1
|
Jin H, Han Y, Zenker J. Cellular mechanisms of monozygotic twinning: clues from assisted reproduction. Hum Reprod Update 2024; 30:692-705. [PMID: 38996087 PMCID: PMC11532623 DOI: 10.1093/humupd/dmae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Monozygotic (MZ) twins are believed to arise from the fission of a single fertilized embryo at different stages. Monochorionic MZ twins, who share one chorion, originate from the splitting of the inner cell mass (ICM) within a single blastocyst. In the classic model for dichorionic MZ twins, the embryo splits before compaction, developing into two blastocysts. However, there are a growing number of ART cases where a single blastocyst transfer results in dichorionic MZ twins, indicating that embryo splitting may occur even after blastocyst formation. OBJECTIVE AND RATIONALE For monochorionic MZ twins, we conducted a comprehensive analysis of the cellular mechanisms involved in ICM splitting, drawing from both ART cases and animal experiments. In addition, we critically re-examine the classic early splitting model for dichorionic MZ twins. We explore cellular mechanisms leading to two separated blastocysts in ART, potentially causing dichorionic MZ twins. SEARCH METHODS Relevant studies including research articles, reviews, and conference papers were searched in the PubMed database. Cases of MZ twins from IVF clinics were found by using combinations of terms including 'monozygotic twins' with 'IVF case report', 'ART', 'single embryo transfer', or 'dichorionic'. The papers retrieved were categorized based on the implicated mechanisms or as those with unexplained mechanisms. Animal experiments relating to MZ twins were found using 'mouse embryo monozygotic twins', 'mouse 8-shaped hatching', 'zebrafish janus mutant', and 'nine-banded armadillo embryo', along with literature collected through day-to-day reading. The search was limited to articles in English, with no restrictions on publication date or species. OUTCOMES For monochorionic MZ twins, ART cases and mouse experiments demonstrate evidence that a looser ICM in blastocysts has an increased chance of ICM separation. Physical forces facilitated by blastocoel formation or 8-shaped hatching are exerted on the ICM, resulting in monochorionic MZ twins. For dichorionic MZ twins, the classic model resembles artificial cloning of mouse embryos in vitro, requiring strictly controlled splitting forces, re-joining prevention, and proper aggregation, which allows the formation of two separate human blastocysts under physiological circumstances. In contrast, ART procedures involving the transfer of a single blastocysts after atypical hatching or vitrified-warmed cycles might lead to blastocyst separation. Differences in morphology, molecular mechanisms, and timing across various animal model systems for MZ twinning can impede this research field. As discussed in future directions, recent developments of innovative in vitro models of human embryos may offer promising avenues for providing fundamental novel insights into the cellular mechanisms of MZ twinning during human embryogenesis. WIDER IMPLICATIONS Twin pregnancies pose high risks to both the fetuses and the mother. While single embryo transfer is commonly employed to prevent dizygotic twin pregnancies in ART, it cannot prevent the occurrence of MZ twins. Drawing from our understanding of the cellular mechanisms underlying monochorionic and dichorionic MZ twinning, along with insights into the genetic mechanisms, could enable improved prediction, prevention, and even intervention strategies during ART procedures. REGISTRAITON NUMBER N/A.
Collapse
Affiliation(s)
- Hongbin Jin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Yang Han
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California, Berkeley, CA, USA
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Omidi M, Aflatoonian B, Tahajjodi SS, Khalili MA. Attempts for Generation of Embryonic Stem Cells from Human Embryos Following In Vitro Embryo Twinning. Stem Cells Dev 2019; 28:303-309. [PMID: 30608032 DOI: 10.1089/scd.2018.0168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro embryo twinning can be used to increase the number of the human embryos available for production of human embryonic stem cell (hESC) lines. The aim of this study was to generate hESCs following the production of the twin embryos by in vitro embryo splitting procedures. In total 21 chromosomally abnormal (three pronuclei) embryos underwent in vitro embryo twinning and were allowed to develop to the blastocyst stage. As a result, 42 twin embryos were obtained, of which 24 developed to blastocyst stage. Using micromanipulation technique, the zona-free blastocysts were recovered and plated onto mitotically inactivated Yazd human foreskin fibroblast (Batch18; YhFF#18) feeder layers in microdrops. After 3 to 5 days of blastocyst culture onto human foreskin fibroblast feeder layers, the hESC-like outgrowths were passaged onto new feeders in microdrops. The initial outgrowths of hESC-like cells were generated, and cells were proliferated, passaged, and some of them expressed hESC and trophoblastic markers; however, no cell lines were established. This might be due to the low cell number and poor quality of inner cell mass within these twin blastocysts. In vitro embryo twinning by increasing the number of the human embryos could be useful in the future for the generation of new pluripotent stem cell lines. However, the challenge remains to optimize the methods.
Collapse
Affiliation(s)
- Marjan Omidi
- 1 Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 2 Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- 2 Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 3 Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 4 Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Somayyeh Sadat Tahajjodi
- 1 Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 2 Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Khalili
- 1 Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 3 Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
3
|
Churbanov A, Abrahamyan L. Preventing Common Hereditary Disorders through Time-Separated Twinning. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-017-0488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
McGraw S, Shojaei Saadi HA, Robert C. Meeting the methodological challenges in molecular mapping of the embryonic epigenome. Mol Hum Reprod 2013; 19:809-27. [PMID: 23783346 DOI: 10.1093/molehr/gat046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The past decade of life sciences research has been driven by progress in genomics. Many voices are already proclaiming the post-genomics era, in which phenomena other than sequence polymorphism influence gene expression and also explain complex phenotypes. One of these burgeoning fields is the study of the epigenome. Although the mechanisms by which chromatin structure and reorganization as well as cytosine methylation influence gene expression are not fully understood, they are being invoked to explain the now-accepted long-term impact of the environment on gene expression, which appears to be a factor in the development of numerous diseases. Such studies are particularly relevant in early embryonic development, during which waves of epigenetic reprogramming are known to have profound impacts. Since gametes and zygotes are in the process of resetting the genome in order to create embryonic stem cells that will each differentiate to create one of many specific tissue types, this phase of life is now viewed as a window of susceptibility to epigenetic reprogramming errors. Epigenetics could explain the influence of factors such as the nutritional/metabolic status of the mother or the artificial environment of assisted reproductive technologies. However, the peculiar nature of early embryos in addition to their scarcity poses numerous technological challenges that are slowly being overcome. The principal subject of this article is to review the suitability of various current and emerging technological platforms to study oocytes and early embryonic epigenome with more emphasis on studying DNA methylation. Furthermore, the constraint of samples size, inherent to the study of preimplantation embryo development, was put in perspective with the various molecular platforms described.
Collapse
Affiliation(s)
- Serge McGraw
- Department of Human Genetics, Montreal Children's Hospital Research Institute, McGill University, Montréal, QC H3Z 2Z3, Canada
| | | | | |
Collapse
|
5
|
Tang HH, Tsai YC, Kuo CT. Embryo splitting can increase the quantity but not the quality of blastocysts. Taiwan J Obstet Gynecol 2013; 51:236-9. [PMID: 22795100 DOI: 10.1016/j.tjog.2012.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2011] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE In this study, we investigated the developmental potential of single blastomeres that were obtained from 4-cell mice embryos that were split during the blastocyst stage. MATERIALS AND METHODS Imprinting Control Region (ICR) mice (age: 6-8 weeks), were superovulated and mated with a single fertile male of the same strain. We obtained 2-cell embryos that were then cultured in 4 groups (×4) with Human tubal fluid (HTF) supplemented with 12% fetal bovine serum. When these embryos reached the 4-cell stage, their zonae pellucidae were removed and every single blastomere was isolated by repeated pipetting with Ca/Mg(2+)-free medium. The isolated blastomeres (study group) and the intact embryos (control group) were then cultured to determine the blastocyst formation rate and quality. RESULTS We collected a total of 936 embryos from 524 morphologically intact, top-grade embryos in the 4-cell stage from 80 stimulated mice. We used 356 of these embryos to isolate the blastomeres. The remaining 168 embryos were cultured as controls. A total of 1312 single blastomeres were obtained and cultured in vitro. Among these, 620 blastocysts were harvested from the original embryos compared with 136 blastocysts that were harvested from the control group. The overall blastocyst formation rate was 174.2% (620 blastocysts from 356 embryos) for the study group compared with 81.5% (136 blastocysts from 168 embryos) for the control group. The study group was 43.3% (268 of 620) top-grade blastocysts compared with 91% (152 of 168) of the control group. Taken together, the percentage of top-grade blastocysts obtained per original embryo in the split group was 75.4% (174.2%×43.3%) compared with 74.2% (81.5%×91%) for the control group. CONCLUSIONS Embryo splitting can increase the number of blastocysts. However, the percentage of available top-grade blastocysts is the same compared with nonsplit embryos. Embryo splitting may not be a cost-effective technique for the generation of high-quality mouse blastocysts.
Collapse
Affiliation(s)
- Hsun-Han Tang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan
| | | | | |
Collapse
|
6
|
|
7
|
Katayama M, Ellersieck MR, Roberts RM. Development of monozygotic twin mouse embryos from the time of blastomere separation at the two-cell stage to blastocyst. Biol Reprod 2010; 82:1237-47. [PMID: 20181620 DOI: 10.1095/biolreprod.109.082982] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The development of blastomeres separated from two-cell stage murine embryos has been compared. Blastomeres were removed from the zona pellucida (ZP) and cultured individually; the twin embryos were compared during their progression to blastocyst in terms of development rate, cell number, morphology, conformation at the four-cell stage, and CDX2 and POU5F1 (also known as OCT4) expression. In general, twin embryos, whether obtained from superovulated or normally bred dams, displayed comparable cell numbers as they advanced. They formed morulae and blastocysts more or less synchronously with each other and with control embryos, although possessing about half of the latter's cell number. Despite this apparent synchrony, the majority of twin blastocysts differed in terms of their relative complements of POU5F1+/CDX2- cells, which represent inner cell mass (ICM), and POU5F1+/CDX2+ cells, which identify trophectoderm (TE). Many, but not all, exhibited a disproportionately small ICM. By contrast, demiembryos retained within their ZP and created by randomly damaging one of the two blastomeres in two-cell stage embryos exhibited a more normal ratio of ICM to TE cells at blastocyst and significantly less variance in ICM cell number. One possible explanation is that ZP-free demiembryos only infrequently adopt the same conformation as their partners, including the favorable tetrahedral form, at the four-cell stage, suggesting that such embryos exhibit a high degree of plasticity with regard to the orientation of their first two cleavage planes and that a significant number likely deviate from paths that provide an optimal geometric progression to blastocyst. These data could explain the difficulty of creating monozygotic twins from two-cell stage embryos.
Collapse
Affiliation(s)
- Mika Katayama
- Division of Animal Sciences, and Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins Street, Columbia, MO 65211, USA
| | | | | |
Collapse
|
8
|
Effect of laser zona thinning on vitrified–warmed embryo transfer at the cleavage stage: a prospective, randomized study. Reprod Biomed Online 2010; 20:234-42. [DOI: 10.1016/j.rbmo.2009.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/07/2009] [Accepted: 11/03/2009] [Indexed: 11/19/2022]
|
9
|
Human embryo twinning with applications in reproductive medicine. Fertil Steril 2010; 93:423-7. [DOI: 10.1016/j.fertnstert.2008.12.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/18/2008] [Accepted: 12/18/2008] [Indexed: 11/19/2022]
|
10
|
Yu Y, Wu J, Fan Y, Lv Z, Guo X, Zhao C, Zhou R, Zhang Z, Wang F, Xiao M, Chen L, Zhu H, Chen W, Lin M, Liu J, Zhou Z, Wang L, Huo R, Zhou Q, Sha J. Evaluation of blastomere biopsy using a mouse model indicates the potential high risk of neurodegenerative disorders in the offspring. Mol Cell Proteomics 2009; 8:1490-500. [PMID: 19279043 DOI: 10.1074/mcp.m800273-mcp200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Preimplantation genetic diagnosis (PGD), used in clinical practice, is offered to couples that may suffer from a monogenetic disorder, chromosome aneuploidy, or X-linked disease. However, blastomere biopsy, as an indispensable manipulation during the PGD procedure has not been assessed for its long term health implications. Using a mouse model, we investigated the effect of blastomere biopsy of in vitro cultured four-cell embryos on preimplantation development efficiency, postnatal growth, and physiological and behavioral activity compared with control, non-biopsied embryos. The mice generated after blastomere biopsy showed weight increase and some memory decline compared with the control group. Further protein expression profiles in adult brains were analyzed by a proteomics approach. A total of 36 proteins were identified with significant differences between the biopsied and control groups, and the alterations in expression of most of these proteins have been associated with neurodegenerative diseases. Furthermore hypomyelination of the nerve fibers was observed in the brains of mice in the biopsied group. This study suggested that the nervous system may be sensitive to blastomere biopsy procedures and indicated an increased relative risk of neurodegenerative disorders in the offspring generated following blastomere biopsy. Thus, more studies should be performed to address the possible adverse effects of blastomere biopsy on the development of offspring, and the overall safety of PGD technology should be more rigorously assessed.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Petersen CG, Mauri AL, Baruffi RLR, Oliveira JBA, Felipe V, Massaro FC, Franco JG. Laser-assisted hatching of cryopreserved-thawed embryos by thinning one quarter of the zona. Reprod Biomed Online 2007; 13:668-75. [PMID: 17169177 DOI: 10.1016/s1472-6483(10)60657-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Laser-assisted hatching is little documented in the literature regarding its efficacy in cryopreserved-thawed (CT) embryo transfer cycles. The aim of the present study was to evaluate in a randomized manner the efficacy of thinning one quarter of the zona pellucida of CT embryos to a depth of 50-80% of the original thickness, via laser treatment (the qLZT-AH procedure), in improving implantation and pregnancy rates. Two populations were studied: population I, patients who had all their supernumerary embryos cryopreserved, regardless of their morphology, and population II, patients at risk of ovarian hyperstimulation syndrome who had all their embryos cryopreserved. Artificial and natural protocols were used for the embryo transfers. A total of 350 laser-thinned CT embryos were compared with 352 intact zona embryos. No difference in implantation or pregnancy rate was found after using qLZT-AH in either population. These findings suggest that qLZT-AH should not be routinely performed in cryopreserved embryo programmes.
Collapse
Affiliation(s)
- Claudia Guilhermino Petersen
- Centre for Human Reproduction Prof Franco Junior, Av. Prof. João Fiusa 689-CEP 14025-310, Ribeirão Preto, SP-Brazil.
| | | | | | | | | | | | | |
Collapse
|
12
|
Illmensee K, Kaskar K, Zavos PM. In vitro blastocyst development from serially split mouse embryos and future implications for human assisted reproductive technologies. Fertil Steril 2006; 86:1112-20. [PMID: 16962118 DOI: 10.1016/j.fertnstert.2006.02.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 02/20/2006] [Accepted: 02/20/2006] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess the efficacy of serial splitting of mouse embryos with respect to blastocyst development. DESIGN Prospective study. SETTING Commercial research facility. ANIMAL(S) Commercially available mouse embryos from B6C3F-1 x B6D2F-1. INTERVENTION(S) One, two, and three blastomeres were biopsied from two-, four-, and six-cell embryos, respectively, and were inserted into empty zona pellucida recipients (first split). These embryos were cultured to reach their original cell number status and then were split again (second split). Once these embryos regained their original cell status, they were split yet again (third split). MAIN OUTCOME MEASURE(S) Blastocyst development of embryos split serially at the two-, four-, and six-cell stages. RESULT(S) The blastocyst development rate for two-, four-, and six-cell embryos subjected to a first split was 74.3%, 75.0%, and 66.6%, respectively, as compared with 71.8%, 62.6%, and 48.4% (second split) and 48.4%, 38.1%, and 10.6% (third split). CONCLUSION(S) First and second splitting of cleavage-stage embryos has yielded high efficiency rates for blastocyst development when compared with the third splitting, which did not provide any beneficial advantage for further embryo splitting and multiplication. This is the first study reporting on three serial embryo splittings in a mammalian species. Embryo splitting may have significant impact and applications in human assisted reproductive technology.
Collapse
|
13
|
Illmensee K, Kaskar K, Zavos PM. In-vitro developmental potential of individual mouse blastomeres cultured with and without zona pellucida: future implications for human assisted reproduction. Reprod Biomed Online 2006; 13:284-94. [PMID: 16895648 DOI: 10.1016/s1472-6483(10)60628-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study was designed to compare the developmental potential of individual blastomeres derived from 2-, 4-, 6- and 8-cell mouse embryos cultured with and without zona pellucida (ZP). In the first series, one, three, five and seven blastomeres were biopsied from 2-, 4-, 6- and 8-cell embryos respectively, and inserted individually into empty ZP recipients, leaving the remaining blastomere within its original ZP. In the second series, the same protocol was used except that the biopsied blastomeres were cultured without ZP and compared with the remaining blastomere within its original ZP. For the first series, individual blastomeres derived from 2-, 4-, 6- and 8-cell embryos cultured with ZP showed blastocyst development of 82.4, 68.6, 44.4 and 23.1% respectively, with corresponding hatching rates of 70.6, 60.0, 25.9 and 7.7%. For the second series, individual blastomeres cultured without ZP progressed with blastocyst development of 73.3, 64.5, 35.7 and 22.7% respectively. Blastocyst multiplication was achieved most efficiently when using individual blastomeres from 4- and 6-cell embryos. This is the first report on comparative in-vitro propagation of single blastomeres derived from various cleavage stages in a mammalian species. Blastomere cloning with its multiple applications may be envisaged for human assisted reproductive technologies.
Collapse
Affiliation(s)
- K Illmensee
- Reprogen Ltd, Limassol 3106, Cyprus; Andrology Institute of America, Lexington, Kentucky 40523, USA
| | | | | |
Collapse
|