1
|
Qin H, Li H, Zhu J, Qin Y, Li N, Shi J, Nie G, Zhao R. Biogenetic Vesicle-Based Cancer Vaccines with Tunable Surface Potential and Immune Potency. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303225. [PMID: 37330651 DOI: 10.1002/smll.202303225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Cancer vaccines are designed to motivate antigen-specific immune responses and facilitate tumor regression with minimal side effects. To fully exert the potential of vaccines, rationally designed formulations that effectively deliver antigens and trigger potent immune reactions are urgently needed. This study demonstrates a simple and controllable vaccine-developing strategy that assembles tumor antigens into bacterial outer membrane vesicles (OMVs), natural delivery vehicles with intrinsic immune adjuvant properties, via electrostatic interaction. This OMV-delivered vaccine (OMVax) stimulated both innate and adaptive immune responses, leading to enhanced metastasis inhibition and prolonged survival of tumor-bearing mice. Moreover, the influence of different surface charged OMVax on antitumor immunity activation is investigated and declined immune response activation occurred with increased positive surface charge. Together, these findings suggest a simple vaccine formulation that can be enhanced by optimizing the surface charges of vaccine formulations.
Collapse
Affiliation(s)
- Hao Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Hejia Li
- Third Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Jin Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yuting Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Nan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Affiliation(s)
- Rebecca C Brady
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 6014, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
3
|
Sevestre J, Hong E, Delbos V, Terrade A, Mallet E, Deghmane AE, Lemée L, Taha MK, Caron F. Durability of immunogenicity and strain coverage of MenBvac, a meningococcal vaccine based on outer membrane vesicles: Lessons of the Normandy campaign. Vaccine 2017. [DOI: 10.1016/j.vaccine.2017.05.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Moshiri A, Dashtbani-Roozbehani A, Najar Peerayeh S, Siadat SD. Outer membrane vesicle: a macromolecule with multifunctional activity. Hum Vaccin Immunother 2012; 8:953-5. [PMID: 22699443 DOI: 10.4161/hv.20166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nowadays adjuvants are extensively used as immuno-stimulatory and immuno-modulatory compounds as components of subunit and combination vaccine formulations. The adjuvants of microbial origin are more frequently used among currently used licensed or experimental adjuvants. The outer membrane vesicle (OMV) of Neisseria meningitidis is among the newly studied components of microbial origin, which could be applied as an adjuvant. Although the potency of OMV as a carrier (conjugated to a hapten) is now proven, the adjuvant properties of OMV have particular significance as a potential target for protective immunity. Since it has immune-stimulatory activity, OMV has been utilized in vaccine development. This commentary reviews the different applications of OMV as potential adjuvant in the field of vaccine development.
Collapse
Affiliation(s)
- Arfa Moshiri
- Department of Biotechnology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|