia/Espinho, Unidade 1, Rua Conceição Fernandes 1079, 4434-502, Vila Nova de Gaia, Portugal
| | - Ana Margarida Calado
- Department of Veterinarian Science, School of Veterinary and Agricultural Sciences (ECAV), Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), CECAV-Interdisciplinary Research Center in Animal Health, Universidade de Trás-Os-Montes E Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Elsa Oliveira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Mariana Cunha
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Joaquina Silva
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Paulo Viana
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - José Teixeira-da-Silva
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Cristiano Oliveira
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
- Service of Genetics, Department of Pathology, Faculty of Medicine, University of Porto, RISE Health Research Network, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Miglietta S, Cristiano L, Battaglione E, Macchiarelli G, Nottola SA, De Marco MP, Costanzi F, Schimberni M, Colacurci N, Caserta D, Familiari G. Heavy Metals in Follicular Fluid Affect the Ultrastructure of the Human Mature Cumulus-Oocyte Complex. Cells 2023; 12:2577. [PMID: 37947655 PMCID: PMC10650507 DOI: 10.3390/cells12212577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
It is known that exposure to heavy metal such as lead (Pb) and cadmium (Cd) has several adverse effects, particularly on the human reproductive system. Pb and Cd have been associated with infertility in both men and women. In pregnant women, they have been associated with spontaneous abortion, preterm birth, and impairment of the development of the fetus. Since these heavy metals come from both natural and anthropogenic activities and their harmful effects have been observed even at low levels of exposure, exposure to them remains a public health issue, especially for the reproductive system. Given this, the present study aimed to investigate the potential reproductive effects of Pb and Cd levels in the follicular fluid (FF) of infertile women and non-smokers exposed to heavy metals for professional reasons or as a result of living in rural areas near landfills and waste disposal areas in order to correlate the intrafollicular presence of these metals with possible alterations in the ultrastructure of human cumulus-oocyte complexes (COCs), which are probably responsible for infertility. Blood and FF metals were measured using atomic absorption spectrometry. COCs corresponding to each FF analyzed were subjected to ultrastructural analyses using transmission electron microscopy. We demonstrated for the first time that intrafollicular levels of Pb (0.66 µg/dL-0.85 µg/dL) and Cd (0.26 µg/L-0.41 µg/L) could be associated with morphological alterations of both the oocyte and cumulus cells' (CCs) ultrastructure. Since blood Cd levels (0.54 µg/L-1.87 µg/L) were above the current reference values established by the guidelines of the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA) (0.4 µg/L), whereas blood Pb levels (1.28 µg/dL-3.98 µg/dL) were below the ATSDR reference values (≤5 µg/dL), we believe that these alterations could be due especially to Cd, even if we cannot exclude a possible additional effect of Pb. Our results highlighted that oocytes were affected in maturation and quality, whereas CCs showed scarcely active steroidogenic elements. Regressing CCs, with cytoplasmic alterations, were also numerous. According to Cd's endocrine-disrupting activity, the poor steroidogenic activity of CCs might correlate with delayed oocyte cytoplasmic maturation. So, we conclude that levels of heavy metals in the blood and the FF might negatively affect fertilization, embryo development, and pregnancy, compromising oocyte competence in fertilization both directly and indirectly, impairing CC steroidogenic activity, and inducing CC apoptosis.
Collapse
Affiliation(s)
- Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| | - Loredana Cristiano
- Department of Life Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.C.); (G.M.)
| | - Ezio Battaglione
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| | - Guido Macchiarelli
- Department of Life Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.C.); (G.M.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| | - Maria Paola De Marco
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (D.C.)
| | - Flavia Costanzi
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (D.C.)
| | - Mauro Schimberni
- GENERA Centers for Reproductive Medicine, Clinica Valle Giulia, 00197 Rome, Italy;
| | - Nicola Colacurci
- Department of Woman Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Donatella Caserta
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (D.C.)
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| |
Collapse
|
3
|
Gatti M, Belli M, De Rubeis M, Khalili MA, Familiari G, Nottola SA, Macchiarelli G, Hajderi E, Palmerini MG. Ultrastructural Evaluation of Mouse Oocytes Exposed In Vitro to Different Concentrations of the Fungicide Mancozeb. BIOLOGY 2023; 12:biology12050698. [PMID: 37237511 DOI: 10.3390/biology12050698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Mancozeb is a widely used fungicide, considered to be an endocrine disruptor. In vivo and in vitro studies evidenced its reproductive toxicity on mouse oocytes by altering spindle morphology, impairing oocyte maturation, fertilization, and embryo implantation. Mancozeb also induces dose-dependent toxicity on the ultrastructure of mouse granulosa cells, including chromatin condensation, membrane blebbing, and vacuolization. We evaluated the effects on the ultrastructure of mouse oocytes isolated from cumulus-oocyte complexes (COCs), exposed in vitro to increasing concentrations of mancozeb. COCs were matured in vitro with or without (control) low fungicide concentrations (0.001-1 μg/mL). All mature oocytes were collected and prepared for light and transmission electron microscopy. Results showed a preserved ultrastructure at the lowest doses (0.001-0.01 μg/mL), with evident clusters of round-to-ovoid mitochondria, visible electron-dense round cortical granules, and thin microvilli. Mancozeb concentration of 1 μg/mL affected organelle density concerning controls, with a reduction of mitochondria, appearing moderately vacuolated, cortical granules, and microvilli, short and less abundant. In summary, ultrastructural data revealed changes mainly at the highest concentration of mancozeb on mouse oocytes. This could be responsible for the previously described impaired capability in oocyte maturation, fertilization, and embryo implantation, demonstrating its impact on the reproductive health and fertility.
Collapse
Affiliation(s)
- Marta Gatti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Manuel Belli
- MEBIC Consortium, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mariacarla De Rubeis
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Mohammad Ali Khalili
- Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Edmond Hajderi
- Department of Pharmaceutical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
4
|
Miglietta S, Cristiano L, Espinola MSB, Masiello MG, Micara G, Battaglione E, Linari A, Palmerini MG, Familiari G, Aragona C, Bizzarri M, Macchiarelli G, Nottola SA. Effects of Simulated Microgravity In Vitro on Human Metaphase II Oocytes: An Electron Microscopy-Based Study. Cells 2023; 12:1346. [PMID: 37408181 DOI: 10.3390/cells12101346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The Gravity Force to which living beings are subjected on Earth rules the functionality of most biological processes in many tissues. It has been reported that a situation of Microgravity (such as that occurring in space) causes negative effects on living beings. Astronauts returning from space shuttle missions or from the International Space Station have been diagnosed with various health problems, such as bone demineralization, muscle atrophy, cardiovascular deconditioning, and vestibular and sensory imbalance, including impaired visual acuity, altered metabolic and nutritional status, and immune system dysregulation. Microgravity has profound effects also on reproductive functions. Female astronauts, in fact, suppress their cycles during space travels, and effects at the cellular level in the early embryo development and on female gamete maturation have also been observed. The opportunities to use space flights to study the effects of gravity variations are limited because of the high costs and lack of repeatability of the experiments. For these reasons, the use of microgravity simulators for studying, at the cellular level, the effects, such as those, obtained during/after a spatial trip, are developed to confirm that these models can be used in the study of body responses under conditions different from those found in a unitary Gravity environment (1 g). In view of this, this study aimed to investigate in vitro the effects of simulated microgravity on the ultrastructural features of human metaphase II oocytes using a Random Positioning Machine (RPM). We demonstrated for the first time, by Transmission Electron Microscopy analysis, that microgravity might compromise oocyte quality by affecting not only the localization of mitochondria and cortical granules due to a possible alteration of the cytoskeleton but also the function of mitochondria and endoplasmic reticulum since in RPM oocytes we observed a switch in the morphology of smooth endoplasmic reticulum (SER) and associated mitochondria from mitochondria-SER aggregates to mitochondria-vesicle complexes. We concluded that microgravity might negatively affect oocyte quality by interfering in vitro with the normal sequence of morphodynamic events essential for acquiring and maintaining a proper competence to fertilization in human oocytes.
Collapse
Affiliation(s)
- Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Salomé B Espinola
- Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy
| | - Maria Grazia Masiello
- Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy
| | - Giulietta Micara
- Department of Maternal, Infantile and Urological Sciences, Sapienza University, 00165 Rome, Italy
| | - Ezio Battaglione
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy
| | - Antonella Linari
- Department of Maternal, Infantile and Urological Sciences, Sapienza University, 00165 Rome, Italy
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy
| | - Cesare Aragona
- Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy
| | - Mariano Bizzarri
- Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Stefania A Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy
| |
Collapse
|
5
|
Effect of ovarian growth factors on ultra-structural maturation in frozen human immature oocytes after in vitro maturation: a comparative study. Reprod Health 2022; 19:215. [PMID: 36457030 PMCID: PMC9714011 DOI: 10.1186/s12978-022-01521-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In artificial reproductive technique (ART), nearly 20% of human oocytes are immature in the germinal vesicle (GV) phase. Consequently, the best method for reserving them is cryopreserving GV oocytes, and in vitro maturation (IVM) is recommended. The aim of this study was to determine the ultrastructure characteristics of fresh and vitrified immature human oocytes after in vitro maturation in conditioned mediums. METHODS This study was a comparative laboratory study carried out in 2018 at Afzalipur Infertility Center in Kerman. 170 fresh and 198 vitrified GV oocytes were cultured within three IVM mediums; α-mem as control medium, α-mem supplemented with human bone marrow mesenchymal stem cells (BM-MSCs) and α-mem supplemented with ovarian growth factors (O.F). After 48 h, the maturation rate and morphological feature of IVM oocytes [132 fresh IVM (fIVM) and 134 vitrified IVM (vIVM)] were evaluated. For the ultrastructure study, 10 IVM oocytes from each medium were compared with 10 fresh in vivo oocytes cancelled from ART. RESULTS The survival rate of vitrified GV oocyte after thawing was 88.88%. The oocyte maturation rate was reduced in vIVM compared to the fIVM group (76.33% vs. 77.95%); the highest oocyte maturation rate in the O.F fIVM and lowest in α-mem vIVM (82.35% vs. 71.42%). The lowest number of cortical granules was observed in α-mem vIVM, but the greatest presence of M-SER aggregates was in O.F fIVM. In vIVM oocytes, the oolemma contained irregular little microvillus organization. CONCLUSIONS The O.F mediums have shown the highest maturation which defends the oocyte ultra-structural conservation.
Collapse
|
6
|
McClam M, Xiao S. Preserving Oocytes in Oncofertility†. Biol Reprod 2022; 106:328-337. [PMID: 35040934 PMCID: PMC8862718 DOI: 10.1093/biolre/ioac008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 01/19/2023] Open
Abstract
The prodigious rise of cancer survival rates enables many cancer survivors to live long lives. Therefore, the side effects of cancer treatments as well as the long-term quality of life after cancer have become more relevant. Ovarian toxicity is a major off-target effect of anticancer agents for childhood and young adult female cancer patients. Both chemotherapy and irradiation have been demonstrated to damage the ovary and increase the risks of premature ovarian failure (POF), early menopause, ovarian endocrine disorders, and sub- or infertility. Oncofertility is an emerging and multidisciplinary research and medical field that focuses on providing cancer patients with fertility preservation options. Oocyte quality and quantity are one of the most important factors to determine women's fertility success; therefore, preserving oocytes is paramount for maintaining the ability of young female cancer patients' reproduction after their recovery. This review summarizes peer-reviewed literature on current oocyte preservation options in oncofertility. We describe in-depth oocyte and embryo cryopreservation, ovarian suppression, ovarian tissue cryopreservation, in vitro maturation, ovarian transposition, and adjuvant therapy. Further, we discuss current guidelines and practices of female fertility preservation that cover preserving oocytes.
Collapse
Affiliation(s)
- Maria McClam
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
7
|
Tharasanit T, Thuwanut P. Oocyte Cryopreservation in Domestic Animals and Humans: Principles, Techniques and Updated Outcomes. Animals (Basel) 2021; 11:ani11102949. [PMID: 34679970 PMCID: PMC8533007 DOI: 10.3390/ani11102949] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022] Open
Abstract
Oocyte cryopreservation plays important roles in basic research and the application of models for genetic preservation and in clinical situations. This technology provides long-term storage of gametes for genetic banking and subsequent use with other assisted reproductive technologies. Until recently, oocytes have remained the most difficult cell type to freeze, as the oocytes per se are large with limited surface area to cytoplasm ratio. They are also highly sensitive to damage during cryopreservation, and therefore the success rate of oocyte cryopreservation is generally poor when compared to noncryopreserved oocytes. Although advancement in oocyte cryopreservation has progressed rapidly for decades, the improvement of cryosurvival and clinical outcomes is still required. This review focuses on the principles, techniques, outcomes and prospects of oocyte cryopreservation in domestic animals and humans.
Collapse
Affiliation(s)
- Theerawat Tharasanit
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Bangkok 10330, Thailand
- Veterinary Clinical Stem Cells and Bioengineering Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| | - Paweena Thuwanut
- Department of Obstetrics and Gynecology, Division of Reproductive Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
8
|
Lee JH, Park JK, Yoon SY, Park EA, Jun JH, Lim HJ, Kim J, Song H. Advanced Maternal Age Deteriorates the Developmental Competence of Vitrified Oocytes in Mice. Cells 2021; 10:1563. [PMID: 34205802 PMCID: PMC8234289 DOI: 10.3390/cells10061563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Advanced maternal age (AMA) is known to be related to the decrease in the quality and quantity of oocytes. Oocyte vitrification is now considered an established assisted reproductive technology for fertility preservation. However, it remains unclear whether the oocytes in older women are more sensitive to various insults during vitrification. Thus, we evaluated whether AMA affects cellular and molecular features and developmental outcomes of oocytes after vitrification in mice. The oocytes were grouped as young fresh (YF), young vitrified/warmed (YV), aged fresh (AF), and aged vitrified/warmed (AV). The survival rate of AV oocytes was significantly lower than that of YV oocytes. The rates of fertilization, cleavage, and blastocyst formation of AV oocytes were significantly lower than those of other groups. AV oocytes were represented as aberrations in mitochondria distribution, microvacuole size, and autophagosome formation, leading to delayed embryo development in mice. This delay was associated with a reduced number of total cells and trophectoderm in the blastocyst developed from AV oocytes. Collectively, AMA exaggerates the vulnerability of oocytes to cryo-damage that occurs during vitrification in mice, suggesting that the current vitrification protocols optimized for oocytes from young females should be modified for oocytes from aged women.
Collapse
Affiliation(s)
- Ju Hee Lee
- Department of Biomedical Sciences, CHA University, Seongnam 13488, Korea; (J.H.L.); (J.K.P.)
| | - Jae Kyun Park
- Department of Biomedical Sciences, CHA University, Seongnam 13488, Korea; (J.H.L.); (J.K.P.)
- Fertility Center of Gangnam CHA Medical Center, CHA University, Seoul 06125, Korea;
| | - Sook Young Yoon
- Fertility Center of Gangnam CHA Medical Center, CHA University, Seoul 06125, Korea;
| | - Eun A Park
- CHA Fertility Center Seoul Station, CHA University, Seoul 04637, Korea;
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135, Korea;
| | - Hyunjung J. Lim
- Department of Veterinary Medicine, School of Veterinary Medicine, Konkuk University, Seoul 05029, Korea;
| | - Jayeon Kim
- CHA Fertility Center Seoul Station, CHA University, Seoul 04637, Korea;
| | - Haengseok Song
- Department of Biomedical Sciences, CHA University, Seongnam 13488, Korea; (J.H.L.); (J.K.P.)
| |
Collapse
|
9
|
Belli M, Palmerini MG, Bianchi S, Bernardi S, Khalili MA, Nottola SA, Macchiarelli G. Ultrastructure of mitochondria of human oocytes in different clinical conditions during assisted reproduction. Arch Biochem Biophys 2021; 703:108854. [PMID: 33794190 DOI: 10.1016/j.abb.2021.108854] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Infertility affects around 8% of couples with a slight change in percentage in the last years. Despite the significant efforts made in Assisted Reproductive Technologies (ARTs) in handling this disorder, oocyte quality remains a crucial factor for a positive outcome. A better understanding of the dynamics underlying oocyte maturation, fertilization, and embryo development remains one of the main areas for progress in the ARTs field. Mitochondria are believed to play an essential role in these processes. Mitochondria have a crucial part in producing energy for oocyte maturation and embryo development throughout precise cellular functions comprising Ca2+ homeostasis regulation, glycolysis, amino acid and fatty acid metabolism, and regulation of apoptosis. Recent studies suggest that mitochondrial structure, content, and function may be related to oocyte competence, embryo viability, and implantation success during ARTs. Their defects could lead to low fertilization rates and embryonic development failure. This review aimed to provide an overview of the available literature data surrounding the correlation between changes at ultrastructural level of mitochondria or correlated-mitochondrial aggregates and oocyte quality and ARTs treatments. Our reported data demonstrated that oocyte mitochondrial ultrastructural alterations could be partial or complete recovery during the early embryo stages. However, these changes could persist as quiescent during the pre-implantation embryo development, causing abnormalities that become evident only during fetal and postnatal life. These factors led to consider the mitochondria as a crucial marker of oocyte and embryo quality, as well as a strategic target for further prospective therapeutical approaches.
Collapse
Affiliation(s)
- Manuel Belli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Serena Bianchi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Sara Bernardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, 00161, Rome, Italy.
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| |
Collapse
|
10
|
Bianchi S, Nottola SA, Torge D, Palmerini MG, Necozione S, Macchiarelli G. Association between Female Reproductive Health and Mancozeb: Systematic Review of Experimental Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072580. [PMID: 32283742 PMCID: PMC7177957 DOI: 10.3390/ijerph17072580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 11/29/2022]
Abstract
Mancozeb is a widely used fungicide approved for use in agriculture in many countries with long persistence in the environment and consequent bioaccumulation in tissues and biological fluids. Despite the large amount of studies published in recent years, the relationship between mancozeb exposure and female reproductive health is not fully elucidated. In order to summarize current evidence on mancozeb exposure and female reproductive disease, we performed a systematic review of literature. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to make this review. An adapted version of the National Toxicology Program’s Office of Health and Assessment and Translation (OHAT) framework was used to evaluate the risk of bias. Electronic search on two databases (PubMed and Scopus) was used to find experimental studies (in vitro and in vivo) on mancozeb exposure. The database search identified 250 scientific articles, 20 of which met our inclusion criteria. Selected data were then reviewed and summarized in tables. Overall, mancozeb represents a hazard for female reproductive health, with different mechanisms of action. Undoubtedly more experimental and epidemiological studies are required to definitively validate mancozeb as reproductive toxicant.
Collapse
Affiliation(s)
- Serena Bianchi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.B.); (D.T.); (M.G.P.); (S.N.); (G.M.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-06-4991-8072
| | - Diana Torge
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.B.); (D.T.); (M.G.P.); (S.N.); (G.M.)
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.B.); (D.T.); (M.G.P.); (S.N.); (G.M.)
| | - Stefano Necozione
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.B.); (D.T.); (M.G.P.); (S.N.); (G.M.)
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.B.); (D.T.); (M.G.P.); (S.N.); (G.M.)
| |
Collapse
|
11
|
Type of protein supplement in cryopreservation solutions impacts on the degree of ultrastructural damage in frozen-thawed human oocytes. Cryobiology 2020; 95:143-150. [PMID: 32243889 DOI: 10.1016/j.cryobiol.2020.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/27/2020] [Indexed: 11/21/2022]
Abstract
Protein sources used as supplements of IVF culture media are known to have several implications for the function and stability of embryo culture environment. In fact, they i) transport biologically active molecules ii) chelate heavy metals, iii) regulate media pH, iii) scavenge reactive oxygen species (ROS) and iv) attenuate osmotic stress to which cells are exposed in sub-optimal culture conditions. Instead, their specific relevance to the formulation of cryopreservation solutions used for gamete and embryo cryopreservation remains uncertain. In the present work, we tested the hypothesis that different protein supplements present in cryopreservation solutions, serum or plasma protein solution (PPS), or different concentrations of the same supplement (serum), are associated with different types and/or magnitude of cryopreservation-derived cell damage. To this end, using cryopreservation solutions containing serum or PPS, donated supernumerary human mature oocytes were frozen-thawed by slow freezing and compared with fresh controls. Ultrastructural markers of oocyte quality were adopted as objective measure to assess possible damage from cryopreservation. The study results indicate that the adoption of serum minimises cell damage induced by cryopreservation. Indeed, typical hallmarks of cryodamage in human oocytes, i.e. loss of cortical granules, zona pellucida hardening and above all vacuolization, were largely reduced in oocytes cryopreserved with solutions containing serum, especially if used a higher concentration. This suggest that oocyte cryopreservation still has significant margins of improvement that may derive also from composition of cryopreservation media.
Collapse
|
12
|
Alteri A, Viganò P, Maizar AA, Jovine L, Giacomini E, Rubino P. Revisiting embryo assisted hatching approaches: a systematic review of the current protocols. J Assist Reprod Genet 2018; 35:367-391. [PMID: 29350315 PMCID: PMC5904073 DOI: 10.1007/s10815-018-1118-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/04/2018] [Indexed: 11/29/2022] Open
Abstract
Zona pellucida (ZP) manipulation, termed "assisted hatching" (AH), has been introduced in order to favor embryo hatching and ultimately improve assisted reproductive technology success but with poor proofs of safety and biological plausibility. We herein provide a systematic review of clinical outcomes following the application of different methods of ZP manipulation on fresh or frozen/thawed embryos at different developmental stages in different groups of patients. Out of the 69 papers that compared the clinical outcomes deriving from hatched versus non-hatched embryos, only 11 considered blastocysts while the rest referred to cleavage stage embryos. The ZP thinning of fresh embryos either by chemical or laser approach was shown to provide very limited benefit in terms of clinical outcomes. Better results were observed with procedures implying a higher degree of zona manipulation, including zona removal. Studies comparing the mechanical or chemical procedures to those laser-mediated consistently reported a superiority of the latter ones over the former. Literature is consistent for a benefit of ZP breaching in thawed blastocysts. This review provides the current knowledge on the AH procedure in order to improve its efficacy in the appropriate context. Embryologists might benefit from the approaches presented herein in order to improve Assisted Reproduction Technologies (ART) outcomes.
Collapse
Affiliation(s)
- Alessandra Alteri
- Obstetrics and Gynaecology Department, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Paola Viganò
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Ahmad Abu Maizar
- California Fertility Partners, 11818 Wilshire Blvd, Los Angeles, CA, 90025, USA
| | - Luca Jovine
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Hälsovägen 7, SE-141 83, Huddinge, Sweden
| | - Elisa Giacomini
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Patrizia Rubino
- HRC Fertility, 333 South Arroyo Parkway, Pasadena, CA, 91105, USA
| |
Collapse
|
13
|
No difference in mitochondrial distribution is observed in human oocytes after cryopreservation. Arch Gynecol Obstet 2017. [DOI: 10.1007/s00404-017-4428-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Freeze/thaw stress induces organelle remodeling and membrane recycling in cryopreserved human mature oocytes. J Assist Reprod Genet 2016; 33:1559-1570. [PMID: 27586998 DOI: 10.1007/s10815-016-0798-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Our aim was to evaluate the ultrastructure of human metaphase II oocytes subjected to slow freezing and fixed after thawing at different intervals during post-thaw rehydration. METHODS Samples were studied by light and transmission electron microscopy. RESULTS We found that vacuolization was present in all cryopreserved oocytes, reaching a maximum in the intermediate stage of rehydration. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates decreased following thawing, particularly in the first and intermediate stages of rehydration, whereas mitochondria-vesicle (MV) complexes augmented in the same stages. At the end of rehydration, vacuoles and MV complexes both diminished and M-SER aggregates increased again. Cortical granules (CGs) were scarce in all cryopreserved oocytes, gradually diminishing as rehydration progressed. CONCLUSIONS This study also shows that such a membrane remodeling is mainly represented by a dynamic process of transition between M-SER aggregates and MV complexes, both able of transforming into each other. Vacuoles and CG membranes may take part in the membrane recycling mechanism.
Collapse
|
15
|
Coticchio G, Dal Canto M, Fadini R, Mignini Renzini M, Guglielmo MC, Miglietta S, Palmerini MG, Macchiarelli G, Nottola SA. Ultrastructure of human oocytes after in vitro maturation. Mol Hum Reprod 2015; 22:110-8. [PMID: 26646501 DOI: 10.1093/molehr/gav071] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/02/2015] [Indexed: 12/30/2022] Open
Abstract
STUDY HYPOTHESIS How does the ultrastructure of human oocytes matured in vitro compare with oocytes collected from women after full hormonal stimulation? STUDY FINDING The ultrastructure of human oocytes matured in vitro is largely, but not entirely, similar to those matured in vivo. WHAT IS KNOWN ALREADY Embryos derived from in vitro-matured oocytes often have limited developmental potential, possibly as an effect of inappropriate in vitro maturation (IVM) conditions. Transmission electron microscopy (TEM) is a valuable research tool to compare in vivo and in vitro matured oocytes. However, previous studies on the ultrastructure of human IVM oocytes were done with inadequate material or inappropriate IVM conditions, and have limited significance. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Immature cumulus cell-enclosed oocytes, retrieved from mid-sized antral follicles of women requiring IVM treatment, were matured in vitro for 30 h. No leftover germinal vesicle-stage oocytes collected from fully stimulated cycles were used. Control in vivo matured oocytes were obtained from age-matched women undergoing full ovarian stimulation. In vitro and in vivo matured oocytes were analysed by TEM and compared according to previously established morphometric criteria of oocyte quality. MAIN RESULTS AND THE ROLE OF CHANCE All oocytes had normal ooplasm showing uniform distribution of organelles. Mitochondrial morphology appeared similar between the maturation conditions. Cortical granules were found typically stratified in a single, mostly continuous row just beneath the ooplasm in all oocytes. Microvilli were well preserved after IVM. Vacuoles were only occasionally found in all oocytes and, if present, they were frequently associated with lysosomes. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates and mitochondria-vesicles (MV) complexes were commonly found in in vivo matured oocytes. However, large MV complexes partially replaced M-SER aggregates in IVM oocytes. LIMITATIONS, REASONS FOR CAUTION As a note of caution it should be noticed that, being laborious and technically demanding, TEM cannot be applied to a large number of samples in a single investigation. Therefore, our data require further independent confirmation. WIDER IMPLICATIONS OF THE FINDINGS Our data suggests the notion that TEM remains a valuable research tool that can also offer quantitative data if associated with morphometric criteria of evaluation. Therefore, it can be adopted to test pre-clinically the performance of novel in vitro systems that are demanded to make oocytes IVM more successful in the human. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This study was independently funded by Biogenesi Reproductive Medicine Centre, Monza, Italy. All authors declare that their participation in the study did not involve factual or potential conflicts of interests.
Collapse
Affiliation(s)
| | | | - Rubens Fadini
- Biogenesi Reproductive Medicine Centre, Monza, Italy
| | | | | | - Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, University 'La Sapienza', Rome, Italy
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of ĹAquila, L'Aquila, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of ĹAquila, L'Aquila, Italy
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, University 'La Sapienza', Rome, Italy
| |
Collapse
|
16
|
Bianchi S, Macchiarelli G, Micara G, Linari A, Boninsegna C, Aragona C, Rossi G, Cecconi S, Nottola SA. Ultrastructural markers of quality are impaired in human metaphase II aged oocytes: a comparison between reproductive and in vitro aging. J Assist Reprod Genet 2015; 32:1343-58. [PMID: 26276431 DOI: 10.1007/s10815-015-0552-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/27/2015] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Childbearing delay contributes to the increase of subfertile couples that require assisted reproductive technology (ART). Subfertility relates with reproductive aging (RA). In vitro aging (IvA) (due to extended culture) may also impair oocyte competence. Aims of this study were to evaluate and compare the oocyte ultrastructure after RA and IvA. METHODS Cumulus-oocyte complexes (COCs) (n = 68), with metaphase II oocyte and expanded cumulus, from consenting patients (<35 years old and ≥35 years old, n = 36), were selected by phase contrast microscopy and fixed at pick up, or after 24 h culture. COCs (n = 44) were studied by light and qualitative/morphometric transmission electron microscopy. Two-way ANOVA, with age and culture as grouping factors, was applied for statistical analysis (p < 0.05). Metaphase II cumulus-free oocytes (n = 24) were selected for confocal microscopy observations. RESULTS Significant decrease of mitochondria-smooth endoplasmic reticulum aggregates, increase of mitochondria-vesicle complexes size and amount, decrease of cortical granules and microvilli, and alterations of the spindle structure characterized both RA and IvA oocytes. These changes were significantly more evident in the RA oocytes submitted to IvA. RA oocytes also showed changes of the zona pellucida and occurrence of vacuoles after culture. Cumuli appeared re-compacted after culture, irrespective of the age of the patients. CONCLUSIONS These data demonstrated that aging is related to decay of oocyte ultrastructural quality, and that oocytes from elder women are more sensitive to prolonged culture (IvA) than the oocytes from younger women. These morphological results should be considered when applying ART in aged patients, rescue ICSI, or artificial oocyte activation.
Collapse
Affiliation(s)
- S Bianchi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - G Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - G Micara
- Department of Gynaecology-Obstetrics & Urology, "Sapienza" University, Rome, Italy
| | - A Linari
- Department of Gynaecology-Obstetrics & Urology, "Sapienza" University, Rome, Italy
| | - C Boninsegna
- Department of Gynaecology-Obstetrics & Urology, "Sapienza" University, Rome, Italy
| | - C Aragona
- Department of Gynaecology-Obstetrics & Urology, "Sapienza" University, Rome, Italy
| | - G Rossi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - S Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - S A Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, "Sapienza" University, Rome, Italy.
| |
Collapse
|
17
|
Bianchi V, Macchiarelli G, Borini A, Lappi M, Cecconi S, Miglietta S, Familiari G, Nottola SA. Fine morphological assessment of quality of human mature oocytes after slow freezing or vitrification with a closed device: a comparative analysis. Reprod Biol Endocrinol 2014; 12:110. [PMID: 25421073 PMCID: PMC4255960 DOI: 10.1186/1477-7827-12-110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/14/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Human mature oocytes are very susceptible to cryodamage. Several reports demonstrated that vitrification might preserve oocyte better than slow freezing. However, this is still controversial. Thus, larger clinical, biological and experimental trials to confirm this concept are necessary. The aim of the study was to evaluate and compare fine morphological features in human mature oocytes cryopreserved with either slow freezing or vitrification. METHODS We used 47 supernumerary human mature (metaphase II) oocytes donated by consenting patients, aged 27-32 years, enrolled in an IVF program. Thirtyfive oocytes were cryopreserved using slow freezing with 1.5 M propanediol +0.2 M sucrose concentration (20 oocytes) or a closed vitrification system (CryoTip Irvine Scientific CA) (15 oocytes). Twelve fresh oocytes were used as controls. All samples were prepared for light and transmission electron microscopy evaluation. RESULTS Control, slow frozen/thawed and vitrified/warmed oocytes (CO, SFO and VO, respectively) were rounded, 90-100 μm in diameter, with normal ooplasm showing uniform distribution of organelles. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates and small mitochondria-vesicle (MV) complexes were the most numerous structures found in all CO, SFO and VO cultured for 3-4 hours. M-SER aggregates decreased, and large MV complexes increased in those SFO and VO maintained in culture for a prolonged period of time (8-9 hours). A slight to moderate vacuolization was present in the cytoplasm of SFO. Only a slight vacuolization was present in VO, whereas vacuoles were almost completely absent in CO. Amount and density of cortical granules (CG) appeared abnormally reduced in SFO and VO, irrespective of the protocol applied. CONCLUSIONS Even though, both slow freezing and vitrification ensured a good overall preservation of the oocyte, we found that: 1) prolonged culture activates an intracellular membrane "recycling" that causes the abnormal transformation of the membranes of the small MV complexes and of SER into larger rounded vesicles; 2) vacuolization appears as a recurrent form of cell damage during slow freezing and, at a lesser extent, during vitrification using a closed device; 3) premature CG exocytosis was present in both SFO and VO and may cause zona pellucida hardening.
Collapse
Affiliation(s)
- Veronica Bianchi
- Casa di Cura Città di Udine, Udine, Italy, affiliated to Tecnobios Procreazione, Centre for Reproductive Health, Bologna, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L´Aquila, L’Aquila, Italy
| | - Andrea Borini
- Casa di Cura Città di Udine, Udine, Italy, affiliated to Tecnobios Procreazione, Centre for Reproductive Health, Bologna, Italy
| | - Michela Lappi
- Casa di Cura Città di Udine, Udine, Italy, affiliated to Tecnobios Procreazione, Centre for Reproductive Health, Bologna, Italy
| | - Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L´Aquila, L’Aquila, Italy
| | - Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University, Rome, Italy
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University, Rome, Italy
| | - Stefania A Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University, Rome, Italy
| |
Collapse
|
18
|
Palmerini MG, Antinori M, Maione M, Cerusico F, Versaci C, Nottola SA, Macchiarelli G, Khalili MA, Antinori S. Ultrastructure of immature and mature human oocytes after cryotop vitrification. J Reprod Dev 2014; 60:411-20. [PMID: 25168087 PMCID: PMC4284314 DOI: 10.1262/jrd.2014-027] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In vitro maturation of vitrified immature germinal vesicle (GV) oocytes is a promising fertility preservation option. We analyzed the ultrastructure of human GV oocytes after Cryotop vitrification (GVv) and compared it with fresh GV (GVc), fresh mature metaphase II (MIIc) and Cryotop-vitrified mature (MIIv) oocytes. By phase contrast microscopy and light microscopy, the oolemmal and cytoplasmic organization of fresh and vitrified oocytes did not show significant changes. GVv oocytes showed significant ultrastructural alterations of the microvilli in 40% of the samples; small vacuoles and occasional large/isolated vacuoles were abnormally present in the ooplasm periphery of 50% of samples. The ultrastructure of nuclei and mitochondria-vesicle (MV) complexes, as well as the distribution and characteristics of cortical granules (CGs), were comparable with those of GVc oocytes. MIIv oocytes showed an abnormal ultrastructure of microvilli in 30% of the
samples and isolated large vacuoles in 70% of the samples. MV complexes were normal, but mitochondria-smooth endoplasmic reticulum aggregates appeared to be of reduced size. CGs were normally located under the oolemma but presented abnormalities in distribution and matrix electron density. In conclusion, Cryotop vitrification preserved main oocyte characteristics in the GV and MII stages, even if peculiar ultrastructural alterations appeared in both stages. This study also showed that the GV stage appears more suitable for vitrification than the MII stage, as indicated by the good ultrastructural preservation of important structures that are present only in immature oocytes, like the nucleus and migrating CGs.
Collapse
Affiliation(s)
- Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Vitamin E-analog Trolox prevents endoplasmic reticulum stress in frozen-thawed ovarian tissue of capuchin monkey (Sapajus apella). Cell Tissue Res 2013; 355:471-80. [PMID: 24362491 DOI: 10.1007/s00441-013-1764-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/31/2013] [Indexed: 10/25/2022]
Abstract
Ovarian fragments were exposed to 0.5 M sucrose and 1 M ethylene glycol (freezing solution; FS) with or without selenium or Trolox. Histological and ultrastructural analyses showed that the percentages of normal follicles in control tissue and in tissue after exposure to FS + 50 μM Trolox were similar. Trolox prevented endoplasmic reticulum (ER)-related vacuolization, which is commonly observed in oocytes and stromal tissue after exposure to FS. From the evaluated stress markers, superoxide dismutase 1 (SOD1) was up-regulated in ovarian tissue exposed to FS + 10 ng/ml selenium. Ovarian fragments were subsequently frozen-thawed in the presence of FS with or without 50 μM Trolox, followed by in vitro culture (IVC). Antioxidant capacity in ovarian fragments decreased after freeze-thawing in Trolox-free FS compared with FS + 50 μM Trolox. Although freezing itself minimized the percentage of viable follicles in each solution, Trolox supplementation resulted in higher rates of viable follicles (67 %), even after IVC (61 %). Furthermore, stress markers SOD1 and ERp29 were up-regulated in ovarian tissue frozen-thawed in Trolox-free medium. Relative mRNA expression of growth factors markers was evaluated after freeze-thawing followed by IVC. BMP4, BMP5, CTGF, GDF9 and KL were down-regulated independently of the presence of Trolox in FS but down-regulation was less pronounced in the presence of Trolox. Thus, medium supplementation with 50 μM Trolox prevents ER stress and, consequently, protects ovarian tissue from ER-derived cytoplasmic vacuolization. ERp29 but not ERp60, appears to be a key marker linking stress caused by freezing-thawing and cell vacuolization.
Collapse
|
20
|
Jiménez-Trigos E, Vicente JS, Marco-Jiménez F. Live birth from slow-frozen rabbit oocytes after in vivo fertilisation. PLoS One 2013; 8:e83399. [PMID: 24358281 PMCID: PMC3866232 DOI: 10.1371/journal.pone.0083399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/12/2013] [Indexed: 02/03/2023] Open
Abstract
In vivo fertilisation techniques such as intraoviductal oocyte transfer have been considered as alternatives to bypass the inadequacy of conventional in vitro fertilisation in rabbit. There is only one study in the literature, published in 1989, that reports live offspring from cryopreserved rabbit oocytes. The aim of the present study was to establish the in vivo fertilisation procedure to generate live offspring with frozen oocytes. First, the effect of two recipient models (i) ovariectomised or (ii) oviduct ligated immediately after transfer on the ability of fresh oocytes to fertilise were compared. Second, generation of live offspring from slow-frozen oocytes was carried out using the ligated oviduct recipient model. Throughout the experiment, recipients were artificially inseminated 9 hours prior to oocyte transfer. In the first experiment, two days after unilateral transfer of fresh oocytes, oviducts and uterine horns were flushed to assess embryo recovery rates. The embryo recovery rates were low compared to control in both ovariectomised and ligated oviduct groups. However, ligated oviduct recipient showed significantly (P<0.05) higher embryo recovery rates compared to ovariectomised and control-transferred. In the second experiment, using bilateral oviduct ligation model, all females that received slow-frozen oocytes became pregnant and delivered a total of 4 live young naturally. Thus, in vivo fertilisation is an effective technique to generate live offspring using slow-frozen oocytes in rabbits.
Collapse
Affiliation(s)
- Estrella Jiménez-Trigos
- Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universitat Politècnica de València, Valencia, Spain
| | - José S. Vicente
- Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universitat Politècnica de València, Valencia, Spain
| | - Francisco Marco-Jiménez
- Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
21
|
Clark NA, Swain JE. Oocyte cryopreservation: searching for novel improvement strategies. J Assist Reprod Genet 2013; 30:865-75. [PMID: 23779099 DOI: 10.1007/s10815-013-0028-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/31/2013] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To highlight emerging techniques aimed at improving oocyte cryopreservation. METHODS Review of available and relevant literature through Pubmed and Medline searches. RESULTS Oocyte cryopreservation is an increasingly common procedure utilized for assisted reproduction and may benefit several patient populations. Therefore, improving efficiency is paramount in realizing the tremendous promise of this approach. However, in addition to numerous studies looking to improve oocyte cryopreservation efficacy via examination of variables involved with protocol methodology, such as type/concentration of cryoprotectant (CPA), type of storage device, or cooling/warming rates, there are more novel approaches for improvement. These alternate approaches include utilizing different the stages of oocytes, examining alteration of basal media and buffer composition, optimizing CPA exchange protocols and device loading through use of automated technology, as well as examination/manipulation of oocyte cellular composition to improve cryotolerance. Finally, elucidating more accurate or insightful indicators of "success" is crucial for continued improvement of oocyte cryopreservation. CONCLUSION Oocyte cryopreservation has improved dramatically in recent years and is receiving widespread clinical use. Novel approaches to further improve success, as well as improved methods to assess this success will aid in continued improvement.
Collapse
Affiliation(s)
- Natalie A Clark
- Department of OB/GYN, University of Michigan, Ann Arbor, MI 48108, USA
| | | |
Collapse
|
22
|
The effect of vitrification on ultrastructure of human in vitro matured germinal vesicle oocytes. Eur J Obstet Gynecol Reprod Biol 2013; 167:69-75. [DOI: 10.1016/j.ejogrb.2012.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/15/2012] [Accepted: 11/22/2012] [Indexed: 11/18/2022]
|
23
|
Khalili MA, Maione M, Palmerini MG, Bianchi S, Macchiarelli G, Nottola SA. Ultrastructure of human mature oocytes after vitrification. Eur J Histochem 2012; 56:e38. [PMID: 23027354 PMCID: PMC3493984 DOI: 10.4081/ejh.2012.e38] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/02/2012] [Indexed: 11/23/2022] Open
Abstract
Since the introduction of human assisted reproduction, oocyte cryopreservation has been regarded as an attractive option to capitalize the reproductive potential of surplus oocytes and preserve female fertility. However, for two decades the endeavor to store oocytes has been limited by the not yet optimized methodologies, with the consequence of poor clinical outcome or of uncertain reproducibility. Vitrification has been developed as the promising technology of cryopreservation even if slow freezing remains a suitable choice. Nevertheless, the insufficiency of clinical and correlated multidisciplinary data is still stirring controversy on the impact of this technique on oocyte integrity. Morphological studies may actually provide a great insight in this debate. Phase contrast microscopy and other light microscopy techniques, including cytochemistry, provided substantial morpho-functional data on cryopreserved oocyte, but are unable to unraveling fine structural changes. The ultrastructural damage is one of the most adverse events associated with cryopreservation, as an effect of cryo-protectant toxicity, ice crystal formation and osmotic stress. Surprisingly, transmission electron microsco py has attracted only limited attention in the field of cryopreservation. In this review, the subcellular structure of human mature oocytes following vitrification is discussed at the light of most relevant ultrastructural studies.
Collapse
Affiliation(s)
- M A Khalili
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
The Alpha consensus meeting on cryopreservation key performance indicators and benchmarks: proceedings of an expert meeting. Reprod Biomed Online 2012; 25:146-67. [DOI: 10.1016/j.rbmo.2012.05.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/11/2012] [Accepted: 05/17/2012] [Indexed: 11/20/2022]
|
25
|
Wang H, Racowsky C, Combelles CMH. Is it best to cryopreserve human cumulus-free immature oocytes before or after in vitro maturation? Cryobiology 2012; 65:79-87. [PMID: 22691237 DOI: 10.1016/j.cryobiol.2012.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/15/2012] [Accepted: 06/03/2012] [Indexed: 01/09/2023]
Abstract
Freezing unfertilized oocytes is an option for females without a partner, either to preserve their fertility prior to sterilizing cancer treatment or for social reasons. Our study considered whether it is best to freeze immature human oocytes at the germinal vesicle (GV) stage, prior to in vitro maturation (IVM) or at metaphase-II (M-II), after IVM. Sibling GV-stage oocytes from stimulated ICSI cycles were allocated to freezing either prior to (n=109) or after (n=107) IVM. Cumulus-free oocytes were cryopreserved using a choline-substituted slow-freezing protocol and matured in a defined medium, with analysis of chromatin, microtubules, and microfilaments by three-dimensional imaging. Cryopreserved oocytes were compared with oocytes matured in vitro but never frozen (n=114). Survival was similar between oocytes frozen before or after IVM (69.7% vs. 70.5%). Polar body extrusion after IVM was lower in oocytes frozen at the GV stage versus those matured and then frozen (51.3% vs. 75.7%) or not frozen (75.4%). Stratification by patient age (<36 and ⩾36year) showed no difference in oocyte survival or maturation. Oocytes frozen as GVs showed elevated proportions of spontaneous activation (with or without polar body), an effect augmented by patient age. Spindle and chromosome configurations were disrupted to similar extents in both groups of frozen oocytes, with no further detrimental effect of patient age. The length, width, and volume of bipolar M-II spindles were comparable in all three groups. When frozen as GVs, oocytes exhibited decreased maturation and increased spontaneous activation, suggesting that it is best to freeze oocytes at M-II.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
26
|
Jiménez-Trigos E, Naturil-Alfonso C, Vicente JS, Marco-Jiménez F. Post-Warming Competence ofIn VivoMatured Rabbit Oocytes Treated with Cytoskeletal Stabilization (Taxol) and Cytoskeletal Relaxant (Cytochalasin B) Before Vitrification. Reprod Domest Anim 2012; 48:15-9. [DOI: 10.1111/j.1439-0531.2012.02018.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Barritt J, Luna M, Sandler B, Duke M, B. Copperman A. Elective oocyte freezing for the preservation of fertility. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojog.2012.21005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Combelles CMH, Ceyhan ST, Wang H, Racowsky C. Maturation outcomes are improved following Cryoleaf vitrification of immature human oocytes when compared to choline-based slow-freezing. J Assist Reprod Genet 2011; 28:1183-92. [PMID: 22089264 DOI: 10.1007/s10815-011-9674-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022] Open
Abstract
PURPOSE The cryopreservation of immature oocytes permits oocyte banking for patients at risk of losing their fertility. However, the optimum protocol for such fertility preservation remains uncertain. METHODS The present study investigated the survival, maturation, cytoskeletal and chromosome organization of sibling immature oocytes leftover from controlled ovarian stimulation cycles, that were either slow-frozen (with choline-substitution) or vitrified. A comparison group included oocytes that were never cryopreserved. RESULTS Among the three groups, comparable rates were observed for both survival (67-70%) and polar body extrusion (59-79%). Significantly more oocytes underwent spontaneous activation after IVM following slow-freezing compared with either vitrification or no cryopreservation. Likewise, the incidence of spindle abnormalities was greatest in the slow-frozen group, with no differences in spindle morphometrics or chromosome organization. CONCLUSIONS While the overall incidence of mature oocytes with normal bipolar spindles from warmed immature oocytes was low, the yield using Cryoleaf vitrification was slightly superior to choline-based slow-freezing.
Collapse
|
29
|
Jiménez-Trigos E, Naturil-Alfonso C, Vicente JS, Marco-Jiménez F. Effects of cryopreservation on the meiotic spindle, cortical granule distribution and development of rabbit oocytes. Reprod Domest Anim 2011; 47:472-8. [PMID: 22497624 DOI: 10.1111/j.1439-0531.2011.01906.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although much progress has been made in oocyte cryopreservation since 1971, live offspring have only been obtained in a few species and in rabbits. The aim of our study was to evaluate the effect of vitrification and slow freezing on the meiotic spindle, cortical granule (CG) distribution and their developmental competence. Oocytes were vitrified in 16.84% ethylene glycol, 12.86% formamide, 22.3% dimethyl sulphoxide, 7% PVP and 1% of synthetic ice blockers using Cryotop as device or slow freezing in 1.5 m PROH and 0.2 m sucrose in 0.25 ml sterile French mini straws. Meiotic spindle and CG distribution were assessed using a confocal laser-scanning microscope. To determine oocyte competence, in vitro development of oocytes from each cryopreservation procedure was assessed using parthenogenesis activation. Our data showed that oocytes were significantly affected by both cryopreservation procedures. In particular, meiotic spindle organization was dramatically altered after cryopreservation. Oocytes with peripheral CG distribution have a better chance of survival in cryopreservation after slow-freezing procedures compared to vitrification. In addition, slow freezing of oocytes led to higher cleavage and blastocyst rates compared to vitrification. Our data showed that, in rabbits, structural alterations are more evident in vitrified oocytes than in slow-frozen oocytes, probably as a consequence of sensitivity to high levels of cryoprotectants. Slow-freezing method is currently the recommended option for rabbit oocyte cryopreservation.
Collapse
Affiliation(s)
- E Jiménez-Trigos
- Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universidad Politécnica de Valencia, Valencia, Spain
| | | | | | | |
Collapse
|
30
|
Gualtieri R, Mollo V, Barbato V, Fiorentino I, Iaccarino M, Talevi R. Ultrastructure and intracellular calcium response during activation in vitrified and slow-frozen human oocytes. Hum Reprod 2011; 26:2452-60. [DOI: 10.1093/humrep/der210] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Tatone C, Di Emidio G, Vento M, Ciriminna R, Artini PG. Cryopreservation and oxidative stress in reproductive cells. Gynecol Endocrinol 2010; 26:563-7. [PMID: 20230330 DOI: 10.3109/09513591003686395] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In spite of the optimisation of cryopreservation protocols, post-thawing trauma to mammalian gametes cannot be completely avoided. Based on recent literature, cellular cryodamage in reproductive cells has been extensively characterised in terms of changes in the cell structure, whereas biochemical alterations have been poorly investigated. The present paper reviews the current knowledge about the involvement of oxidative stress in frozen-thawed cells by considering the most relevant studies in sperm and oocytes. Recognising that spermatozoa are highly susceptible to oxidative damage induced by cryopreservation, the need for further research is highlighted in order to understand whether changes in the redox state have a role in the reduced developmental potential of cryopreserved human reproductive cells.
Collapse
Affiliation(s)
- Carla Tatone
- Department of Health Sciences, University of L'Aquila, L'Aquila, Italy.
| | | | | | | | | |
Collapse
|
32
|
Molinari E, Revelli A, Racca C, Delle Piane L, Massobrio M. Slow-freezing-induced changes of birefringent structures in human oocytes are related to responsiveness to ovulation induction. Reprod Biomed Online 2010; 20:619-24. [DOI: 10.1016/j.rbmo.2010.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/09/2009] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
|
33
|
Coticchio G, Borini A, Distratis V, Maione M, Scaravelli G, Bianchi V, Macchiarelli G, Nottola SA. Qualitative and morphometric analysis of the ultrastructure of human oocytes cryopreserved by two alternative slow cooling protocols. J Assist Reprod Genet 2010; 27:131-40. [PMID: 20177770 DOI: 10.1007/s10815-010-9394-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 01/26/2010] [Indexed: 10/19/2022] Open
Abstract
PURPOSE To ascertain possible cell damage from cryopreservation, the ultrastructure of human oocytes cryopreserved by slow cooling was assessed. MATERIALS AND METHODS Cryopreservation was performed through two protocols with one-step or two-step propanediol. Fresh control oocytes were examined for comparison. Samples were processed for transmission electron microscopy analysis. RESULTS By light microscopy, both fresh and frozen-thawed oocytes appeared regularly rounded, with intact zona pellucida, and homogeneous cytoplasm. By electron microscopy observation, organelles were abundant and uniformly dispersed. Mitochondria-smooth endoplasmic reticulum associations appeared regular. However, both the amount and density of cortical granules appeared abnormally reduced in frozen-thawed samples. Slight to moderate vacuolization was also found in the ooplasm of oocytes of both frozen groups. CONCLUSIONS Slow cooling ensures a good overall preservation of human oocytes. However, cytoplasmic vacuolization and cortical granule loss appears associated with cryopreservation, irrespective of the protocol used.
Collapse
|
34
|
Gu YF, Lu CF, Lin G, Lu GX. A comparative analysis of the zona pellucida birefringence of fresh and frozen–thawed human embryos. Reproduction 2010; 139:121-7. [DOI: 10.1530/rep-09-0227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cryopreservation of human embryos is thought to induce alteration in the glycoprotein matrix and lead to zona change. However, this assumption has been full of controversies till now. The objective of this study was to evaluate the effect of cryopreservation on zona pellucida of human embryos. Fresh (n=106, from 40 patients) and frozen–thawed embryos (n=123, from 40 patients) were obtained from consenting patients who received conventional IVF and ICSI treatment. The birefringence of zona pellucida in human fresh and frozen–thawed embryos was imaged and quantitatively analyzed using polarized light microscopy before embryo transfer. There was no significant difference in retardance and thickness of the zona pellucida multilaminar structure between the two groups. Pregnancy and implantation rates of transferred fresh and frozen–thawed embryos were also compared. No significant difference was found in the rates of clinical pregnancy (47.5 vs 37.5%) and implantation (24.5 vs 23.2%) between the two groups. This study suggests that there is no significant change in the zona pellucida birefringence of human embryos before and after cryopreservation.
Collapse
|
35
|
Cutting R, Barlow S, Anderson R, On Behalf of ACE and BFS. Human oocyte cryopreservation: Evidence for practice. HUM FERTIL 2009; 12:125-36. [DOI: 10.1080/14647270903132115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
|
37
|
Nottola SA, Coticchio G, Sciajno R, Gambardella A, Maione M, Scaravelli G, Bianchi S, Macchiarelli G, Borini A. Ultrastructural markers of quality in human mature oocytes vitrified using cryoleaf and cryoloop. Reprod Biomed Online 2009; 19 Suppl 3:17-27. [DOI: 10.1016/s1472-6483(10)60280-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|