1
|
Complement Inhibition in Myasthenia Gravis and Neuromyelitis Optica Spectrum Disorder. Can J Neurol Sci 2023; 50:165-173. [PMID: 34895385 DOI: 10.1017/cjn.2021.508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The complement system is a tightly controlled signaling network that plays a role in innate immune surveillance. However, abnormal signaling through this pathway contributes to tissue damage in several inflammatory, autoimmune, and degenerative diseases. Myasthenia gravis (MG) and neuromyelitis optica spectrum disorders (NMOSD) have complement dysfunction at the core of pathogenesis, providing a strong rationale for therapeutic targeting of complement components. The purpose of this paper is to briefly review the role of complement activation in the pathogenesis of MG and NMOSD, to discuss the rationale and evidence for complement inhibition as a method to manage these diseases, and to provide a Canadian perspective on the use of complement inhibition therapy through real-world cases of MG and NMOSD.
Collapse
|
2
|
Jiang F, Su Y, Chang T. Knowledge mapping of global trends for myasthenia gravis development: A bibliometrics analysis. Front Immunol 2023; 14:1132201. [PMID: 36936960 PMCID: PMC10019893 DOI: 10.3389/fimmu.2023.1132201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Background Myasthenia gravis (MG) is an autoimmune disease with acquired neuromuscular junction transmission disorders. In the last two decades, various pathogenesis, application of immunosuppressive agents, and targeted immunotherapy have been significant events. However, extracting the most critical information from complex events is very difficult to guide clinical work. Therefore, we used bibliometrics to summarize and look forward. Methods Science Citation Index Expanded (SCI-E) from the Web of Science Core Collection (WoSCC) database was identified as a source of material for obtaining MG-related articles. Scimago Graphica, CiteSpace, VOSviewer, and bibliometrix were utilized for bibliometric analysis. Knowledge network graphs were constructed and visualized; countries, institutions, authors, journals, references, and keywords were evaluated. In addition, GraphPad Prism and Microsoft Excel 365 were applied for statistical analysis. Results As of October 25, 2022, 9,970 original MG-related articles were used for the bibliometric analysis; the cumulative number of citations to these articles was 236,987, with an H-index of 201. The United States ranked first in terms of the number of publications (2,877) and H-index (134). Oxford has the highest H-index (67), and Udice French Research University has the highest number of publications (319). The author with the highest average number of citations (66.19), publications (151), and H-index (53) was Vincent A. 28 articles have remained in an explosive period of citations. The final screening yielded predictive keywords related to clinical trials and COVID-19. Conclusion We conducted a bibliometric analysis of 9,970 original MG-related articles published between 1966 and 2022. Ultimately, we found that future MG research hotspots include two major parts: (1) studies directly related to MG disease itself: clinical trials of various targeted biological agents; the relationship between biomarkers and therapeutic decisions, pathogenesis and outcome events, ultimately serving individualized management or precision therapy; (2) studies related to MG and COVID-19: different variants of COVID-19 (e.g., Omicron) on MG adverse outcome events; assessment of the safety of different COVID-19 vaccines for different subtypes of MG.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- The Second Brigade of Cadet, Basic Medical School, Air Force Military Medical University, Xi’an Shaanxi, China
| | - Yue Su
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Ting Chang,
| |
Collapse
|
3
|
Complement Activation Profile in Myasthenia Gravis Patients: Perspectives for Tailoring Anti-Complement Therapy. Biomedicines 2022; 10:biomedicines10061360. [PMID: 35740382 PMCID: PMC9220000 DOI: 10.3390/biomedicines10061360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
The complement system plays a key role in myasthenia gravis (MG). Anti-complement drugs are emerging as effective therapies to treat anti-acetylcholine receptor (AChR) antibody-positive MG patients, though their usage is still limited by the high costs. Here, we searched for plasma complement proteins as indicators of complement activation status in AChR-MG patients, and potential biomarkers for tailoring anti-complement therapy in MG. Plasma was collected from AChR-MG and MuSK-MG patients, and healthy controls. Multiplex immunoassays and ELISA were used to quantify a panel of complement components (C1Q, C2, C3, C4, C5, Factor B, Factor H, MBL, and properdin) and activation products (C4b, C3b, C5a, and C5b-9), of classical, alternative and lectin pathways. C2 and C5 levels were significantly reduced, and C3, C3b, and C5a increased, in plasma of AChR-MG, but not MuSK-MG, patients compared to controls. This protein profile was indicative of complement activation. We obtained sensitivity and specificity performance results suggesting plasma C2, C3, C3b, and C5 as biomarkers for AChR-MG. Our findings reveal a plasma complement “C2, C3, C5, C3b, and C5a” profile associated with AChR-MG to be further investigated as a biomarker of complement activation status in AChR-MG patients, opening new perspectives for tailoring of anti-complement therapies to improve the disease treatment.
Collapse
|
4
|
Lee JD, Woodruff TM. The emerging role of complement in neuromuscular disorders. Semin Immunopathol 2021; 43:817-828. [PMID: 34705082 DOI: 10.1007/s00281-021-00895-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
The complement cascade is a key arm of the immune system that protects the host from exogenous and endogenous toxic stimuli through its ability to potently regulate inflammation, phagocytosis, and cell lysis. Due to recent clinical trial successes and drug approvals for complement inhibitors, there is a resurgence in targeting complement as a therapeutic approach to prevent ongoing tissue destruction in several diseases. In particular, neuromuscular diseases are undergoing a recent focus, with demonstrated links between complement activation and disease pathology. This review aims to provide a comprehensive overview of complement activation and its role during the initiation and progression of neuromuscular disorders including myasthenia gravis, amyotrophic lateral sclerosis, and Duchenne muscular dystrophy. We will review the preclinical and clinical evidence for complement in these diseases, with an emphasis on the complement-targeting drugs in clinical trials for these indications.
Collapse
Affiliation(s)
- John D Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
5
|
Gilhus NE, Verschuuren JJGM, Hovland SIB, Simmonds H, Groot F, Palace J. Myasthenia gravis: do not forget the patient perspective. Neuromuscul Disord 2021; 31:S0960-8966(21)00583-6. [PMID: 34635387 DOI: 10.1016/j.nmd.2021.07.396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, Norway; Department of Neurology, Haukeland University Hospital, Bergen, Norway.
| | | | | | - Huw Simmonds
- Myaware, College Business Centre, Derby, England
| | - Floor Groot
- Dutch Neuromuscular disease Association, Baarn, The Netherlands
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Hospitals Trust, Oxford, England
| |
Collapse
|
6
|
Mantegazza R, Vanoli F, Frangiamore R, Cavalcante P. Complement Inhibition for the Treatment of Myasthenia Gravis. Immunotargets Ther 2020; 9:317-331. [PMID: 33365280 PMCID: PMC7751298 DOI: 10.2147/itt.s261414] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Generalized myasthenia gravis (gMG) is a rare autoimmune disorder affecting the neuromuscular junction (NMJ). Approximately 80-90% of patients display antibodies directed against the nicotinic acetylcholine receptor (AChR). A major drive of AChR antibody-positive MG pathology is represented by complement activation. The role of the complement cascade has been largely demonstrated in patients and in MG animal models. Complement activation at the NMJ leads to focal lysis of the post-synaptic membrane, disruption of the characteristic folds, and reduction of AChR. Given that the complement system works as an activation cascade, there are many potential targets that can be considered for therapeutic intervention. Preclinical studies have confirmed the efficacy of complement inhibition in ameliorating MG symptoms. Eculizumab, an antibody directed towards C5, has recently been approved for the treatment of AChR antibody-positive gMG. Other complement inhibitors, targeting C5 as well, are currently under phase III study. Complement inhibitors, however, may present prohibitive costs. Therefore, the identification of a subset of patients more or less prone to respond to such therapies would be beneficial. For such purpose, there is a critical need to identify possible biomarkers predictive of therapeutic response, a field not yet sufficiently explored in MG. This review aims to give an overview of the complement cascade involvement in MG, the evolution of complement-inhibiting therapies and possible biomarkers useful to tailor and monitor complement-directed therapies.
Collapse
Affiliation(s)
- Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fiammetta Vanoli
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rita Frangiamore
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Cavalcante
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
7
|
Farrugia ME, Goodfellow JA. A Practical Approach to Managing Patients With Myasthenia Gravis-Opinions and a Review of the Literature. Front Neurol 2020; 11:604. [PMID: 32733360 PMCID: PMC7358547 DOI: 10.3389/fneur.2020.00604] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
When the diagnosis of myasthenia gravis (MG) has been secured, the aim of management should be prompt symptom control and the induction of remission or minimal manifestations. Symptom control, with acetylcholinesterase inhibitors such as pyridostigmine, is commonly employed. This may be sufficient in mild disease. There is no single universally accepted treatment regimen. Corticosteroids are the mainstay of immunosuppressive treatment in patients with more than mild MG to induce remission. Immunosuppressive therapies, such as azathioprine are prescribed in addition to but sometimes instead of corticosteroids when background comorbidities preclude or restrict the use of steroids. Rituximab has a role in refractory MG, while plasmapheresis and immunoglobulin therapy are commonly prescribed to treat MG crisis and in some cases of refractory MG. Data from the MGTX trial showed clear evidence that thymectomy is beneficial in patients with acetylcholine receptor (AChR) antibody positive generalized MG, up to the age of 65 years. Minimally invasive thymectomy surgery including robotic-assisted thymectomy surgery has further revolutionized thymectomy and the management of MG. Ocular MG is not life-threatening but can be significantly disabling when diplopia is persistent. There is evidence to support early treatment with corticosteroids when ocular motility is abnormal and fails to respond to symptomatic treatment. Treatment needs to be individualized in the older age-group depending on specific comorbidities. In the younger age-groups, particularly in women, consideration must be given to the potential teratogenicity of certain therapies. Novel therapies are being developed and trialed, including ones that inhibit complement-induced immunological pathways or interfere with antibody-recycling pathways. Fatigue is common in MG and should be duly identified from fatigable weakness and managed with a combination of physical therapy with or without psychological support. MG patients may also develop dysfunctional breathing and the necessary respiratory physiotherapy techniques need to be implemented to alleviate the patient's symptoms of dyspnoea. In this review, we discuss various facets of myasthenia management in adults with ocular and generalized disease, including some practical approaches and our personal opinions based on our experience.
Collapse
Affiliation(s)
- Maria Elena Farrugia
- Neurology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - John A Goodfellow
- Neurology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom.,Neuroimmunology Laboratory, Laboratory Medicine and Facilities Building, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| |
Collapse
|
8
|
Abstract
INTRODUCTION Acetylcholine receptor antibody-positive generalized myasthenia gravis (gMG) is effectively treated with symptomatic and immunosuppressive drugs but a proportion of patients has a persistent disease and severe adverse events (AEs). The unmet medical needs are specific immunosuppression and AE lowering. Eculizumab blocks C5 protecting neuromuscular junction from the destructive autoantibody effects. Phase II (Study C08-001) and III (ECU-MG-301) studies, with the open-label extension (ECU-MG-302), demonstrated eculizumab efficacy and safety in refractory gMG patients. AREAS COVERED We provide an overview of eculizumab biological features, clinical efficacy, and safety in gMG patients, highlighting our perspective on the drug positioning in the MG treatment algorithm. EXPERT OPINION Eculizumab has the potential to significantly change the immunosuppressive approach in gMG offering the opportunity to avoid or delay corticosteroids' use due to its speed and selective mechanism of action. Eculizumab prescription will depend on: 1. ability to modify the natural disease course; 2. sustainability in the clinical practice (cost/effectiveness ratio); 3. drug-induced AE reduction. At present we are missing a controlled study on its use as a first-line treatment. We think that immunosuppression in MG will change significantly in the next years by adopting more focused 'Precision Medicine' approaches, and Eculizumab seems to satisfy such a promise.
Collapse
Affiliation(s)
- Renato Mantegazza
- Neurology IV Unit ‒ Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta , Milan, Italy
| | - Paola Cavalcante
- Neurology IV Unit ‒ Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta , Milan, Italy
| |
Collapse
|
9
|
Abstract
Myasthenia gravis (MG) is an autoimmune disease caused by antibodies against the acetylcholine receptor (AChR), muscle-specific kinase (MuSK) or other AChR-related proteins in the postsynaptic muscle membrane. Localized or general muscle weakness is the predominant symptom and is induced by the antibodies. Patients are grouped according to the presence of antibodies, symptoms, age at onset and thymus pathology. Diagnosis is straightforward in most patients with typical symptoms and a positive antibody test, although a detailed clinical and neurophysiological examination is important in antibody-negative patients. MG therapy should be ambitious and aim for clinical remission or only mild symptoms with near-normal function and quality of life. Treatment should be based on MG subgroup and includes symptomatic treatment using acetylcholinesterase inhibitors, thymectomy and immunotherapy. Intravenous immunoglobulin and plasma exchange are fast-acting treatments used for disease exacerbations, and intensive care is necessary during exacerbations with respiratory failure. Comorbidity is frequent, particularly in elderly patients. Active physical training should be encouraged.
Collapse
|
10
|
Abstract
The humanized monoclonal antibody eculizumab (Soliris®) is a complement inhibitor indicated for use in anti-acetylcholine receptor (AChR) antibody-positive adults with generalized myasthenia gravis (gMG) in the USA, refractory gMG in the EU, or gMG with symptoms that are difficult to control with high-dose IVIg therapy or PLEX in Japan. It is the first complement inhibitor to be approved for use in these patients. In the well-designed, 26-week REGAIN study in patients with anti-AChR-positive refractory gMG, although a statistically significant benefit of eculizumab over placebo in the prespecified primary endpoint analysis (change from baseline in MG-activities of daily living (ADL) score assessed by worst-rank ANCOVA) was not formally demonstrated, preplanned and post hoc sensitivity analyses of this outcome, as well as other secondary outcomes supported the efficacy of eculizumab. Overall, patients receiving eculizumab experienced significant improvements in the ADL, muscle strength and health-related quality of life (HR-QOL) parameters relative to patients receiving placebo. Moreover, an ongoing extension of REGAIN showed that treatment benefits with eculizumab were sustained during continued therapy for at least 52 weeks. Eculizumab was generally well tolerated in these studies, with a tolerability profile similar to that reported previously in other indications. Although several questions remain, such as duration of treatment, cost effectiveness and long-term efficacy and tolerability, current evidence indicates that eculizumab is a valuable emerging therapy for patients with refractory gMG.
Collapse
Affiliation(s)
- Sohita Dhillon
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
11
|
The effect on the immunology laboratory of the expansion in complement therapeutics. J Immunol Methods 2018; 461:30-36. [PMID: 30092178 DOI: 10.1016/j.jim.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022]
Abstract
The approval in the US and Europe of Eculizumab in 2007 marked a change in complement therapeutics, and with it the landscape for complement testing in the clinical immunology laboratory changed. The change had begun even before that when C1-Inhibitor preparations were approved in the 1980s in Europe. There are now two classes of approved drugs that may impact the immunology laboratory, with two dozen more with novel modalities and potential indications that are in various stages of development. Every pathway and about every component of complement has been targeted by these drug development programs, and the modalities of the drugs in development are diverse. These developments will likely result in more laboratories offering more complement testing, so this review looks forward to some of those possible changes in testing.
Collapse
|
12
|
Gilhus NE, Romi F, Hong Y, Skeie GO. Myasthenia gravis and infectious disease. J Neurol 2018; 265:1251-1258. [DOI: 10.1007/s00415-018-8751-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
|