1
|
Deng J, An Y, Kang M. Using the CLSI rAST breakpoints of Enterobacterales in positive blood cultures. Diagn Microbiol Infect Dis 2024; 109:116335. [PMID: 38703531 DOI: 10.1016/j.diagmicrobio.2024.116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVES The objective of this study was to provide the clinic with rapid and accurate results of antimicrobial susceptibility testing for the treatment of patients with bloodstream infections. To achieve this, we applied the Clinical and Laboratory Standards Institute (CLSI) blood culture direct rapid antimicrobial susceptibility test (rAST) to assess the susceptibility of the most common Enterobacterales found in blood cultures. METHODS In this study, we utilized the CLSI blood culture direct rapid antimicrobial susceptibility test to assess the susceptibility (rAST) of the most common Enterobacterales present in blood cultures. We chose this method for its simplicity in analysis, and our aim was to predict minimum inhibitory concentrations (MICs) using the rAST. As a benchmark, we assumed that Broth Macrodilution method (BMD) results were 100% accurate. For data evaluation, we employed the terms categorical agreement (CA), very major errors (VME), and major errors (ME). RESULTS Our findings demonstrate that the CLSI rAST method is reliable for rapidly determining the in vitro susceptibility of Enterobacterales to common antimicrobial drugs in bloodstream infections. We achieved a concordance rate of 90% in classification within a 10-hour timeframe. We identified a total of 112 carbapenem-resistant Enterobacterales (CRE) strains, and there was no significant difference in the detection rate of CRE at 6, 10, and 16 hours. This suggests that CRE can be identified as early as 6 hours. CONCLUSION The CLSI rAST is a valuable tool that can be utilized in clinical practice to quickly determine the susceptibility of Enterobacterales to antimicrobial drugs within 10 hours. This capability can greatly assist in the clinical management of patients with bloodstream infections.
Collapse
Affiliation(s)
- Jin Deng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - YunHe An
- Department of Laboratory Medicine, Ding Zhou City People's Hospital, Hebei, China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Kang SW, Park S, Kim AR, Han J, Lee J, Seo H, Sung H, Kim MN, Chang E, Bae S, Jung J, Kim MJ, Kim SH, Lee SO, Choi SH, Kim YS, Song EH, Chong YP. Clinical Characteristics of and Risk Factors for Subsequent Carbapenemase-producing Enterobacterales (CPE) Bacteraemia in Rectal CPE Carriers. Int J Antimicrob Agents 2023; 62:106959. [PMID: 37633425 DOI: 10.1016/j.ijantimicag.2023.106959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Due to high mortality and limited treatment options, the rise in carbapenemase-producing Enterobacterales (CPE) has become a major concern. This study aimed to evaluate the incidence and characteristics of subsequent CPE bacteraemia in rectal CPE carriers and investigate the risk factors for CPE bacteraemia compared with non-carbapenemase-producing (non-CP) Enterobacterales bacteraemia. METHODS A retrospective analysis was conducted on adult patients who were confirmed to have CPE colonisation by stool surveillance culture at a tertiary hospital from January 2018 to February 2022. All episodes of Enterobacterales bacteraemia up to 6 months after CPE colonisation were identified. RESULTS Of 1174 patients identified as rectal CPE carriers, 69 (5.8%; 95% CI 4.6-7.3%) experienced subsequent CPE bacteraemia during the 6 months after the diagnosis of CPE colonisation. Colonisation by a Klebsiella pneumoniae carbapenemase (KPC) producer (or CP-K. pneumoniae), colonisation by multiple CPE species, chronic kidney disease and haematological malignancy were independently associated with CPE bacteraemia in CPE carriers. When CPE carriers developed Enterobacterales bacteraemia, the causative agent was more frequently non-CP Enterobacterales than CPE (63.6% vs. 36.4%). Among these patients, colonisation with a KPC producer, CPE colonisation at multiple sites, shorter duration from colonisation to bacteraemia (< 30 days) and recent intraabdominal surgery were independent risk factors for CPE bacteraemia rather than non-CP Enterobacterales bacteraemia. CONCLUSIONS In CPE carriers, non-CP Enterobacterales were more often responsible for bacteraemia than CPE. Empirical antibiotic therapy for CPE should be considered when sepsis is suspected in a CPE carrier with risk factors for CPE bacteraemia.
Collapse
Affiliation(s)
- Sung-Woon Kang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Somi Park
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - A Reum Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jaijun Han
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jiyoung Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyeonji Seo
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; Division of Infectious Diseases, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi-Na Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Euijin Chang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jiwon Jung
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Hee Song
- Departments of Internal Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Gangwon-do, Republic of Korea.
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Patil S, Chen H, Chen Y, Dong S, Mai H, Lopes BS, Liu S, Wen F. Trends in Antibiotic Resistance Patterns and Burden of Escherichia Coli Infections in Young Children: A Retrospective Cross-Sectional Study in Shenzhen, China from 2014-2018. Infect Drug Resist 2023; 16:5501-5510. [PMID: 37638069 PMCID: PMC10455885 DOI: 10.2147/idr.s425728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose The emergence of multi-drug resistant ESBL-producing E. coli poses a global health problem. In this study, we aimed to investigate the prevalence of E. coli infections and their antibiotic susceptibility profiles in paediatric clinical cases in Shenzhen, China from Jan 1, 2014, to Jan 30, 2019, while also determining temporal trends, identifying ESBL-producing strains, and recommending potential empirical antibiotic therapy options. Methods We isolated a total of 4148 E. coli from different specimens from a single paediatric healthcare centre. Additionally, we obtained relevant demographic data from the hospital's electronic health records. Subsequently, we performed antimicrobial susceptibility testing for 8 classes of antibiotics and assessed ESBL production. Results Out of the 4148 isolates, 2645 were from males. The highest burden of E. coli was observed in the age group of 0-1 years, which gradually declined over the five-year study period. Antimicrobial susceptibility results indicated that 82% of E. coli isolates were highly resistant to ampicillin, followed by 52.36% resistant to cefazolin and 47.46% resistant to trimethoprim/sulfamethoxazole. Notably, a high prevalence of ESBL production (49.54%) was observed among the E. coli isolates, with 60% of them displaying a multi-drug resistance phenotype. However, it is worth mentioning that a majority of the isolates remained susceptible to ertapenem and imipenem. Our findings also highlighted a decrease in E. coli infections in Shenzhen, primarily among hospitalized patients in the 0-1 year age group. However, this decline was accompanied by a considerably high rate of ESBL production and increasing resistance to multiple antibiotics. Conclusion Our study underscores the urgent need for effective strategies to combat multi-drug resistant ESBL-producing E. coli Infections.
Collapse
Affiliation(s)
- Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Paediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Hongyu Chen
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yunsheng Chen
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Shaowei Dong
- Paediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Huirong Mai
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Bruno Silvester Lopes
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
- National Horizons Centre, Teesside University, Darlington, UK
| | - Sixi Liu
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Feiqiu Wen
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Paediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| |
Collapse
|
4
|
An R, Ou Y, Pang L, Yuan Y, Li Q, Xu H, Sheng B. Epidemiology and Risk Factors of Community-Associated Bloodstream Infections in Zhejiang Province, China, 2017–2020. Infect Drug Resist 2023; 16:1579-1590. [PMID: 36969944 PMCID: PMC10032239 DOI: 10.2147/idr.s400108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/04/2023] [Indexed: 03/19/2023] Open
Abstract
Purpose Community-associated bloodstream infection (CA-BSI) is increasing in many community settings. However, the clinical significance and epidemiology of CA-BSI present in hospital admissions in China are not well established. In this work, we identified the risk factors in outpatients presenting with CA-BSI, and investigate the role of procalcitonin (PCT) and hypersensitive C-reactive protein (CRP) in diagnosing different types of the pathogen in patients with acute CA-BSI. Methods A retrospective study enrolling 219 outpatients with CA-BSI from The Zhejiang People's Hospital from January 2017 to December 2020 was performed. Susceptibility of the isolates obtained from these patients was examined. Subjecting receiver operating characteristic curves (ROC) were constructed to analyze the specificity and sensitivity of PCT, CRP, and WBC in determining infections caused by different bacterial genera. Risk factors for CA-BSI in the emergency setting were analyzed using essential information and simple identification of other pathogenic bacterial species through rapidly tested biomarkers. Results A total of 219 patients were included in the selection criteria, of which 103 were infected with Gram-positive bacteria (G+) and 116 with Gram-negative bacteria (G-). The PCT was significantly higher in the GN-BSI group than in the GP-BSI group, while no significant difference was observed between the two groups for CRP. Subjecting ROC curves were constructed to analyze WBC, CRP, and PCT, and the area under the curve (AUC) of the PCT in this model was 0.6661, with sensitivity = 0.798 and specificity = 0.489. Conclusion The PCT between the GP-BSI group and the GN-BSI group was significantly different. By combining the knowledge of clinicians and the clinical signs of patients, PCT should be utilized as a supplementary approach to initially determine pathogens and direct medication in the early stages of clinical practice.
Collapse
Affiliation(s)
- Rongcheng An
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, People’s Republic of China
| | - Yingwei Ou
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, People’s Republic of China
| | - Lingxiao Pang
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, People’s Republic of China
| | - Yongsheng Yuan
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, People’s Republic of China
| | - Qian Li
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, People’s Republic of China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Bin Sheng
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, People’s Republic of China
- Correspondence: Bin Sheng, Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, People’s Republic of China, Tel +86 571 85893793, Email
| |
Collapse
|
5
|
Chi X, Meng X, Xiong L, Chen T, Zhou Y, Ji J, Zheng B, Xiao Y. Small wards in the ICU: a favorable measure for controlling the transmission of carbapenem-resistant Klebsiella pneumoniae. Intensive Care Med 2022; 48:1573-1581. [PMID: 36129475 PMCID: PMC9592670 DOI: 10.1007/s00134-022-06881-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Carbapenem-resistant Klebsiella pneumoniae (CRKP) is one of the leading causes of healthcare-associated infections (HAIs) and is particularly pervasive in intensive care units (ICUs). This study takes ICU layout as the research object, and integrates clinical data and bacterial genome analysis to clarify the role of separate, small wards within the ICU in controlling the transmission of CRKP. METHODS This study prospectively observed the carriage and spread of CRKP from a long-term in-hospital patient (hereafter called the Patient) colonized with CRKP in the gut and located in a separate, small ward within the ICU. The study also retrospectively investigated CRKP-HAIs in the same ICU. The relationship and transmission between CRKP isolates from the Patient and HAI events in the ICU were explored with comparative genomics. RESULTS In this study, 65 CRKP-HAI cases occurred during the investigation period. Seven CRKP-HAI outbreaks were also observed. A total of 95 nonrepetitive CRKP isolates were collected, including 32 strains from the Patient in the separate small ward. Phylogenetic analysis based on core genome single-nucleotide polymorphism (cgSNP) showed that there were five possible CRKP clonal transmission events and two clonal outbreaks (A1, A2) during the study. CRKP strains from the Patient did not cause CRKP between-patient transmission or outbreaks in the ICU during the 5-year study period. CONCLUSION The presence of a long-term hospitalized patient carrying CRKP and positioned in a separate, small ward did not lead to CRKP transmission or infection outbreaks in the ICU. Combining a small-ward ICU layout with normative HAI control measures for multidrug-resistant pathogen infection was effective in reducing CRKP transmission.
Collapse
Affiliation(s)
- Xiaohui Chi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Xiaohua Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Luying Xiong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Yanzi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China.
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China.
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Ge H, Qiao J, Xu H, Liu R, Chen R, Li C, Hu X, Zhou J, Guo X, Zheng B. First report of Klebsiella pneumoniae co-producing OXA-181, CTX-M-55, and MCR-8 isolated from the patient with bacteremia. Front Microbiol 2022; 13:1020500. [PMID: 36312943 PMCID: PMC9614159 DOI: 10.3389/fmicb.2022.1020500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
The worldwide spread of carbapenem-resistant Enterobacteriaceae (CRE) has led to a major challenge to human health. In this case, colistin is often used to treat the infection caused by CRE. However, the coexistence of genes conferring resistance to carbapenem and colistin is of great concern. In this work, we reported the coexistence of blaOXA-181, blaCTX-M-55, and mcr-8 in an ST273 Klebsiella pneumoniae isolate for the first time. The species identification was performed using MALDI-TOF MS, and the presence of various antimicrobial resistance genes (ARGs) and virulence genes were detected by PCR and whole-genome sequencing. Antimicrobial susceptibility testing showed that K. pneumoniae 5589 was resistant to aztreonam, imipenem, meropenem, ceftriaxone, cefotaxime, ceftazidime, levofloxacin, ciprofloxacin, gentamicin, piperacillin-tazobactam, cefepime, and polymyxin B, but sensitive to amikacin. S1-pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed the mcr-8 gene was carried on a ~ 138 kb plasmid with a conserved structure (IS903B-ymoA-inhA-mcr-8-copR-baeS-dgkA-ampC). In addition, blaOXA-181 was found on another ~51 kb plasmid with a composite transposon flanked by insertion sequence IS26. The in vitro conjugation experiments and plasmid sequence probe indicated that the plasmid p5589-OXA-181 and the p5589-mcr-8 were conjugative, which may contribute to the propagation of ARGs. Relevant detection and investigation measures should be taken to control the prevalence of pathogens coharboring blaOXA-181, blaCTX-M-55 and mcr-8.
Collapse
Affiliation(s)
- Haoyu Ge
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Qiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jiawei Zhou
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Xiaobing Guo,
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Beiwen Zheng,
| |
Collapse
|
7
|
Chen C, Xu H, Liu R, Hu X, Han J, Wu L, Fu H, Zheng B, Xiao Y. Emergence of Neonatal Sepsis Caused by MCR-9- and NDM-1-Co-Producing Enterobacter hormaechei in China. Front Cell Infect Microbiol 2022; 12:879409. [PMID: 35601097 PMCID: PMC9120612 DOI: 10.3389/fcimb.2022.879409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
Mobile colistin resistance (mcr) genes represent an emerging threat to public health. Reports on the prevalence, antimicrobial profiles, and clonality of MCR-9-producing Enterobacter cloacae complex (ECC) isolates on a national scale in China are limited. We screened 3,373 samples from humans, animals, and the environment and identified eleven MCR-9-positive ECC isolates. We further investigated their susceptibility, epidemiology, plasmid profiles, genetic features, and virulence potential. Ten strains were isolated from severe bloodstream infection cases, especially three of them were recovered from neonatal sepsis. Enterobacter hormaechei was the most predominant species among the MCR-9-producing ECC population. Moreover, the co-existence of MCR-9, CTX-M, and SHV-12 encoding genes in MCR-9-positive isolates was globally observed. Notably, mcr-9 was mainly carried by IncHI2 plasmids, and we found a novel ~187 kb IncFII plasmid harboring mcr-9, with low similarity with known plasmids. In summary, our study presented genomic insights into genetic characteristics of MCR-9-producing ECC isolates retrieved from human, animal, and environment samples with one health perspective. This study is the first to reveal NDM-1- and MCR-9-co-producing ECC from neonatal sepsis in China. Our data highlights the risk for the hidden spread of the mcr-9 colistin resistance gene.
Collapse
Affiliation(s)
- Chunlei Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jianfeng Han
- Sansure Biotech Inc. Medical Affairs Department, National Joint Local Engineering Research Center for Genetic Diagnosis of Infection Diseases and Tumors, Beijing, China
| | - Lingjiao Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Fu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Beiwen Zheng, ; Yonghong Xiao,
| | - Yonghong Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Beiwen Zheng, ; Yonghong Xiao,
| |
Collapse
|
8
|
Chen Y, Ji J, Ying C, Liu Z, Yang Q, Kong H, Xiao Y. Blood bacterial resistant investigation collaborative system (BRICS) report: a national surveillance in China from 2014 to 2019. Antimicrob Resist Infect Control 2022; 11:17. [PMID: 35074014 PMCID: PMC8785473 DOI: 10.1186/s13756-022-01055-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this first national bloodstream infection (BSI) surveillance program in China, we assessed the composition of pathogenic bacteria and the trends for antimicrobial susceptibility over a 6-year period in China. METHODS Blood bacterial isolates from patients at hospitals participating in the Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected from January 2014 to December 2019. Only the first isolate of a species per patient was eligible over the full study period. Antibiotic-susceptibility testing was conducted by agar-dilution or broth-dilution methods as recommended by the Clinical and Laboratory Standards Institute (CLSI). WHONET 5.6 was used to analyze data. RESULTS During the study period, 27,899 bacterial strains were collected. Gram-positive organisms accounted for 29.5% (8244) of the species identified and Gram-negative organisms accounted for 70.5% (19,655). The most-commonly isolated organisms in blood cultures were Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, coagulase-negative Staphylococci, and Acinetobacter baumannii. The prevalence of multidrug-resistant organisms, such as E. coli, K. pneumoniae, A. baumannii was higher in tertiary hospitals, whereas extended-spectrum, β-lactamase-producing E. coli (ESBL-E. coli), carbapenem-resistant A. baumannii were more prevalent in economically-developing areas. The prevalence of methicillin-resistant S. aureus declined from 39.0% (73/187) in 2014 to 25.9% (230/889) in 2019 (p < 0.05). The prevalence of ESBL-E. coli dropped from 61.2% (412/673) to 51.0% (1878/3,683) over time (p < 0.05), and carbapenem-resistant E. coli remained low prevalence (< 2%; 145/9944; p = 0.397). In contrast, carbapenem-resistant K. pneumoniae increased markedly from 7.0% (16/229) in 2014 to 19.6% (325/1,655) in 2019 (p < 0.05). CONCLUSION E. coli and K. pneumoniae were the leading causes of BSI during the 6-year study period. The major resistant pathogens declined or remained stable, whereas carbapenem-resistant K. pneumoniae continued to increase, which poses a great therapeutic challenge for BSIs.
Collapse
Affiliation(s)
- Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Qing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Haishen Kong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
9
|
Chen B, Berglund B, Wang S, Börjesson S, Bi Z, Nilsson M, Yin H, Zheng B, Xiao Y, Bi Z, Nilsson LE. Rapid increase in occurrence of carbapenem-resistant Enterobacteriaceae in healthy rural residents in Shandong province, China, from 2015 to 2017. J Glob Antimicrob Resist 2021; 28:38-42. [PMID: 34896338 DOI: 10.1016/j.jgar.2021.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/03/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES The global increase of carbapenem-resistant Enterobacteriaceae (CRE) is a growing concern. Infections caused by CRE are associated with increased mortality and length of hospital stay, emphasizing the health and economic burden posed by these pathogens. Although CRE can inhabit the human gut asymptomatically, colonization with CRE is associated with increased risk of CRE infection and mortality. In this study, we investigated the occurrence and characteristics of CRE in fecal samples from healthy persons in 12 villages in Shandong, China. METHODS Screening for CRE in fecal samples was performed by selective cultivation. MICs of meropenem were determined with the agar dilution method. Multilocus sequence type (MLST) and carbapenemase gene carriage of the isolates were determined with whole-genome sequencing. Genetic relatedness of E. coli isolates was determined by core genome MLST. RESULTS CRE carriage increased from 2.4% to 13% from 2015 to 2017. Most CRE isolates (93%) were E. coli and all carried NDM-type carbapenemases. The STs among the E. coli were diverse. The single most common was the highly epidemic strain ST167, which was only observed among isolates from 2017. CONCLUSION We report a rapid increase in occurrence of CRE from 2.4% to 13% among fecal samples collected from healthy rural residents of Shandong province, China, from 2015 to 2017. Colonization with CRE is known to increase the risk of CRE infection and the worrying deterioration of the epidemiological situation in the region reported here indicate a need for further monitoring and possible interventions.
Collapse
Affiliation(s)
- Baoli Chen
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Björn Berglund
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Stefan Börjesson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Zhenqiang Bi
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China; Shandong Academy of Clinical Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Maud Nilsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hong Yin
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), Uppsala, Sweden; Shandong Academy of Clinical Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yonghong Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenwang Bi
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Lennart E Nilsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Jin Y, Zhou W, Yin Z, Zhang S, Chen Y, Shen P, Ji J, Chen W, Zheng B, Xiao Y. The genetic feature and virulence determinant of highly virulent community-associated MRSA ST338-SCCmec Vb in China. Emerg Microbes Infect 2021; 10:1052-1064. [PMID: 33823746 PMCID: PMC8183566 DOI: 10.1080/22221751.2021.1914516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
ST59 is the predominant pathotype of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in China. As a variant of ST59, there is relatively little known about the detailed information of ST338. To address this issue, here, we described thirteen ST338 CA-MRSA strains isolated from severe bloodstream infection cases, and focused on their epidemiology, genetic features and virulence potential. Phylogenetic analysis showed the earliest isolated strain of this study is likely a predecessor of recent ST338 lineage (after year of 2014). Furthermore, the phylogenetic reconstruction and time estimation suggested that ST338 evolved from ST59 in 1991. Notably, the carrying patten of virulence factors of all ST338 strains were similar, and the genomic islands νSaα, νSaγ and SaPI and the core virulence factors like hla and psm were detected in ST338 isolates. However, all ST338 isolates lacked some adhesion factors such as clfA, clfB, eap, cna and icaD. Additionally, among these ST338 strains, one PVL-negative ST338 isolate was detected. Experiment on mice nose and human alveolar epithelial cell showed that the nasal colonization ability of ST338 was weaker than that of CA-MRSA MW2. In a mouse bloodstream infection model and skin infection model, PVL+ and PVL− strains had the similar virulence, which was dependent on upregulation of toxin genes rather than the presence of mobile genetic elements such as ΦSa2 carrying PVL. Our findings provide important insight into the epidemiology and pathogenicity of the novel and highly virulent ST338-SCCmec Vb clone.
Collapse
Affiliation(s)
- Ye Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wangxiao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zhidong Yin
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| | - Shuntian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Weiwei Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|