1
|
Feng J, Zhang Y, Yang X, Zhang Y. Heterogeneous spectrum of CFTR gene mutations in Chinese patients with CAVD and the dilemma of genetic blocking strategy. Reproduction 2022; 164:R47-R56. [PMID: 35913788 DOI: 10.1530/rep-21-0315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 06/17/2022] [Indexed: 01/18/2023]
Abstract
In brief The genetic heterogeneity of CFTR gene mutations in Chinese patients with congenital absence of the vas deferens (CAVD) differs from the hotspot mutation pattern in Caucasians. This paper reviews and suggests a more suitable screening strategy for the Chinese considering the dilemma of CFTR genetic blocking. Abstract Congenital absence of the vas deferens (CAVD) is a major cause of obstructive azoospermia and male infertility, with CFTR gene mutation as the main pathogenesis. Other genes such as ADGRG2, SLC9A3, and PANK2 have been discovered and proven to be associated with CAVD in recent studies. Multiple CFTR hotspot mutations have been found in Caucasians in several foreign countries, and relevant genetic counseling and preimplantation genetic diagnosis (PGD) have been conducted for decades. However, when we examined research on Chinese CAVD, we discovered that CFTR mutations show heterogeneity in the Chinese Han population, and there is currently no well-established screening strategy. Therefore, we have reviewed the literature, combining domestic and international research as well as our own, aiming to review research progress on the CFTR gene in China and discuss the appropriate scope for CFTR gene detection, the detection efficiency of other CAVD-related genes, and the screening strategy applicable to the Chinese Han population. This study provides more valuable information for genetic counseling and a theoretical basis for PGD and treatment for couples with CAVD when seeking reproductive assistance.
Collapse
Affiliation(s)
- Jiarong Feng
- 1Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yanan Zhang
- 1Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaojian Yang
- 1Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan Zhang
- 1Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Meneghello A, Antognoli A, Sonato A, Zacco G, Ruffato G, Cretaio E, Romanato F. Label-free efficient and accurate detection of cystic fibrosis causing mutations using an azimuthally rotated GC-SPR platform. Anal Chem 2014; 86:11773-81. [PMID: 25359284 DOI: 10.1021/ac503272y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plasmonic nanosensors are candidates for the development of new sensors with low detection limits, high sensitivity, and specificity for target detection: these characteristics are of critical importance in the screening of mutations responsible for inherited diseases. In this work, we focused our study on the detection of some of the most frequent mutations responsible for cystic fibrosis (CF) among the Italian population. For the detection of the CF mutations we adopted a recently developed and highly sensitive Grating Coupled-Surface Plasmon Resonance (GC-SPR) enhanced spectroscopy method for label-free molecular identification exploiting a conical illumination configuration. Gold sinusoidal gratings functionalized with heterobifunctional PEG were used as sensing surfaces, and the specific biodetection was achieved through the coupling with DNA hairpin probes designed for single nucleotide discrimination. Such substrates were used to test unlabeled PCR amplified homozygous wild type (wt) and heterozygous samples, deriving from clinical samples, for the screened mutations. Hybridization conditions were optimized to obtain the maximum discrimination ratio (DR) between the homozygous wild type and the heterozygous samples. SPR signals obtained from hybridizing wild type and heterozygous samples show DRs able to identify univocally the correct genotypes, as confirmed by fluorescence microarray experiments run in parallel. Furthermore, SPR genotyping was not impaired in samples containing unrelated DNA, allowing the platform to be used for the concomitant discrimination of several alleles also scalable for a high throughput screening setting.
Collapse
Affiliation(s)
- Anna Meneghello
- Veneto Nanotech S.C.p.A. , Via S. Crispino 106, Padova, Italy , c/o Nanofab, Via delle Industrie 5, 30175 Marghera (VE), Italy
| | | | | | | | | | | | | |
Collapse
|
3
|
|
4
|
Kricka LJ, Master SR. Validation and Quality Control of Protein Microarray-based Analytical Methods. Mol Biotechnol 2007; 38:19-31. [DOI: 10.1007/s12033-007-0066-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 07/06/2007] [Indexed: 01/20/2023]
|
5
|
Heidecker B, Hare JM. The use of transcriptomic biomarkers for personalized medicine. Heart Fail Rev 2007; 12:1-11. [PMID: 17393305 DOI: 10.1007/s10741-007-9004-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/13/2007] [Indexed: 12/29/2022]
Abstract
Microarrays are a high throughput technology that allows the quantification of tens of thousands of RNA transcripts in a single reaction. This new technology offers the promise of comprehensive study of disease at a genomic level, potentially identifying novel molecular abnormalities, developing novel clinical biomarkers, and investigating drug efficacy. The ability to develop a molecular profile corresponding to a therapeutic effect is the basis for the concept of drug repositioning. With regard to prediction of clinical events, microarray technology has the potential to contribute to the development of sophisticated new biomarkers useful as predictors of disease etiology, outcome, and responsiveness to therapy-so-called personalized medicine. Currently progress in the field is hampered by a degree of skepticism about the reliability of microarray data and its relevance for clinical applications. Here we discuss possible pitfalls of transcriptomic analysis, review current developments in the cardiovascular area and address the use of transcriptomics for clinical applications.
Collapse
Affiliation(s)
- Bettina Heidecker
- Divison of Cardiology, Miller School of Medicine, University of Miami, Clinical Research Building, 1120 NW 14th Street, Suite 1112, Miami, FL 33136, USA
| | | |
Collapse
|
6
|
Salvado C, Cram D. Microarray Technology for Mutation Analysis of Low-Template DNA Samples. METHODS IN MOLECULAR MEDICINE™ 2007; 132:153-73. [PMID: 17876083 DOI: 10.1007/978-1-59745-298-4_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Microarrays containing oligonucleotide mutation probes are emerging as useful platforms for the diagnosis of genetic disease. Herein, we describe the development and validation of an in-house microarray suitable for the diagnosis of common cystic fibrosis (CF) mutations in low-template DNA samples such as those taken for preimplantation genetic diagnosis and prenatal diagnosis. The success of the CF microarray was based on the ability to generate sufficient target DNA for hybridization to the array probes using either direct polymerase chain reaction (PCR) amplification or whole-genome amplification followed by PCR. From replicate experiments using target DNA carrying known CF mutations, it was possible to define strict diagnostic parameters for the accurate diagnosis of CF. This protocol serves as a general guide for DNA-testing laboratories to develop other microarray platforms that may eventually replace traditional PCR-based genetic testing in the near future.
Collapse
Affiliation(s)
- Chelsea Salvado
- Monash Immunology and Stem Cell Laboraotires, Monash University, Melbourne, Australia
| | | |
Collapse
|
7
|
Berber E, Leggo J, Brown C, Berber E, Gallo N, Feilotter H, Lillicrap D. DNA microarray analysis for the detection of mutations in hemophilia A. J Thromb Haemost 2006; 4:1756-62. [PMID: 16879218 DOI: 10.1111/j.1538-7836.2006.02055.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Congenital deficiency of factor (F) VIII results in the inherited X-linked bleeding disorder hemophilia A. More than 900 different mutations are reported in the hemophilia A mutation database with the largest number of mutations being single nucleotide substitutions distributed throughout the gene. Complicating the molecular characterization of this disease is the complexity of the F8 gene, the mutational heterogeneity, and technical limitations of the current mutation detection techniques. OBJECTIVE Development of a DNA oligonucleotide microarray-based technique for F8 gene analysis to detect hemophilia A mutations. METHODS To construct the oligonucleotide DNA microarray system: a total of 720, one base pair overlapping, 25-mer perfect match probes were designed from six exons of the F8 gene. Twenty-two different F8 gene mutations previously identified by CSGE and DNA sequence analysis were tested by using a loss-of-signal analysis approach. Differentially labeled wild type and hemophilic samples were co-hybridized to the array. Sequence alterations were detected by quantifying relative losses of test sample hybridization signals to the perfectly matched probes. RESULTS A total of 22 different F8 mutations were tested. To test the sensitivity of the system, a blinded study was performed on 16 of the samples. F8 gene mutations can be detected with 96% efficiency with this microarray system. CONCLUSION This proof-of-principle study has demonstrated that a F8 DNA microarray platform is an alternative gene mutation analysis approach that has a high sensitivity, and reproducibility. The methodology is, however, expensive and time consuming, and with the reduction in sequencing costs, direct sequencing is now the most cost and time efficient strategy for hemophilia A mutation analysis.
Collapse
Affiliation(s)
- E Berber
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Eshaque B, Dixon B. Technology platforms for molecular diagnosis of cystic fibrosis. Biotechnol Adv 2006; 24:86-93. [PMID: 16171966 DOI: 10.1016/j.biotechadv.2005.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/01/2005] [Accepted: 08/01/2005] [Indexed: 11/19/2022]
Abstract
Cystic fibrosis (CF) is one of the most common recessive genetic diseases in North America. So far, 1200 mutations causing CF have been identified. Several techniques such as allele specific oligonucleotide (ASO) dot-blot, reverse dot-blot, amplification refractory mutation (ARMS), and an oligo-ligation assay, are available to detect the most common mutations. However, detecting compound heterozygotes between DeltaF508, the most common disease causing mutation, and other mutations which are rare is difficult as some mutations are common only to particular ethnic groups. Therefore, new diagnostic tests such as restriction enzyme assays and single stranded conformational polymorphism (SSCP) have been designed to recognize rare and population-specific mutations. This review will describe the most commonly used CF mutation detecting diagnostic techniques, as well as novel assays and techniques currently in development that might be employed in future.
Collapse
Affiliation(s)
- Bithi Eshaque
- Department of Biology, University of Waterloo, Ontario, Canada
| | | |
Collapse
|
9
|
Current awareness in prenatal diagnosis. Prenat Diagn 2005; 25:628-33. [PMID: 16315344 DOI: 10.1002/pd.1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Sanoudou D, Vafiadaki E, Arvanitis DA, Kranias E, Kontrogianni-Konstantopoulos A. Array lessons from the heart: focus on the genome and transcriptome of cardiomyopathies. Physiol Genomics 2005; 21:131-43. [PMID: 15831843 DOI: 10.1152/physiolgenomics.00259.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our understanding of the cardiovascular system has evolved through the years by extensive studies emphasizing the identification of the molecular and physiological mechanisms involved in its normal function and disease pathogenesis. Major discoveries have been made along the way. However, the majority of this work has focused on specific genes or pathways rather than integrative approaches. In cardiomyopathies alone, over 30 different loci have shown mutations with varying inheritance patterns, yet mostly coding for structural proteins. The emergence of microarrays in the early 1990s paved the way to a new era of cardiovascular research. Microarrays dramatically accelerated the rhythm of discoveries by giving us the ability to simultaneously study thousands of genes in a single experiment. In the field of cardiovascular research, microarrays are having a significant contribution, with the majority of work focusing on end-stage cardiomyopathies that lead to heart failure. Novel molecular mechanisms have been identified, known pathways are seen under new light, disease subgroups begin to emerge, and the effects of various drugs are molecularly dissected. This cross-study data comparison concludes that consistent energy metabolism gene expression changes occur across dilated, hypertrophic, and ischemic cardiomyopathies, while Ca2+ homeostasis changes are prominent in the first two cardiomyopathies, and structural gene expression changes accompany mostly the dilated form. Gene expression changes are further correlated to disease genetics. The future of microarrays in the cardiomyopathy field is discussed with an emphasis on optimum experimental design and on applications in diagnosis, prognosis, and drug discovery.
Collapse
Affiliation(s)
- Despina Sanoudou
- Molecular Biology Division, Center for Basic Research, Foundation for Biomedical Research of the Academy of Athens, Athens, Greece.
| | | | | | | | | |
Collapse
|
11
|
Murphy D, Redmond G. Optical detection and discrimination of cystic fibrosis-related genetic mutations using oligonucleotide-nanoparticle conjugates. Anal Bioanal Chem 2005; 381:1122-9. [PMID: 15744517 DOI: 10.1007/s00216-004-3030-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 10/14/2004] [Accepted: 12/16/2004] [Indexed: 11/30/2022]
Abstract
Novel methods for application of oligonucleotide-gold nanoparticle conjugates to selective colorimetric detection and discrimination of cystic fibrosis (CF) related genetic mutations in model oligonucleotide systems are presented. Three-strand oligonucleotide complexes are employed, wherein two probe oligonucleotide-gold nanoparticle conjugates are linked together by a third target oligonucleotide strand bearing the CF-related mutation(s). By monitoring the temperature dependence of the optical properties of the complexes, either in solution or on silica gel plates, melting behaviors may be accurately and reproducibly compared. Using this approach, fully complementary sequences are successfully distinguished from mismatched sequences, with single base mismatch resolution, for Delta F 508, M470V, R74W and R75Q mutations.
Collapse
Affiliation(s)
- Deirdre Murphy
- Nanotechnology Group, Tyndall National Institute, Lee Maltings, Cork, Ireland
| | | |
Collapse
|
12
|
Abstract
Congenital bilateral absence of the vas deferens (CBAVD) is a form of infertility with an autosomal recessive genetic background in otherwise healthy males. CBAVD is caused by cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations on both alleles in approximately 80% of cases. Striking CFTR genotypic differences are observed in cystic fibrosis (CF) and in CBAVD. The 5T allele is a CBAVD mutation with incomplete penetrance. Recent evidence confirmed that a second polymorphic locus exists and is a major CFTR modifier. The development of minigene models have led to results suggesting that CFTR exon 9 is skipped in humans because of unusual suboptimal 5' splice sites. An extremely rare T3 allele has been reported and it has recently been confirmed that the T3 allele dramatically increases exon 9 skipping and should be considered as a 'CF' mutation. Routine testing for the most prevalent mutations in the CF Caucasian population will miss most CFTR gene alterations, which can be detected only through exhaustive scanning of CFTR sequences. Finally, a higher than expected frequency of CFTR mutations and/or polymorphisms is now found in a growing number of monosymptomatic disorders, which creates a dilemma for setting nosologic boundaries between CF and diseases related to CFTR.
Collapse
Affiliation(s)
- Mireille Claustres
- Laboratoire de Génétique Moléculaire et Chromosomique, CHU de Montpellier, Institut Universitaire de Recherche Clinique (IURC), 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France.
| |
Collapse
|