1
|
Eric Nyam TT, Tu KC, Kuo YH, Wang CC, Liu CF, Liao JC, Kuo CL. Age and pupil size: key predictors of mortality in traumatic brain injury patients with GCS 3. Front Neurol 2025; 16:1536421. [PMID: 40255893 PMCID: PMC12006044 DOI: 10.3389/fneur.2025.1536421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/26/2025] [Indexed: 04/22/2025] Open
Abstract
This study investigates the relationship between mortality and specific clinical factors in patients with severe traumatic brain injury (TBI) who present with a Glasgow Coma Scale (GCS) score of 3. Data from 161 adult patients were collected from the Chi-Mei Medical Center in Taiwan, spanning 2010 to 2019. The findings revealed an overall mortality rate of 44.10%, with significant predictors of mortality identified as age and pupil size. The Spearman correlation analysis showed that both age and pupil sizes were positively correlated with mortality rates. Multiple logistic regression confirmed age and left pupil size as strong predictors of mortality. Patients with GCS 3 and both unreactive pupils measuring 4 mm or more experienced the highest mortality rate of 68.39%, while those with pupils less than 4 mm had a lower mortality rate of 32.26%. The study determined optimal cut-off values for age and pupil size using ROC and AUC analysis, highlighting the significance of age in mortality predictions. These findings underscore the critical role of age and pupil size in the prognosis of TBI patients and provide valuable guidance for clinicians managing such cases.
Collapse
Affiliation(s)
| | - Kuan-Chi Tu
- Department of Neurosurgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Yun-Hsuan Kuo
- Department of Clinical Psychology, Chung Shan Medical University, Taichung, Taiwan
| | - Che-Chuan Wang
- Department of Neurosurgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Chung-Feng Liu
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Jen-Chieh Liao
- Department of Neurosurgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Lung Kuo
- Department of Neurosurgery, Chi Mei Medical Center, Tainan, Taiwan
- Department of Clinical Psychology, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Bai J, Sun WB, Zheng WC, Wang XP, Bai Y. Carbon monoxide-releasing molecule-3 ameliorates traumatic brain injury-induced cardiac dysfunctions via inhibition of pyroptosis and apoptosis. Mol Cell Biochem 2025; 480:2501-2509. [PMID: 39377871 DOI: 10.1007/s11010-024-05130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
Traumatic brain injury (TBI) frequently results in cardiac dysfunction and impacts the quality of survivors' life. It has been reported that carbon monoxide-releasing molecule-3 (CORM-3) administration immediately after hemorrhagic shock and resuscitation (HSR) ameliorated the HSR‑induced cardiac dysfunctions. The purpose of this study was to determine whether the application of CORM-3 on TBI exerted therapeutic effects against TBI-induced cardiac dysfunctions. Rats were randomly divided into four groups (n = 12) including Sham, TBI, TBI/CORM-3 and TBI/inactive CORM-3 (iCORM-3) groups. TBI was established by a weight-drop model. The rats in the TBI/CORM-3 group and TBI/iCORM-3 group were intravenously injected with CORM-3 and iCORM-3 (4 mg/kg) following TBI, respectively. The time of death in the rats that did not survive within 24 h was recorded. 24 h post-trauma, the cardiac function, pathological change, serum troponin T and creatine kinase-MB (CK-MB) levels, pyroptosis, apoptosis and expressions of TUNEL staining, Gasdermin D (GSDMD), IL-1β, IL-18, ratio Bax/Bcl-2 were assessed by echocardiography, hematoxylin-eosin staining, chemiluminescence, immunofluorescence, and western blot assays, respectively. TBI-treated rats exhibited dramatically decreased ejection fraction and aggravated myocardial injury, increased mortality rate, elevated levels of serum troponin T and CK-MB, promoted cardiac pyroptosis and apoptosis, and upregulated expressions of cleaved caspase-3, GSDMD N-terminal fragments, IL-1β, IL-18, and ratio of Bax/Bcl-2, whereas CORM-3 partially reversed these changes. CORM-3 ameliorated TBI-induced cardiac injury and dysfunction. This mechanism may be responsible for the inhibition of pyroptosis and apoptosis in cardiomyocyte.
Collapse
Affiliation(s)
- Jing Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Wen-Bo Sun
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yang Bai
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| |
Collapse
|
3
|
Liu MW, Ma ZQ, Liao RL, Chen WM, Zhang BR, Zhang QJ, Zhu YL, Gao SJ, Chen YE. Incidence and mortality related risk factors in patients with severe traumatic brain injury: A meta‑analysis. Exp Ther Med 2025; 29:84. [PMID: 40084190 PMCID: PMC11904872 DOI: 10.3892/etm.2025.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 03/16/2025] Open
Abstract
The present study aimed to clarify the onset of traumatic brain injury (TBI) and identify mortality-related risk factors in patients with severe TBI, to enable the early identification of high-risk individuals and timely implementation of prevention and treatment strategies to minimize mortality rates. Comprehensive database searches were conducted across Web of Science, PubMed, CINAHL and EMBASE, covering publications from database inception until October 17, 2023. Search terms in English included 'head trauma', 'brain trauma', 'mortality', 'death' and 'risk factor'. In total, two independent researchers screened and extracted the data on mortality onset and associated risk factors in patients with severe TBI. Meta-analysis was performed using R 4.2.2. A total of 33 cohort studies, including 71,718 patients with severe TBI, were selected for meta-analysis. The data indicated an overall mortality rate of 27.8% (95%CI: 22.5-33.2%) from database inception until October 17, 2023. Subgroup analysis revealed a mortality rate of 25.2% (95%CI: 20.2-30.1%) in developed countries, compared with 38.0% (95%CI: 21.4-54.7%) in developing countries. Additionally, the mean age of deceased patients was significantly higher compared with that of survivors (41.53±16.47). Key risk factors found to be associated with mortality included anemia [relative risk (RR), 1.42; 95%CI, 1.04-1.93], diabetes mellitus (RR, 1.40; 95%CI, 1.00-1.96), coagulopathy (RR, 4.31; 95%CI, 2.31-8.05), shock (RR, 3.41; 95%CI, 2.31-5.04) and systolic blood pressure≤90 mmHg (RR, 2.32; 95%CI, 1.65-3.27). Furthermore, pre-hospital intubation (RR, 1.48; 95%CI, 1.13-1.92),hypotension (RR, 2.04; 95%CI: 1.58, 2.63), hypoxemia (RR, 1.42; 95%CI: 1.13, 1.79), subdural hemorrhage (RR, 1.99; 95%CI: 1.50, 2.62), subarachnoid hemorrhage (RR, 1.64; 95%CI: 1.09, 2.47) and subdural hematoma (SDH; RR, 1.50; 95%CI: 1.04, 2.17). was identified to be a significant risk factor during hospitalization treatment. These results suggest that various factors, such as age, anemia, diabetes, shock, hypotension, hypoxemia, trauma scores and brain injury types, can all contribute to mortality risk in patients with severe TBI. Addressing these risk factors will likely be important for reducing mortality in this patient population.
Collapse
Affiliation(s)
- Ming-Wei Liu
- Department of Emergency, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan 671000, P.R. China
| | - Zhi-Qiang Ma
- Department of Laboratory, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan 671000, P.R. China
| | - Ren-Li Liao
- Department of Spine Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan 671000, P.R. China
| | - Wu-Mei Chen
- Department of Medical Affairs, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan 671000, P.R. China
| | - Bing-Ran Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiu-Juan Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yan-Lin Zhu
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Shu-Ji Gao
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yan-E Chen
- Department of Human Resources, Science and Education, Second People's Hospital of Baoshan City, Baoshan, Yunnan 678000, P.R. China
| |
Collapse
|
4
|
Li C, Su Z, Deng S, Zhang B, Qin J, Wu K, Zhao Y, Liu Y. Factors affecting prognosis in traumatic cerebral contusions: A protocol for a systematic review and meta-analysis. PLoS One 2025; 20:e0319146. [PMID: 39999086 PMCID: PMC11856315 DOI: 10.1371/journal.pone.0319146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Traumatic cerebral contusion (CC) is a severe type of injury among traumatic brain injury (TBI) patients. Individuals with traumatic CC typically exhibit rapid deterioration in their condition, leading to increased mortality rates. Despite this, there is a gap in evidence-based research. This study aims to identify the risk factors associated with adverse outcomes in patients with traumatic CC, with a particular focus on relevant biomarkers. Mortality will be the primary outcome, while the Glasgow Coma Scale (GCS) score will be considered as a secondary outcome. METHODS AND ANALYSIS We intend to conduct a comprehensive search through multiple Chinese and English repositories, covering the duration from the establishment of these databases up to the current era, in order to pinpoint appropriate studies. Additionally, a manual search of the references within the included literature and other pertinent works will be undertaken. The primary endpoint of this study will be the survival status of patients with traumatic brain contusion. Meta-analysis will be executed using STATA 16.0 (Stata Corporation, College Station, TX). Article selection and data extraction will be performed independently by two reviewers. The assessment of bias risks will be conducted via the Cochrane Collaboration's tool. Depending on the heterogeneity evaluation, either a fixed-effect model or a random-effects model will be applied. Subgroup and sensitivity analyses will be conducted as needed. The examination of publication bias will be carried out, and the quality of evidence for the primary outcomes will be graded. Trial registration number: CRD42023389456.
Collapse
Affiliation(s)
- Chao Li
- Department of Emergency, The Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Zhaoyin Su
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Shulu Deng
- Department of Emergency, The Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Binhao Zhang
- Department of Cardiovascular Surgery, Central South Hospital of Wuhan University, Wuhan, China
| | - Junlong Qin
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital of Southern Medical University, Foshan, China
| | - Kun Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yanzong Zhao
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yao Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Chen Y, Chen L, Xian L, Liu H, Wang J, Xia S, Wei L, Xia X, Wang S. Development and Validation of a Novel Classification System and Prognostic Model for Open Traumatic Brain Injury: A Multicenter Retrospective Study. Neurol Ther 2025; 14:157-175. [PMID: 39495370 PMCID: PMC11762055 DOI: 10.1007/s40120-024-00678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Open traumatic brain injury (OTBI) is associated with high mortality and morbidity; however, the classification of these injuries and the determination of patient prognosis remain uncertain, hindering the selection of optimal treatment strategies. This study aimed to develop and validate a novel OTBI classification system and a prognostic model for poor prognosis. METHODS This retrospective study included patients with isolated OTBI who received treatment at three large medical centers in China between January 2020 and June 2022 as the training set. Data on patients with OTBI collected at the Fuzong Clinical Medical College of Fujian Medical University between July 2022 and June 2023 were used as the validation set. Clinical parameters, including clinical data at admission, radiological and laboratory findings, details of surgical methods, and prognosis were collected. Prognosis was assessed through a dichotomized Glasgow Outcome Scale (GOS). A novel OTBI classification was proposed, categorizing patients based on a combination of intracranial hematoma and midline shift observed on imaging, and logistic regression analyses were performed to identify risk factors associated with poor prognosis and to investigate the association between the novel OTBI classification and prognosis. Finally, a nomogram suitable for clinical application was established and validated. RESULTS Multivariable logistic regression analysis identified OTBI classification type C (p < 0.001), a Glasgow Coma Scale score (GCS) ≤ 8 (p < 0.001), subarachnoid hemorrhage (SAH) (p = 0.004), subdural hematoma (SDH) (p = 0.011), and coagulopathy (p = 0.020) as independent risk factors for poor prognosis. The addition of the OTBI classification to a model containing all the other identified prognostic factors improved the predictive ability of the model (Z = 1.983; p = 0.047). In the validation set, the model achieved an area under the curve (AUC) of 0.917 [95% confidence interval (CI) = 0.864-0.970]. The calibration curve closely approximated the ideal curve, indicating strong predictive performance of the model. CONCLUSIONS The implementation of our proposed OTBI classification system and its use alongside the other prognostic factors identified here may improve the prediction of patient prognosis and aid in the selection of the most suitable treatment strategies.
Collapse
Affiliation(s)
- Yuhui Chen
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, Fujian, China
| | - Li Chen
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, Fujian, China
| | - Liang Xian
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, Fujian, China
| | - Haibing Liu
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, Fujian, China
| | - Jiaxing Wang
- Department of Neurosurgery, The People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Shaohuai Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Liangfeng Wei
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, Fujian, China
| | - Xuewei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| | - Shousen Wang
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
- Fujian Provincial Clinical Medical Research Center for Minimally Invasive Diagnosis and Treatment of Neurovascular Diseases, Fuzhou, Fujian, China.
| |
Collapse
|
6
|
Yuan X, Xu Q, Du F, Gao X, Guo J, Zhang J, Wu Y, Zhou Z, Yu Y, Zhang Y. Development and validation of a model to predict cognitive impairment in traumatic brain injury patients: a prospective observational study. EClinicalMedicine 2025; 80:103023. [PMID: 39850016 PMCID: PMC11753911 DOI: 10.1016/j.eclinm.2024.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/25/2025] Open
Abstract
Background Traumatic brain injury (TBI) is a significant public health issue worldwide that affects millions of people every year. Cognitive impairment is one of the most common long-term consequences of TBI, seriously affect the quality of life. We aimed to develop and validate a predictive model for cognitive impairment in TBI patients, with the goal of early identification and support for those at risk of developing cognitive impairment at the time of hospital admission. Methods The training cohort included 234 TBI patients, all of whom were admitted to the Department of Neurosurgery at the Third Affiliated Hospital of Soochow University from May 2017 to April 2020. These patients were selected from our previously published studies. Baseline characteristics, medical history, clinical TBI characteristics, treatment details, and vital signs during hospitalization were screened via least absolute shrinkage and selection operator (LASSO) and logistic regression to construct a predictive net risk score. The derived score represents an estimate of the risk of developing cognitive impairment in patients with TBI. A nomogram was constructed, and its accuracy and predictive performance were evaluated with the area under the receiver operating characteristic curve (AUC), calibration curves, and clinical decision curves. For the validation cohort, data were prospectively collected from TBI patients admitted to the Department of Neurosurgery at the Third Affiliated Hospital of Soochow University from March 1, 2024 to August 30, 2024, according to the inclusion and exclusion criteria. This study is registered with the Chinese Clinical Trial Registry (ChiCTR) at http://www.chictr.org.cn/ (registration number: ChiCTR2400083495). Findings The training cohort included 234 patients. The mean (standard deviation, SD) age of the patients in the cohort was 47.74 (17.89) years, and 184 patients (78.63%) were men. The validation cohort included 84 patients with a mean (SD) age of 48.44 (14.42) years, and 68 patients (80.95%) were men. Among the 48 potential predictors, the following 6 variables were significant independent predictive factors and were included in the net risk score: age (odds ratio (OR) = 1.06, 95% confidence interval (CI): 1.03-1.08, P = 0.00), years of education (OR = 0.80, 95% CI: 0.70-0.93, P = 0.00), pulmonary infection status (OR = 4.64, 95% CI: 1.41-15.27, P = 0.01), epilepsy status (OR = 4.79, 95% CI: 1.09-21.13, P = 0.04), cerebrospinal fluid leakage status (OR = 5.57, 95% CI: 1.08-28.75, P = 0.04), and the Helsinki score (OR = 1.53, 95% CI: 1.28-1.83, P = 0.00). The AUC in the training cohort was 0.90, and the cut-off value was 0.71. The AUC in the validation cohort was 0.87, and the cut-off value was 0.63. The score was translated into an online risk calculator that is freely available to the public (https://yuanxiaofang.shinyapps.io/Predict_cognitive_impairment_in_TBI/). Interpretation This model for predicting post-TBI cognitive impairment has potential value for facilitating early predictions by clinicians, aiding the early initiation of preventative interventions for cognitive impairment. Funding This research was supported by Science and Technology Development Plan Project of ChangZhou (CJ20229036); Science and Technology Project of Changzhou Health Commission (QN202113).
Collapse
Affiliation(s)
- Xiaofang Yuan
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qingrong Xu
- Department of Anesthesiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fengxia Du
- Department of Nursing, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Xiaoxia Gao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jing Guo
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jianan Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yehuan Wu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | | | - Youjia Yu
- Department of Anesthesiology, Suzhou Xiangcheng People's Hospital, Suzhou, China
- Yangzhou University School of Medicine, China
| | - Yi Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
7
|
Cornejo-Suil V, Rivera-Lillo G, Melo-Martínez R, Covarrubias-Escudero F, Marín-Godoy N, Torres-Castro R. Survival and clinical characteristics of patients with disorders of consciousness in a developing country between 2002 and 2018. Brain Inj 2025; 39:118-125. [PMID: 39410832 DOI: 10.1080/02699052.2024.2409357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/17/2024] [Accepted: 09/22/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE Describe the survival, sociodemographic and clinical characteristics of subjects with disorders of consciousness in a reference rehabilitation center, in a developing country. METHODS Patients with disorders of consciousness (DoC) caused by acquired neurological injuries, admitted between the years 2002-2018 in a neurorehabilitation center. Extracted data covered demographics, clinical details, survival time, and discharge information. Cox proportional hazard model and Kaplan-Meier analysis were used to reveal, associations with survival. RESULT Out of 5064 neurological cases, 159 patients were diagnosed with DoC. The demographic data showed a male dominance (65%), with an average injury age of 42 years. The most common causes were traumatic (41%), anoxic (36%), and vascular (10%), with traffic accidents accounting for 71% of traumatic injuries. The study found that 75% of patients remained in a vegetative state (VS), and 25% in a minimally conscious state (MCS), with an average survival of 2110 days. CONCLUSION There were no significant differences in survival days between patients in MCS and VS. Patients with traumatic injuries showed a higher survival rate than those with non-traumatic injuries. Age and etiology were identified as factors associated with a higher risk of death.
Collapse
Affiliation(s)
- Viviana Cornejo-Suil
- Occupational Therapy Department, Faculty of Health, Universidad Santo Tomás, Puerto Montt, Chile
| | - Gonzalo Rivera-Lillo
- Physical Therapy Department, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Neuroscience Department, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rodrigo Melo-Martínez
- Physical Therapy Department, Faculty of Health and Social Sciences, University de Las Americas, Santiago, Chile
| | - Felipe Covarrubias-Escudero
- Department of Kinesiology, Faculty of Art and Physical Education, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Nicolás Marín-Godoy
- Sports Medicine and Trauma Center, Clínica Puerto Varas, Puerto Varas, Chile
| | - Rodrigo Torres-Castro
- Physical Therapy Department, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Cui M, Xu X, Ye J, Pu X, Ren L. Effect of traumatic brain injury severity on intestinal barrier and gastrointestinal function. World J Emerg Med 2025; 16:82-84. [PMID: 39906113 PMCID: PMC11788114 DOI: 10.5847/wjem.j.1920-8642.2025.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/26/2024] [Indexed: 02/06/2025] Open
Affiliation(s)
- Meifang Cui
- Intensive Care Unit, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China
| | - Xiaoyu Xu
- Intensive Care Unit, Nanjing Medical University, Nanjing 210000, China
| | - Jilu Ye
- Intensive Care Unit, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China
| | - Xuehua Pu
- Intensive Care Unit, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China
| | - Liping Ren
- Intensive Care Unit, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China
| |
Collapse
|
9
|
Gao C, Zhang E, Shi Z. Influencing factors on neurological prognosis after traumatic brain injury and the role of brain tissue oxygen pressure (PbtO 2) monitoring. Am J Transl Res 2024; 16:7530-7541. [PMID: 39822509 PMCID: PMC11733374 DOI: 10.62347/hbjz1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/05/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE To identify factors influencing neurological prognosis following traumatic brain injury (TBI) and to analyze the role of brain tissue oxygen pressure (PbtO2) monitoring in prognostication. METHODS In this case-control study, medical records of 412 individuals diagnosed with TBI were thoroughly examined and analyzed. The patients were divided into two groups based on their prognosis at three months post-injury: Good Prognosis (n = 321) and Poor Prognosis (n = 91). Demographic and clinical characteristics, brain tissue oxygen partial pressure, radiological and laboratory findings, treatment interventions, and complications were compared between the two groups. Logistic regression analysis was conducted to identify the risk factors for neurological prognosis, and the predictive value of these factors was evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS The study identified associations between Injury Severity Score (ISS), Glasgow Coma Scale (GCS), PbtO2 levels, radiological findings (diffuse axonal injury and subarachnoid hemorrhage), and laboratory parameters (platelet count and arterial oxygen partial pressure (PaO2)) with neurological prognosis following TBI. Initial PbtO2 levels demonstrated independent predictive value for poor neurological outcomes (Area Under the Curve (AUC) = 0.804). CONCLUSION The study highlights the prognostic significance of injury severity, brain tissue oxygenation, radiological findings, and laboratory parameters in determining neurological outcomes following TBI. Furthermore, the findings emphasize the potential of PbtO2 monitoring as a valuable tool in prognostic assessment.
Collapse
Affiliation(s)
- Chunlei Gao
- Department of Emergency Medicine, Baotou Central HospitalBaotou 014040, Inner Mongolia Autonomous Region, China
| | - Ercheng Zhang
- Department of Emergency Medicine, Baotou Central HospitalBaotou 014040, Inner Mongolia Autonomous Region, China
| | - Zhanhua Shi
- Department of Neurosurgery, Baotou Central HospitalBaotou 014040, Inner Mongolia Autonomous Region, China
| |
Collapse
|
10
|
Shi H, Song L, Wu Y, Shen R, Zhang C, Liao X, Wang Q, Zhu J. Edaravone Alleviates Traumatic Brain Injury by Inhibition of Ferroptosis via FSP1 Pathway. Mol Neurobiol 2024; 61:10448-10461. [PMID: 38733490 PMCID: PMC11584507 DOI: 10.1007/s12035-024-04216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Traumatic brain injury (TBI) is a highly severe form of trauma with complex series of reactions in brain tissue which ultimately results in neuronal damage. Previous studies proved that neuronal ferroptosis, which was induced by intracranial haemorrhage and other reasons, was one of the most primary causes of neuronal damage following TBI. However, the association between neuronal mechanical injury and ferroptosis in TBI and relevant treatments remain unclear. In the present study, we first demonstrated the occurrence of neuronal ferroptosis in the early stage of TBI and preliminarily elucidated that edaravone (EDA), a cerebroprotective agent that eliminates oxygen radicals, was able to inhibit ferroptosis induced by TBI. A cell scratching model was established in PC12 cells, and it was confirmed that mechanical injury induced ferroptosis in neurons at the early stage of TBI. Ferroptosis suppressor protein 1 (FSP1) plays a significant role in inhibiting ferroptosis, and we found that iFSP, a ferroptosis agonist which is capable to inhibit FSP1 pathway, attenuated the anti-ferroptosis effect of EDA. In conclusion, our results suggested that EDA inhibited neuronal ferroptosis induced by mechanical injury in the early phase of TBI by activating FSP1 pathway, which could provide evidence for future research on prevention and treatment of TBI.
Collapse
Affiliation(s)
- Haoyu Shi
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Libiao Song
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Yonghui Wu
- Department of Neurosurgery, The Second People's Hospital of Lu'an, Lu'an, 237000, Anhui Province, China
| | - Ruonan Shen
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Chenxu Zhang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Xingzhi Liao
- Department of Anaesthesiology, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Qiuhong Wang
- Department of Ophthalmology, Wuxi Second Hospital Affiliated to Jiangnan University, Wuxi, 214002, Jiangsu Province, China
| | - Jie Zhu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China.
| |
Collapse
|
11
|
Cáceres E, Olivella JC, Di Napoli M, Raihane AS, Divani AA. Immune Response in Traumatic Brain Injury. Curr Neurol Neurosci Rep 2024; 24:593-609. [PMID: 39467990 PMCID: PMC11538248 DOI: 10.1007/s11910-024-01382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW This review aims to comprehensively examine the immune response following traumatic brain injury (TBI) and how its disruption can impact healing and recovery. RECENT FINDINGS The immune response is now considered a key element in the pathophysiology of TBI, with consequences far beyond the acute phase after injury. A delicate equilibrium is crucial for a healthy recovery. When this equilibrium is disrupted, chronic inflammation and immune imbalance can lead to detrimental effects on survival and disability. Globally, traumatic brain injury (TBI) imposes a substantial burden in terms of both years of life lost and years lived with disability. Although its epidemiology exhibits dynamic trends over time and across regions, TBI disproportionally affects the younger populations, posing psychosocial and financial challenge for communities and families. Following the initial trauma, the primary injury is succeeded by an inflammatory response, primarily orchestrated by the innate immune system. The inflammasome plays a pivotal role during this stage, catalyzing both programmed cell death pathways and the up-regulation of inflammatory cytokines and transcription factors. These events trigger the activation and differentiation of microglia, thereby intensifying the inflammatory response to a systemic level and facilitating the migration of immune cells and edema. This inflammatory response, initially originated in the brain, is monitored by our autonomic nervous system. Through the vagus nerve and adrenergic and cholinergic receptors in various peripheral lymphoid organs and immune cells, bidirectional communication and regulation between the immune and nervous systems is established.
Collapse
Affiliation(s)
- Eder Cáceres
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia.
- School of Medicine, Universidad de La Sabana, Chía, Colombia.
- Bioscience PhD. School of Engineering, Universidad de La Sabana, Chía, Colombia.
| | | | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Ahmed S Raihane
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| |
Collapse
|
12
|
Cáceres E, Divani AA, Rubinos CA, Olivella-Gómez J, Viñan Garcés AE, González A, Alvarado Arias A, Bhatia K, Samadani U, Reyes LF. PaCO 2 Association with Outcomes of Patients with Traumatic Brain Injury at High Altitude: A Prospective Single-Center Cohort Study. Neurocrit Care 2024; 41:767-778. [PMID: 38740704 PMCID: PMC11599390 DOI: 10.1007/s12028-024-01982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Partial pressure of carbon dioxide (PaCO2) is generally known to influence outcome in patients with traumatic brain injury (TBI) at normal altitudes. Less is known about specific relationships of PaCO2 levels and clinical outcomes at high altitudes. METHODS This is a prospective single-center cohort of consecutive patients with TBI admitted to a trauma center located at 2600 m above sea level. An unfavorable outcome was defined as a Glasgow Outcome Scale-Extended (GOSE) score < 4 at the 6-month follow-up. RESULTS We had a total of 81 patients with complete data, 80% (65/81) were men, and the median (interquartile range) age was 36 (25-50) years. Median Glasgow Coma Scale (GCS) score on admission was 9 (6-14); 49% (40/81) of patients had severe TBI (GCS 3-8), 32% (26/81) had moderate TBI (GCS 12-9), and 18% (15/81) had mild TBI (GCS 13-15). The median (interquartile range) Abbreviated Injury Score of the head (AISh) was 3 (2-4). The frequency of an unfavorable outcome (GOSE < 4) was 30% (25/81), the median GOSE was 4 (2-5), and the median 6-month mortality rate was 24% (20/81). Comparison between patients with favorable and unfavorable outcomes revealed that those with unfavorable outcome were older, (median age 49 [30-72] vs. 29 [22-41] years, P < 0.01), had lower admission GCS scores (6 [4-8] vs. 13 [8-15], P < 0.01), had higher AISh scores (4 [4-4] vs. 3 [2-4], P < 0.01), had higher Acute Physiology and Chronic Health disease Classification System II scores (17 [15-23] vs. 10 [6-14], P < 0.01), had higher Charlson scores (0 [0-2] vs. 0 [0-0], P < 0.01), and had higher PaCO2 levels (mean 35 ± 8 vs. 32 ± 6 mm Hg, P < 0.01). In a multivariate analysis, age (odds ratio [OR] 1.14, 95% confidence interval [CI] 1.1-1.30, P < 0.01), AISh (OR 4.7, 95% CI 1.55-21.0, P < 0.05), and PaCO2 levels (OR 1.23, 95% CI 1.10-1.53, P < 0.05) were significantly associated with the unfavorable outcomes. When applying the same analysis to the subgroup on mechanical ventilation, AISh (OR 5.4, 95% CI 1.61-28.5, P = 0.017) and PaCO2 levels (OR 1.36, 95% CI 1.13-1.78, P = 0.015) remained significantly associated with the unfavorable outcome. CONCLUSIONS Higher PaCO2 levels are associated with an unfavorable outcome in ventilated patients with TBI. These results underscore the importance of PaCO2 levels in patients with TBI and whether it should be adjusted for populations living at higher altitudes.
Collapse
Affiliation(s)
- Eder Cáceres
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia.
- Department of Bioscience, School of Engineering, Universidad de La Sabana, Chía, Colombia.
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia.
| | - Afshin A Divani
- Department of Neurology, The University of New Mexico, Albuquerque, NM, USA
| | - Clio A Rubinos
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Juan Olivella-Gómez
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
| | | | - Angélica González
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
| | | | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Uzma Samadani
- Department of Neurosurgery, Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Luis F Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Li Z, Xu F, Zhang T, Zhao B, Cai Y, Yang H, Li D, Chen M, Zhao T, Zhang X, Zhao L, Ge S, Qu Y. A Nomogram to Predict Intracranial Hypertension in Moderate Traumatic Brain Injury Patients. World Neurosurg 2024; 191:e1-e19. [PMID: 38996962 DOI: 10.1016/j.wneu.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 07/14/2024]
Abstract
OBJECTIVE Patients with moderate traumatic brain injury (mTBI) are under the threat of intracranial hypertension (IHT). However, it is unclear which mTBI patient will develop IHT and should receive intracranial pressure (ICP)-lowering treatment or invasive ICP monitoring after admission. The purpose of the present study was to develop and validate a prediction model that estimates the risk of IHT in mTBI patients. METHODS Baseline data collected on admission of 296 mTBI patients with Glasgow Coma Scale (GCS) score of 9-11 was collected and analyzed. Multivariable logistic regression modeling with backward stepwise elimination was used to develop a prediction model for IHT. The discrimination efficacy, calibration efficacy, and clinical utility of the prediction model were evaluated. Finally, the prediction model was validated in a separate cohort of 122 patients from 3 hospitals. RESULTS Four independent prognostic factors for IHT were identified: GCS score, Marshall head computed tomography score, injury severity score, and location of contusion. The C-statistic of the prediction model in internal validation was 84.30% (95% CI: 0.794-0.892). The area under the curve for the prediction model in external validation was 82.80% (95% CI: 0.747-0.909). CONCLUSIONS A prediction model based on baseline parameters was found to be highly sensitive in distinguishing mTBI patients with GCS score of 9-11 who would suffer IHT. The high discriminative ability of the prediction model supports its use in identifying mTBI patients with GCS score of 9-11 who need ICP-lowering therapy or invasive ICP monitoring.
Collapse
Affiliation(s)
- Zhihong Li
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Feifei Xu
- Department of Foreign Languages, Air Force Medical University, Xi'an, China
| | - Taihui Zhang
- School of Aerospace Medicine, Air Force Medicinal University, Xi'an, China
| | - Baocheng Zhao
- Department of Internal Medicine, Central Medical District of Chinese PLA General Hospital, Beijing, China
| | - Yaning Cai
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Haigui Yang
- Department of Neurosurgery, Yanan People's Hospital, Yanan, China
| | - Dongbo Li
- Department of Neurosurgery, Ankang Central Hospital, Ankang, China
| | - Mingsheng Chen
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Tianzhi Zhao
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xingye Zhang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Lanfu Zhao
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
14
|
Wang Y, Guo S, Ji P, Han R, Wang N, Liu J, Chen F, Zhai Y, Wang Y, Jiao Y, Zhao W, Fan C, Xue Y, Qu L, Gao G, Qu Y, Wang L. Is There an Optimal Time Window of Placement of Intracranial Pressure (ICP) Monitor for Elderly Patients With Severe Traumatic Brain Injury? An 11-Year Institutional Cohort Study With Restricted Cubic Spline Analysis. J Neurotrauma 2024; 41:2363-2376. [PMID: 38425191 DOI: 10.1089/neu.2023.0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Severe traumatic brain injury (sTBI) is a prominent contributor to both morbidity and mortality in the elderly population. The monitoring of intracranial pressure (ICP) is crucial in the management of sTBI patients. Nevertheless, the appropriate timing for the placement of ICP monitor in elderly sTBI patients remains uncertain. To determine the optimal timing for the placement of ICP monitor in elderly sTBI patients, in this retrospective cohort study, we collected data from elderly patients (> 65 years) who suffered sTBI and received ICP monitors at Tangdu Hospital, The Fourth Military Medical University, between January 2011 and December 2021. To examine the relationship between the time of ICP monitor placement and in-hospital mortality, we conducted a multi-variate-adjusted restricted cubic spline (RCS) analysis. Additionally, logistic regression analysis was applied to further analyze the influencing factors contributing to early or late ICP monitor placements. A total of 283 eligible elderly TBI patients were included in the current analysis. The in-hospital mortality rate was 73 out of 283 (26%). The RCS analysis demonstrated an inverted U-shaped curve in the relationship between the timing of ICP monitor placement and in-hospital mortality. For the elderly sTBI patient cohort, 6 h was identified as the crucial moment for the treatment strategy. In addition, the protective time window for ICP placement was less than 4.92 h for the GCS 3-5 group, and less than 8.26 h for the GCS 6-8 group. However, the clinical benefit of ICP placement decreased gradually over time. The relationship between ICP placement and in-hospital mortality was non-linear, exhibiting an inverted U-shaped curve in elderly patients with sTBI. For elderly patients with sTBI, early (≤ 6 h) ICP placement was associated with reduced in-hospital mortality. The clinical benefit of ICP placement decreased beyond the optimal time window.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shaochun Guo
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Neurosurgery, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Peigang Ji
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruili Han
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Na Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinghui Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fan Chen
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yulong Zhai
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yue Wang
- Department of Health Statistics, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yang Jiao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenjian Zhao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chao Fan
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yanrong Xue
- Time and Frequency Measurement Department, National Time Service Center, Chinese Academy of Sciences, Xi'an, Shaanxi, China
| | - Liang Qu
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - GuoDong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Calderone A, Latella D, Cardile D, Gangemi A, Corallo F, Rifici C, Quartarone A, Calabrò RS. The Role of Neuroinflammation in Shaping Neuroplasticity and Recovery Outcomes Following Traumatic Brain Injury: A Systematic Review. Int J Mol Sci 2024; 25:11708. [PMID: 39519259 PMCID: PMC11546226 DOI: 10.3390/ijms252111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroplasticity and neuroinflammation are variables seen during recovery from traumatic brain injury (TBI), while biomarkers are useful in monitoring injury and guiding rehabilitation efforts. This systematic review examines how neuroinflammation affects neuroplasticity and recovery following TBI in animal models and humans. Studies were identified from an online search of the PubMed, Web of Science, and Embase databases without any search time range. This review has been registered on Open OSF (n) UDWQM. Recent studies highlight the critical role of biomarkers like serum amyloid A1 (SAA1) and Toll-like receptor 4 (TLR4) in predicting TBI patients' injury severity and recovery outcomes, offering the potential for personalized treatment and improved neurorehabilitation strategies. Additionally, insights from animal studies reveal how neuroinflammation affects recovery, emphasizing targets such as NOD-like receptor family pyrin domain-containing 3 (NLRP3) and microglia for enhancing therapeutic interventions. This review emphasizes the central role of neuroinflammation in TBI, and its adverse impact on neuroplasticity and recovery, and suggests that targeted anti-inflammatory treatments and biomarker-based personalized approaches hold the key to improvement. Such approaches will need further development in future research by integrating neuromodulation and pharmacological interventions, along with biomarker validation, to optimize management in TBI.
Collapse
Affiliation(s)
- Andrea Calderone
- Department of Clinical and Experimental Medicine, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Desirèe Latella
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Antonio Gangemi
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Carmela Rifici
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| |
Collapse
|
16
|
Li M, Yan Y, Kuehlmeyer K, Huang W, Laureys S, Di H. Clinical and ethical challenges in decision-making for patients with disorders of consciousness and locked-in syndrome from Chinese neurologists' perspectives. Ther Adv Neurol Disord 2024; 17:17562864241283328. [PMID: 39385995 PMCID: PMC11462555 DOI: 10.1177/17562864241283328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Background The diagnosis of and life-sustaining treatment (LST) for patients with disorders of consciousness (DoC) and locked-in syndrome (LIS) have been the subject of intense debate. Objective We aim to investigate the application of diagnostic knowledge, opinions about the administration of LST, and ethical challenges related to DoC and LIS. Design A cross-sectional study. Methods A survey was conducted among Chinese neurologists. Questionnaires included three vignettes (unresponsive wakefulness syndrome (UWS); minimally conscious state (MCS), and LIS). They were randomly distributed among neurologists from August 2018 to December 2019. Results A sample of 360 questionnaires was included (response rate: 78%). Overall, 63% of the participants chose the correct diagnostic category. The neurologists who received the MCS case chose the category more accurately than the neurologists with the UWS (p < 0.001) and LIS case (p = 0.002). Most neurologists preferred never to limit LST for their patients (47%, 63%, and 67% in UWS, MCS, and LIS groups, p = 0.052). A large group of neurologists believed UWS patients could feel pain (73%), with no difference from MCS and LIS patients (p > 0.05). Deciding for patients in the absence of surrogates was rated extremely challenging. Conclusion A large proportion of Chinese neurologists in our study didn't apply the accurate diagnostic categories to the description of DoC and LIS patients. This calls for more education and training. Most Chinese neurologists were reluctant to limit LST for patients. This may indicate that there may be a need to emphasize the allocation of more resources toward long-term care in China.
Collapse
Affiliation(s)
- Meiqi Li
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
- Intensive Care Unit, Hangzhou First People’s Hospital, Hangzhou, China
| | - Yifan Yan
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Katja Kuehlmeyer
- Institute of Ethics, History and Theory of Medicine, LMU Munich, Munich, Germany
| | - Wangshan Huang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Laval University, Québec, QC, Canada
| | - Haibo Di
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
- School of Basic Medicine, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
17
|
Fu Z, Liu M, Wang S, Zhang H, Sun Y, Zhou Y, Li X, Ming P, Song J, Xu G. Impairment of inhibitory control due to repetitive subconcussions from indirect brain impacts: Evidence from event-related potentials and resting-state EEG complexity in parachuters. Brain Res Bull 2024; 216:111053. [PMID: 39173778 DOI: 10.1016/j.brainresbull.2024.111053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/27/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
The present study aims to investigate the unknown relationship between inhibitory control and repetitive subconcussion induced by the indirect brain impacts. We enrolled 28 parachuters exposed to repetitive subconcussion (SC) and 27 matched health controls (HC). Parachuters who have completed at least 70 actual parachuting (71-112 times) and at least 1500 simulated platform jumps (1500-4500 times) were included in the SC group. The SC group had a reduced accuracy rate in both the Stroop congruent and incongruent conditions. Larger N2 and N450 amplitudes were elicited in the frontal regions of the SC group, which indicate compensatory adaptations to the deficit in conflict monitoring. The reduced frontal resting-state EEG complexity in full-band (1-40 Hz) may demonstrate the frontal structural damage following the indirect brain impacts of repetitive subconcussion. Pearson correlation analysis showed that in the SC group, the frontal beta-band sample entropy values are positively correlated with the accuracy rate of the Stroop incongruent condition, suggesting the frontal beta-band sample entropy values may serve as potential electrophysiological markers of impaired inhibitory control after indirectly repetitive brain impacts. This study provides the robust evidence that repetitive subconcussion resulting from indirect brain impacts may lead to impairment of inhibitory control.
Collapse
Affiliation(s)
- Zhenghao Fu
- The First School of Clinical Medicine, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China; Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China
| | - Min Liu
- Airborne Troop Hospital, Wuhan, China
| | - Shuochen Wang
- Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China
| | - Haoran Zhang
- Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China; Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan 430081, China
| | - Yuanyi Sun
- The First School of Clinical Medicine, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China; Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China
| | - Yang Zhou
- Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China; Hubei University of Medicine, 16 Shanghai Road, Shiyan, Hubei Province 442000, China
| | - Xiang Li
- Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China; Hubei University of Medicine, 16 Shanghai Road, Shiyan, Hubei Province 442000, China
| | | | - Jian Song
- The First School of Clinical Medicine, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China; Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China.
| | - Guozheng Xu
- The First School of Clinical Medicine, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China; Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China.
| |
Collapse
|
18
|
Liu L, Huang R, Fan C, Chen X. Diagnostic and prognostic utility of plasma thrombospondin-1 levels in traumatic brain injury. Eur J Trauma Emerg Surg 2024; 50:2229-2237. [PMID: 39112761 DOI: 10.1007/s00068-024-02605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/09/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE Thrombospondin-1 (TSP-1), a powerful antiangiogenic agent, is increasingly expressed in mice brain tissues after traumatic brain injury (TBI). However, in the peripheral blood of TBI patients, TSP-1 concentrations have not been identified. This study aimed to determine if TSP-1 measured in the plasma of patients relates to TBI diagnosis and injury severity. METHODS Plasma TSP-1 levels were assessed in 75 patients with mild to severe TBI and 60 healthy volunteers. Glasgow Coma Scale (GCS) score was recorded to assess traumatic severity. Other relevant clinical characters and laboratory tests were collected to evaluate the diagnostic efficiency of TSP-1. Glasgow outcome scale (GOSE) 3 months after trauma was dichotomized into unfavorable (GOSE1-4) and favorable (GOSE5-8) outcomes. RESULTS TSP-1 levels were significantly higher in TBI patients than in controls (median 530.4 ng/l, the upper- lower quartiles 373.2-782.1 vs. median 201.5 mg/l, the upper - lower quartiles 83.1-351.4, P < 0.001). Plasma TSP-1 was able to differentiate patients with mild, moderate, and severe TBI from healthy controls with Area Under the Receiver-Operating Characteristic Curve (AUROC) of 0.8089, 0.9312, and 0.9189, respectively. TSP-1 levels were closely and negatively correlated with GCS score (r = -0.41). TSP-1 levels > 624.4 ng/ml independently predicted a 3-month unfavorable outcome with an odds ratio value of 9.666 (95% confidence interval (CI),1.393-69.072). TSP-1 levels significantly discriminated 3-month unfavorable outcome with AUROC of 0.7445 (95%CI, 0.6152-0.8739). CONCLUSION The results of this study indicate that plasma TSP-1 should be further investigated as a diagnostic and prognostic marker for patients with TBI.
Collapse
Affiliation(s)
- Lei Liu
- Department of Laboratory Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Rongfu Huang
- Department of Laboratory Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chunmei Fan
- Department of Laboratory Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| | - Xiangrong Chen
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
19
|
Du M, Li J, Yu S, Chen X, She Y, Lu Y, Shu H. RAGE mediates hippocampal pericyte responses and neurovascular unit lesions after TBI. Exp Neurol 2024; 380:114912. [PMID: 39097075 DOI: 10.1016/j.expneurol.2024.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Traumatic brain injury impairs brain function through various mechanisms. Recent studies have shown that alterations in pericytes in various diseases affect neurovascular function, but the effects of TBI on hippocampal pericytes remain unclear. Here, we investigated the effects of RAGE activation on pericytes after TBI using male C57BL/6 J mice. Hippocampal samples were collected at different time points within 7 days after TBI, the expression of PDGFR-β, NG2 and the HMGB1-S100B/RAGE signaling pathway was assessed by Western blotting, and the integrity of the hippocampal BBB at different time points was measured by immunofluorescence. RAGE-associated BBB damage in hippocampal pericytes occurred early after cortical impact. By culturing primary mouse brain microvascular pericytes, we determined the different effects of HMGB1-S100B on pericyte RAGE. To investigate whether RAGE blockade could protect neurological function after TBI, we reproduced the process of CCI by administering FPS-ZM1 to RAGE-/- mice. TEM images and BBB damage-related assays showed that inhibition of RAGE resulted in a significant improvement in the number of hippocampal vascular basement membranes and tight junctions and a reduction in perivascular oedema compared with those in the untreated group. In contrast, mouse behavioural testing and doublecortin staining indicated that targeting the HMGB1-S100B/RAGE axis after CCI could protect neurological function by reducing pericyte-associated BBB damage. In conclusion, the present study provides experimental evidence for the strong correlation between the pericyte HMGB1-S100B/RAGE axis and NVU damage in the hippocampus at the early stage of TBI and further demonstrates that pericyte RAGE serves as an important target for the protection of neurological function after TBI.
Collapse
Affiliation(s)
- Minghao Du
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Mini-Invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an 710003, China
| | - Jiani Li
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an 710003, China
| | - Sixun Yu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xin Chen
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Youyu She
- Mini-Invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an 710003, China
| | - Yichen Lu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.
| | - Haifeng Shu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
20
|
Zhang D, Sheng Y, Wang C, Chen W, Shi X. Global traumatic brain injury intracranial pressure: from monitoring to surgical decision. Front Neurol 2024; 15:1423329. [PMID: 39355091 PMCID: PMC11442239 DOI: 10.3389/fneur.2024.1423329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Traumatic brain injury (TBI) is a significant global public health issue, heavily impacting human health, especially in low-and middle-income areas. Despite numerous guidelines and consensus statements, TBI fatality rates remain high. The pathogenesis of severe TBI is closely linked to rising intracranial pressure (ICP). Elevated intracranial pressure can lead to cerebral herniation, resulting in respiratory and circulatory collapse, and ultimately, death. Managing intracranial pressure (ICP) is crucial in neuro-intensive care. Timely diagnosis and precise treatment of elevated ICP are essential. ICP monitoring provides real-time insights into a patient's condition, offering invaluable guidance for comprehensive management. ICP monitoring and standardization can effectively reduce secondary nerve damage, lowering morbidity and mortality rates. Accurately assessing and using true ICP values to manage TBI patients still depends on doctors' clinical experience. This review discusses: (a) Epidemiological disparities of traumatic brain injuries across countries with different income levels worldwide; (b) The significance and function of ICP monitoring; (c) Current status and challenges of ICP monitoring; (d) The impact of decompressive craniectomy on reducing intracranial pressure; and (e) Management of TBI in diverse income countries. We suggest a thorough evaluation of ICP monitoring, head CT findings, and GCS scores before deciding on decompressive craniectomy. Personalized treatment should be emphasized to assess the need for surgical decompression in TBI patients, offering crucial insights for clinical decision-making.
Collapse
Affiliation(s)
- Dan Zhang
- Longgang Central Hospital of Shenzhen, Guangdong, China
| | - Yanzhi Sheng
- Shenzhen College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Chengbin Wang
- Shenzhen College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Wei Chen
- Longgang Central Hospital of Shenzhen, Guangdong, China
| | - Xiaofeng Shi
- Longgang Central Hospital of Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Zoerle T, Beqiri E, Åkerlund CAI, Gao G, Heldt T, Hawryluk GWJ, Stocchetti N. Intracranial pressure monitoring in adult patients with traumatic brain injury: challenges and innovations. Lancet Neurol 2024; 23:938-950. [PMID: 39152029 DOI: 10.1016/s1474-4422(24)00235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 08/19/2024]
Abstract
Intracranial pressure monitoring enables the detection and treatment of intracranial hypertension, a potentially lethal insult after traumatic brain injury. Despite its widespread use, robust evidence supporting intracranial pressure monitoring and treatment remains sparse. International studies have shown large variations between centres regarding the indications for intracranial pressure monitoring and treatment of intracranial hypertension. Experts have reviewed these two aspects and, by consensus, provided practical approaches for monitoring and treatment. Advances have occurred in methods for non-invasive estimation of intracranial pressure although, for now, a reliable way to non-invasively and continuously measure intracranial pressure remains aspirational. Analysis of the intracranial pressure signal can provide information on brain compliance (ie, the ability of the cranium to tolerate volume changes) and on cerebral autoregulation (ie, the ability of cerebral blood vessels to react to changes in blood pressure). The information derived from the intracranial pressure signal might allow for more individualised patient management. Machine learning and artificial intelligence approaches are being increasingly applied to intracranial pressure monitoring, but many obstacles need to be overcome before their use in clinical practice could be attempted. Robust clinical trials are needed to support indications for intracranial pressure monitoring and treatment. Progress in non-invasive assessment of intracranial pressure and in signal analysis (for targeted treatment) will also be crucial.
Collapse
Affiliation(s)
- Tommaso Zoerle
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cecilia A I Åkerlund
- Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden; Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Guoyi Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Thomas Heldt
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gregory W J Hawryluk
- Cleveland Clinic Akron General Hospital, Uniformed Services University, Cleveland, OH, USA
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
22
|
Chen Y, Long T, Chen J, Wei H, Meng J, Kang M, Wang J, Zhang X, Xu Q, Zhang C, Xiong K. WTAP participates in neuronal damage by protein translation of NLRP3 in an m6A-YTHDF1-dependent manner after traumatic brain injury. Int J Surg 2024; 110:5396-5408. [PMID: 38874470 PMCID: PMC11392096 DOI: 10.1097/js9.0000000000001794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a common complication of acute and severe neurosurgery. Remodeling of N6-methyladenosine (m6A) stabilization may be an attractive treatment option for neurological dysfunction after TBI. In the present study, the authors explored the epigenetic methylation of RNA-mediated NLRP3 inflammasome activation after TBI. METHODS Neurological dysfunction, histopathology, and associated molecules were examined in conditional knockout (CKO) WTAP [flox/flox, Camk2a-cre] , WTAP flox/flox , and pAAV-U6-shRNA-YTHDF1-transfected mice. Primary neurons were used in vitro to further explore the molecular mechanisms of action of WTAP/YTHDF1 following neural damage. RESULTS The authors found that WTAP and m6A levels were upregulated at an early stage after TBI, and conditional deletion of WTAP in neurons did not affect neurological function but promoted functional recovery after TBI. Conditional deletion of WTAP in neurons suppressed neuroinflammation at the TBI early phase: WTAP could directly act on NLRP3 mRNA, regulate NLRP3 mRNA m6A level, and promote NLRP3 expression after neuronal injury. Further investigation found that YTH domain of YTHDF1 could directly bind to NLRP3 mRNA and regulate NLRP3 protein expression. YTHDF1 mutation or silencing improved neuronal injury, inhibited Caspase-1 activation, and decreased IL-1β levels. This effect was mediated via suppression of NLRP3 protein translation, which also reversed the stimulative effect of WTAP overexpression on NLRP3 expression and inflammation. CONCLUSIONS Our results indicate that WTAP participates in neuronal damage by protein translation of NLRP3 in an m6A-YTHDF1-dependent manner after TBI and that WTAP/m6A/YTHDF1 downregulation therapeutics is a viable and promising approach for preserving neuronal function after TBI, which can provide support for targeted drug development.
Collapse
Affiliation(s)
- Yuhua Chen
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou
- Department of Central Laboratory, Xi’an Peihua University, Xi’an, Shaanxi
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou
| | - Junhui Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904 Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province
| | - Hong Wei
- Department of Rehabilitation Teaching and Research, Xi’an Siyuan University, Xi’an
| | - Jiao Meng
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou
- Department of Central Laboratory, Xi’an Peihua University, Xi’an, Shaanxi
| | - Meili Kang
- Department of Central Laboratory, Xi’an Peihua University, Xi’an, Shaanxi
| | - Juning Wang
- Department of Central Laboratory, Xi’an Peihua University, Xi’an, Shaanxi
| | - Xin Zhang
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou
| | - Quanhua Xu
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, Hainan
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
23
|
Martin-Rodriguez F, Sanz-Garcia A, Lopez-Izquierdo R, Delgado Benito JF, Martínez Fernández FT, Otero de la Torre S, Del Pozo Vegas C. Prehospital Lactate Levels Obtained in the Ambulance and Prediction of 2-Day In-Hospital Mortality in Patients With Traumatic Brain Injury. Neurology 2024; 103:e209692. [PMID: 39088773 DOI: 10.1212/wnl.0000000000209692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/21/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES To analyze the ability of prehospital lactate levels to predict 2-day in-hospital mortality in patients with traumatic brain injury (TBI), severe TBI (Glasgow Coma Scale (GCS) ≤ 8 points), and mild or moderate TBI (GCS ≥ 9 points). Second, 90-day mortality was also explored. METHODS This was a prospective, multicenter, emergency medical services (EMSs) delivery, ambulance-based, derivation-validation cohort study developed in 5 tertiary hospitals (Spain), from November 1, 2019, to July 31, 2022. Patients were recruited from among all phone requests for emergency assistance among adults who were later evacuated to referral hospitals with acute TBI. The exclusion criteria were minors, pregnancy, trauma patients without TBI, delayed presentations, patients were discharged in situ, participants with cardiac arrest, and unavailability to obtain a blood sample. The primary outcome was all-cause 2-day in-hospital mortality and 90-day mortality in patients with moderate or mild TBI compared with patients with severe TBI. Clinical and analytical parameters (lactate and glucose) were collected. The discriminative power (area under the receiver operating characteristic curve [AUC]) and calibration curve were calculated for 2 geographically separated cohorts. RESULTS A total of 509 patients were ultimately included. The median age was 58 years (interquartile range: 43-75), and 167 patients were female (32.8%). The primary outcome occurred in 9 (2.2%) of 415 patients with moderate or mild TBI and in 42 (44.7%) of 94 patients with severe TBI. The predictive capacity of the lactate concentration was globally validated in our cohort, for which the AUC was 0.874 (95% CI 0.805-0.942) for the validation cohort. The ability of the GCS score to predict lactate concentration was greater in patients with a GCS score ≥9 points, with an AUC of 0.925 (95% CI 0.808-1.000) and a negative predictive value of 99.09 (95% CI 98.55-99.64) in the validation cohort. CONCLUSION Our results show the benefit of using lactate in all patients with TBI, particularly in those with a GCS ≥9 points. Routine incorporation of lactate in the screening of patients with TBI could presumably reduce mortality and deterioration rates because of quicker and better identification of patients at risk.
Collapse
Affiliation(s)
- Francisco Martin-Rodriguez
- From the Faculty of Medicine (F.M.-R., R.L.-I., C.D.P.V.), Universidad de Valladolid; Advanced Life Support (F.M.-R., J.F.D.B.), Emergency Medical Services (SACYL); Telemedicine and e-Health Research Group (F.M.-R., R.L.-I., J.F.D.B., F.T.M.F., S.O.T., C.D.P.V.), Valladolid; ; Technological Innovation Applied to Health Research Group (ITAS Group) (A.S.-G.), Faculty of Health Sciences, University of de Castilla-La Mancha, Talavera de la Reina; Evaluación de Cuidados de Salud (ECUSAL) (A.S.-G.), Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM); Emergency Department (R.L.-I.), Hospital Universitario Rio Hortega; and Emergency Department, Hospital Clínico Universitario, Valladolid (C.D.P.V.), Spain
| | - Ancor Sanz-Garcia
- From the Faculty of Medicine (F.M.-R., R.L.-I., C.D.P.V.), Universidad de Valladolid; Advanced Life Support (F.M.-R., J.F.D.B.), Emergency Medical Services (SACYL); Telemedicine and e-Health Research Group (F.M.-R., R.L.-I., J.F.D.B., F.T.M.F., S.O.T., C.D.P.V.), Valladolid; ; Technological Innovation Applied to Health Research Group (ITAS Group) (A.S.-G.), Faculty of Health Sciences, University of de Castilla-La Mancha, Talavera de la Reina; Evaluación de Cuidados de Salud (ECUSAL) (A.S.-G.), Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM); Emergency Department (R.L.-I.), Hospital Universitario Rio Hortega; and Emergency Department, Hospital Clínico Universitario, Valladolid (C.D.P.V.), Spain
| | - Raul Lopez-Izquierdo
- From the Faculty of Medicine (F.M.-R., R.L.-I., C.D.P.V.), Universidad de Valladolid; Advanced Life Support (F.M.-R., J.F.D.B.), Emergency Medical Services (SACYL); Telemedicine and e-Health Research Group (F.M.-R., R.L.-I., J.F.D.B., F.T.M.F., S.O.T., C.D.P.V.), Valladolid; ; Technological Innovation Applied to Health Research Group (ITAS Group) (A.S.-G.), Faculty of Health Sciences, University of de Castilla-La Mancha, Talavera de la Reina; Evaluación de Cuidados de Salud (ECUSAL) (A.S.-G.), Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM); Emergency Department (R.L.-I.), Hospital Universitario Rio Hortega; and Emergency Department, Hospital Clínico Universitario, Valladolid (C.D.P.V.), Spain
| | - Juan F Delgado Benito
- From the Faculty of Medicine (F.M.-R., R.L.-I., C.D.P.V.), Universidad de Valladolid; Advanced Life Support (F.M.-R., J.F.D.B.), Emergency Medical Services (SACYL); Telemedicine and e-Health Research Group (F.M.-R., R.L.-I., J.F.D.B., F.T.M.F., S.O.T., C.D.P.V.), Valladolid; ; Technological Innovation Applied to Health Research Group (ITAS Group) (A.S.-G.), Faculty of Health Sciences, University of de Castilla-La Mancha, Talavera de la Reina; Evaluación de Cuidados de Salud (ECUSAL) (A.S.-G.), Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM); Emergency Department (R.L.-I.), Hospital Universitario Rio Hortega; and Emergency Department, Hospital Clínico Universitario, Valladolid (C.D.P.V.), Spain
| | - Francisco T Martínez Fernández
- From the Faculty of Medicine (F.M.-R., R.L.-I., C.D.P.V.), Universidad de Valladolid; Advanced Life Support (F.M.-R., J.F.D.B.), Emergency Medical Services (SACYL); Telemedicine and e-Health Research Group (F.M.-R., R.L.-I., J.F.D.B., F.T.M.F., S.O.T., C.D.P.V.), Valladolid; ; Technological Innovation Applied to Health Research Group (ITAS Group) (A.S.-G.), Faculty of Health Sciences, University of de Castilla-La Mancha, Talavera de la Reina; Evaluación de Cuidados de Salud (ECUSAL) (A.S.-G.), Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM); Emergency Department (R.L.-I.), Hospital Universitario Rio Hortega; and Emergency Department, Hospital Clínico Universitario, Valladolid (C.D.P.V.), Spain
| | - Santiago Otero de la Torre
- From the Faculty of Medicine (F.M.-R., R.L.-I., C.D.P.V.), Universidad de Valladolid; Advanced Life Support (F.M.-R., J.F.D.B.), Emergency Medical Services (SACYL); Telemedicine and e-Health Research Group (F.M.-R., R.L.-I., J.F.D.B., F.T.M.F., S.O.T., C.D.P.V.), Valladolid; ; Technological Innovation Applied to Health Research Group (ITAS Group) (A.S.-G.), Faculty of Health Sciences, University of de Castilla-La Mancha, Talavera de la Reina; Evaluación de Cuidados de Salud (ECUSAL) (A.S.-G.), Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM); Emergency Department (R.L.-I.), Hospital Universitario Rio Hortega; and Emergency Department, Hospital Clínico Universitario, Valladolid (C.D.P.V.), Spain
| | - Carlos Del Pozo Vegas
- From the Faculty of Medicine (F.M.-R., R.L.-I., C.D.P.V.), Universidad de Valladolid; Advanced Life Support (F.M.-R., J.F.D.B.), Emergency Medical Services (SACYL); Telemedicine and e-Health Research Group (F.M.-R., R.L.-I., J.F.D.B., F.T.M.F., S.O.T., C.D.P.V.), Valladolid; ; Technological Innovation Applied to Health Research Group (ITAS Group) (A.S.-G.), Faculty of Health Sciences, University of de Castilla-La Mancha, Talavera de la Reina; Evaluación de Cuidados de Salud (ECUSAL) (A.S.-G.), Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM); Emergency Department (R.L.-I.), Hospital Universitario Rio Hortega; and Emergency Department, Hospital Clínico Universitario, Valladolid (C.D.P.V.), Spain
| |
Collapse
|
24
|
Iizawa Y, Hayashi Y, Saito D, Kondo K, Yamashiro M, Kanematsu R, Hirose K, Nakamura M, Miyazaki T. Prediction of Neurological Outcomes in Elderly Patients With Head Trauma Using the Geriatric Trauma Outcome Score: A Retrospective Observational Study. Cureus 2024; 16:e66768. [PMID: 39268254 PMCID: PMC11391925 DOI: 10.7759/cureus.66768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Head trauma in elderly people is a problem in today's aging society. Elderly people are susceptible to head trauma because of their declining physical function; this tends to be severe. Outcome prediction is important in decision-making regarding treatment strategies; however, there is no unified method for predicting neurological outcomes in elderly patients with head trauma. Methods Elderly patients with head trauma admitted to the Japan Red Cross Narita Hospital between January 2019 and August 2023 were enrolled in this single-center, retrospective observational study. A favorable neurological outcome was defined as a cerebral performance category scale of 1 or 2. Multivariate logistic regression analysis and receiver operating characteristic curve analysis were performed to investigate the association between geriatric trauma outcome scores and outcomes and to evaluate the predictive value of geriatric trauma outcome scores. The primary outcome was a favorable neurological outcome at discharge, and the secondary outcome was in-hospital mortality. Results A total of 313 elderly patients with head trauma were eligible for analysis. Multivariate logistic regression analysis revealed that the geriatric trauma outcome score was significantly associated with a favorable neurological outcome at discharge (odds ratio 0.94, P <0.0001). In the receiver operating characteristic curve analysis, the geriatric trauma outcome score had a good predictive value for favorable neurological outcomes at discharge (area under the receiver operating characteristic curve 0.83). Conclusions The geriatric trauma outcome score had good predictive value for favorable neurological outcomes at discharge in elderly patients with head trauma and has the potential to aid in decision-making regarding treatment strategies for elderly patients with head trauma.
Collapse
Affiliation(s)
- Yuta Iizawa
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, JPN
- Department of Emergency and Critical Care Medicine, Japan Red Cross Narita Hospital, Narita, JPN
| | - Yosuke Hayashi
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, JPN
- Department of Emergency and Critical Care Medicine, Japan Red Cross Narita Hospital, Narita, JPN
| | - Daiki Saito
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, JPN
- Department of Emergency and Critical Care Medicine, Japan Red Cross Narita Hospital, Narita, JPN
| | - Kengo Kondo
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, JPN
- Department of Emergency and Critical Care Medicine, Japan Red Cross Narita Hospital, Narita, JPN
| | - Mana Yamashiro
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, JPN
- Department of Emergency and Critical Care Medicine, Japan Red Cross Narita Hospital, Narita, JPN
| | - Rie Kanematsu
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, JPN
- Department of Emergency and Critical Care Medicine, Japan Red Cross Narita Hospital, Narita, JPN
| | - Kimihito Hirose
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, JPN
- Department of Emergency and Critical Care Medicine, Japan Red Cross Narita Hospital, Narita, JPN
| | - Michio Nakamura
- Department of Neurosurgery, Japan Red Cross Narita Hospital, Narita, JPN
| | - Tadashi Miyazaki
- Department of Neurosurgery, Japan Red Cross Narita Hospital, Narita, JPN
| |
Collapse
|
25
|
Mao J, Xue J, Li Y, Zhou Q, Zhou S, Zhou Z. Factors influencing traumatic brain injuries in maxillofacial fractures: A 12-year retrospective analysis of 2841 patients. Dent Traumatol 2024; 40:435-443. [PMID: 38459650 DOI: 10.1111/edt.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND/AIM Results of studies investigating the association between traumatic brain injury (TBI) and maxillofacial fractures (MFs) have varied considerably. The present study aimed to evaluate the correlation between TBIs and MFs, as well as the impact of age, sex, trauma mechanism, and season on TBIs. MATERIALS AND METHODS This 12-year retrospective study of 2841 patients used univariate and multivariate logistic regression to assess the association between MFs and other factors impacting TBIs. RESULTS Among 2841 patients, 1978 TBIs occurred in 829 (29.2%), with intracranial injuries (n = 828) is the most common. Of 829 patients with TBIs, 688 were male and 141 were female, corresponding to a male-to-female ratio of 4.9:1.0. The most common age group was 40-49 years (24.6%). Vehicles (including motor vehicles and electric vehicles) accidents were the primary causes of injuries. Multivariate regression analyses revealed an increased risk for TBIs among males (odds ratio [OR] 0.632, p < 0.001). Patients >40 years of age were at higher risk for TBIs, especially those ≥70 years (OR 3.966, p = 0.001). Vehicle accidents were a high-risk factor for TBIs (OR 6.894, p < 0.001), and winter was the most prevalent season for such injuries (OR 1.559, p = 0.002). Risk for TBI increased by 136.4% in combined midfacial and mandibular fractures (p = 0.016) and by 101.6% in multiple midfacial fractures (p = 0.045). TBIs were less common in single mandibular fractures, notably in single-angle fractures, with a risk of only 0.204-fold. CONCLUSION TBIs in MFs were significantly correlated with sex, age, aetiology, season and fracture location. Maxillofacial surgeons and emergency physicians must be aware of the possible association between TBIs and MFs to assess and manage this complicated relationship in a timely manner.
Collapse
Affiliation(s)
- Jingjing Mao
- Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- Ningxia Key Laboratory of Oral Diseases Research, Yinchuan, Ningxia, P.R. China
| | - Jiawen Xue
- Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Yunlong Li
- Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Qi Zhou
- Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Shuo Zhou
- Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Zhongwei Zhou
- Department of Oral and Maxillofacial Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- Clinical Research Center for Oral Diseases of Ningxia, Yinchuan, Ningxia, P.R. China
| |
Collapse
|
26
|
Regmi M, Bhatta OP, Sharma MR. Pre-hospital care, pre-hospital delay, and in-hospital delay in patients with traumatic brain injury in getting neurosurgical care in a tertiary care center: A Cross-Sectional study. JNMA J Nepal Med Assoc 2024; 62:416-420. [PMID: 39369424 PMCID: PMC11455635 DOI: 10.31729/jnma.8629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 10/08/2024] Open
Abstract
INTRODUCTION Timely institution of pre-hospital therapies aimed at damage control and the appropriately timed decision of transfer to higher centers for definitive neurosurgical management are crucial in determining the outcome of patients following traumatic brain injury. This study aimed to evaluate the factors determining pre-hospital care and delay in patients with traumatic brain injury. METHODS This was a descriptive cross-sectional study conducted in a tertiary care center after obtaining ethical approval from the Institutional Review Board (approval number 392 (6-11) E2). All patients with traumatic brain injury who presented to the emergency department from 1 July, 2018 to 15 June, 2019 were enrolled. Data related to patient demographics, the primary cause of the incident, grading of traumatic brain injury on admission, pre-hospital care, and variables that cause pre-hospital delay were collected. RESULTS In this study of 144 patients with traumatic brain injury, we found that 70 (48.61%) experienced transfer delays exceeding one hour. There were 71 (49.31%) patients aged 15-44 years, and 100 (69.44%) were males , with falls being the primary cause of 119 (82.64%). Most patients had mild traumatic brain injury 80 (55.56%). Out of 144, 20 (13.89%) received prehospital care, and 28 (19.44%) underwent a computed tomography scan of the head before arrival. CONCLUSIONS Our study highlights the challenges in pre-hospital care and delays in reaching for neurosurgical care in patients with traumatic brain injury. Falls, road accidents, and physical assaults were the leading causes.
Collapse
Affiliation(s)
- Milan Regmi
- Panchkhal Primary Health Care Centre, Panchkhal, Kavrepalanchowk, Nepal.
| | | | - Mohan Raj Sharma
- Department of Neurosurgery, Tribhuvan University Teaching Hospital, Institute of Medicine, Maharajgunj, Kathmandu, Nepal.
| |
Collapse
|
27
|
Tan H, Wang J, Li F, Peng Y, Lan J, Zhang Y, Zhao D, Bao Y. Prediction Value of Initial Serum Levels of SERPINA3 in Intracranial Pressure and Long-Term Neurological Outcomes in Traumatic Brain Injury. Diagnostics (Basel) 2024; 14:1245. [PMID: 38928660 PMCID: PMC11202773 DOI: 10.3390/diagnostics14121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Traumatic brain injury (TBI) is a severe neurological condition characterized by inflammation in the central nervous system. SERPINA3 has garnered attention as a potential biomarker for assessing this inflammation. Our study aimed to explore the predictive value of postoperative serum SERPINA3 levels in identifying the risk of cerebral edema and its prognostic implications in TBI. This study is a prospective observational study, including 37 patients with TBI who finally met our criteria. The Glasgow Outcome Scale (GOS), Levels of Cognitive Functioning (LCF), Disability Rating Scale (DRS), and Early Rehabilitation Barthel Index (ERBI) scores at six months after trauma were defined as the main study endpoint. We further calculated the ventricle-to-intracranial-volume ratio (VBR) at 6 months from CT scans. The study included patients with Glasgow Coma Scale (GCS) scores ranging from 3 to 8, who were subsequently categorized into two groups: the critical TBI group (GCS 3-5 points) and the severe TBI group (GCS 6-8 points). Within the critical TBI group, SERPINA3 levels were notably lower. However, among patients with elevated SERPINA3 levels, both the peak intracranial pressure (ICP) and average mannitol consumption were significantly reduced compared with those of patients with lower SERPINA3 levels. In terms of the 6-month outcomes measured via the GOS, LCF, DRS, and ERBI, lower levels of SERPINA3 were indicative of poorer prognosis. Furthermore, we found a negative correlation between serum SERPINA3 levels and the VBR. The receiver operating characteristic (ROC) curve and decision curve analysis (DCA) demonstrated the predictive performance of SERPINA3. In conclusion, incorporating the novel biomarker SERPINA3 alongside traditional assessment tools offers neurosurgeons an effective and easily accessible means, which is readily accessible early on, to predict the risk of intracranial pressure elevation and long-term prognosis in TBI patients.
Collapse
Affiliation(s)
- Haoyuan Tan
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (H.T.); (J.W.); (J.L.)
| | - Jiamian Wang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (H.T.); (J.W.); (J.L.)
| | - Fengshi Li
- Neurologic Surgery Department, Huashan Hospital, Fudan University, Shanghai 200437, China;
| | - Yidong Peng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai 200127, China;
| | - Jin Lan
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (H.T.); (J.W.); (J.L.)
| | - Yuanda Zhang
- Minhang Hospital, Fudan University, Shanghai 200437, China;
| | - Dongxu Zhao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (H.T.); (J.W.); (J.L.)
| | - Yinghui Bao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (H.T.); (J.W.); (J.L.)
| |
Collapse
|
28
|
Zhang H, Duan X, Zhang Y, Zhuang G, Cao D, Meng W, Yan M, Qi W. Association Between Monocyte-to-Lymphocyte Ratio and Hematoma Progression After Cerebral Contusion. Neurocrit Care 2024; 40:953-963. [PMID: 37848656 PMCID: PMC11147937 DOI: 10.1007/s12028-023-01857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND The objective of this research was to examine the impact of the monocyte-to-lymphocyte ratio (MLR) on the advancement of hematoma after cerebral contusion. METHODS The clinical information and laboratory test findings of people with cerebral contusion were retrospectively analyzed. Using the tertiles of MLR, the study participants were categorized into three groups, enabling the evaluation of the correlation between MLR and the advancement of hematoma after cerebral contusion. RESULTS Among the cohort of patients showing progression, MLR levels were significantly higher compared with the nonprogress group (P < 0.001). The high MLR group had a significantly higher proportion of patients with hematoma progression compared with the medium and low MLR groups. However, the medium MLR group had a lower proportion of patients with hematoma progression compared with the low MLR group. High MLR levels were independently linked to a higher risk of hematoma progression (Odds Ratio 3.546, 95% Confidence Interval 1.187-10.597, P = 0.024). By incorporating factors such as Glasgow Coma Scale score on admission, anticoagulant/antiplatelet therapy, white blood cell count, and MLR into the model, the predictive performance of the model significantly improved (area under the curve 0.754). CONCLUSIONS Our study suggests that MLR may serve as a potential indicator for predicting the progression of hematoma after cerebral contusion. Further research is necessary to investigate the underlying pathological and physiological mechanisms that contribute to the association between MLR and the progression of hematoma after cerebral contusion and to explore its clinical implications.
Collapse
Affiliation(s)
- Huajun Zhang
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, 45 Taizhou Road, Guangling District, Yangzhou City, Jiangsu Province, China
- Graduate School of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaochun Duan
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, 45 Taizhou Road, Guangling District, Yangzhou City, Jiangsu Province, China
| | - Yimiao Zhang
- Graduate School of Shaanxi, University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Guoquan Zhuang
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, 45 Taizhou Road, Guangling District, Yangzhou City, Jiangsu Province, China
- Graduate School of Dalian Medical University, Dalian, Liaoning, China
| | - Demao Cao
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, 45 Taizhou Road, Guangling District, Yangzhou City, Jiangsu Province, China
| | - Wei Meng
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Muyang Yan
- Graduate School of Dalian Medical University, Dalian, Liaoning, China
| | - Wentao Qi
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, 45 Taizhou Road, Guangling District, Yangzhou City, Jiangsu Province, China.
| |
Collapse
|
29
|
Zhang S, Gao G, Liu W. Craniectomy versus craniotomy: What can we do for acute subdural hematoma? Aging Med (Milton) 2024; 7:276-278. [PMID: 38975314 PMCID: PMC11222726 DOI: 10.1002/agm2.12322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Compared with hematoma evacuation craniotomy, decompressive craniectomy has a higher incidence of intracranial complications and no outcome benefit over craniotomy, which gives surgeons a safer decision-making options during surgery.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Guoyi Gao
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Weiming Liu
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
30
|
Zhang M, Han X, Yan L, Fu Y, Kou H, Shang C, Wang J, Liu H, Jiang C, Wang J, Cheng T. Inflammatory response in traumatic brain and spinal cord injury: The role of XCL1-XCR1 axis and T cells. CNS Neurosci Ther 2024; 30:e14781. [PMID: 38887195 PMCID: PMC11183917 DOI: 10.1111/cns.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) and spinal cord injury (SCI) are acquired injuries to the central nervous system (CNS) caused by external forces that cause temporary or permanent sensory and motor impairments and the potential for long-term disability or even death. These conditions currently lack effective treatments and impose substantial physical, social, and economic burdens on millions of people and families worldwide. TBI and SCI involve intricate pathological mechanisms, and the inflammatory response contributes significantly to secondary injury in TBI and SCI. It plays a crucial role in prolonging the post-CNS trauma period and becomes a focal point for a potential therapeutic intervention. Previous research on the inflammatory response has traditionally concentrated on glial cells, such as astrocytes and microglia. However, increasing evidence highlights the crucial involvement of lymphocytes in the inflammatory response to CNS injury, particularly CD8+ T cells and NK cells, along with their downstream XCL1-XCR1 axis. OBJECTIVE This review aims to provide an overview of the role of the XCL1-XCR1 axis and the T-cell response in inflammation caused by TBI and SCI and identify potential targets for therapy. METHODS We conducted a comprehensive search of PubMed and Web of Science using relevant keywords related to the XCL1-XCR1 axis, T-cell response, TBI, and SCI. RESULTS This study examines the upstream and downstream pathways involved in inflammation caused by TBI and SCI, including interleukin-15 (IL-15), interleukin-12 (IL-12), CD8+ T cells, CD4+ T cells, NK cells, XCL1, XCR1+ dendritic cells, interferon-gamma (IFN-γ), helper T0 cells (Th0 cells), helper T1 cells (Th1 cells), and helper T17 cells (Th17 cells). We describe their proinflammatory effect in TBI and SCI. CONCLUSIONS The findings suggest that the XCL1-XCR1 axis and the T-cell response have great potential for preclinical investigations and treatments for TBI and SCI.
Collapse
Affiliation(s)
- Mingkang Zhang
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xiaonan Han
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Liyan Yan
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yikun Fu
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Hongwei Kou
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Chunfeng Shang
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Hongjian Liu
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Chao Jiang
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Tian Cheng
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
31
|
Benghanem S, Kubis N, Gayat E, Loiodice A, Pruvost-Robieux E, Sharshar T, Foucrier A, Figueiredo S, Bouilleret V, De Montmollin E, Bagate F, Lefaucheur JP, Guidet B, Appartis E, Cariou A, Varnet O, Jost PH, Megarbane B, Degos V, Le Guennec L, Naccache L, Legriel S, Woimant F, Gregoire C, Cortier D, Crassard I, Timsit JF, Mazighi M, Sonneville R. Prognostic value of early EEG abnormalities in severe stroke patients requiring mechanical ventilation: a pre-planned analysis of the SPICE prospective multicenter study. Crit Care 2024; 28:173. [PMID: 38783313 PMCID: PMC11119574 DOI: 10.1186/s13054-024-04957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Prognostication of outcome in severe stroke patients necessitating invasive mechanical ventilation poses significant challenges. The objective of this study was to assess the prognostic significance and prevalence of early electroencephalogram (EEG) abnormalities in adult stroke patients receiving mechanical ventilation. METHODS This study is a pre-planned ancillary investigation within the prospective multicenter SPICE cohort study (2017-2019), conducted in 33 intensive care units (ICUs) in the Paris area, France. We included adult stroke patients requiring invasive mechanical ventilation, who underwent at least one intermittent EEG examination during their ICU stay. The primary endpoint was the functional neurological outcome at one year, determined using the modified Rankin scale (mRS), and dichotomized as unfavorable (mRS 4-6, indicating severe disability or death) or favorable (mRS 0-3). Multivariable regression analyses were employed to identify EEG abnormalities associated with functional outcomes. RESULTS Of the 364 patients enrolled in the SPICE study, 153 patients (49 ischemic strokes, 52 intracranial hemorrhages, and 52 subarachnoid hemorrhages) underwent at least one EEG at a median time of 4 (interquartile range 2-7) days post-stroke. Rates of diffuse slowing (70% vs. 63%, p = 0.37), focal slowing (38% vs. 32%, p = 0.15), periodic discharges (2.3% vs. 3.7%, p = 0.9), and electrographic seizures (4.5% vs. 3.7%, p = 0.4) were comparable between patients with unfavorable and favorable outcomes. Following adjustment for potential confounders, an unreactive EEG background to auditory and pain stimulations (OR 6.02, 95% CI 2.27-15.99) was independently associated with unfavorable outcomes. An unreactive EEG predicted unfavorable outcome with a specificity of 48% (95% CI 40-56), sensitivity of 79% (95% CI 72-85), and positive predictive value (PPV) of 74% (95% CI 67-81). Conversely, a benign EEG (defined as continuous and reactive background activity without seizure, periodic discharges, triphasic waves, or burst suppression) predicted favorable outcome with a specificity of 89% (95% CI 84-94), and a sensitivity of 37% (95% CI 30-45). CONCLUSION The absence of EEG reactivity independently predicts unfavorable outcomes at one year in severe stroke patients requiring mechanical ventilation in the ICU, although its prognostic value remains limited. Conversely, a benign EEG pattern was associated with a favorable outcome.
Collapse
Affiliation(s)
- Sarah Benghanem
- AP-HP.Centre, Medical ICU, Cochin Hospital, Paris, France
- University Paris Cité, Medical School, Paris, France
- INSERM UMR 1266, Institut de Psychiatrie et Neurosciences de Paris-IPNP, Paris, France
| | - Nathalie Kubis
- University Paris Cité, Medical School, Paris, France
- APHP.Nord, Clinical Physiology Department, UMRS_1144, Université Paris Cite, Paris, France
| | - Etienne Gayat
- University Paris Cité, Medical School, Paris, France
- APHP.Nord, Department of Anesthesiology and Critical Care, DMU Parabol, Université Paris Cite, Paris, France
| | | | - Estelle Pruvost-Robieux
- University Paris Cité, Medical School, Paris, France
- INSERM UMR 1266, Institut de Psychiatrie et Neurosciences de Paris-IPNP, Paris, France
- Neurophysiology and Epileptology Department, GHU Psychiatry & Neurosciences, Sainte Anne, Paris, France
| | - Tarek Sharshar
- University Paris Cité, Medical School, Paris, France
- Department of Neuroanesthesiology and Intensive Care, Sainte Anne Hospital, Paris, France
| | - Arnaud Foucrier
- APHP, Department of Anesthesiology and Critical Care, Beaujon University Hospital, Clichy, France
| | - Samy Figueiredo
- APHP, Department of Anesthesiology and Critical Care, Bicêtre University Hospitals, Le Kremlin Bicêtre, France
| | - Viviane Bouilleret
- Neurophysiology and Epileptology Department, Bicêtre University Hospitals, Le Kremlin Bicêtre, France
| | | | - François Bagate
- APHP, Department of Intensive Care Medicine, Henri Mondor University Hospital and Université de Paris Est Créteil, Créteil, France
| | | | - Bertrand Guidet
- APHP, Department of Intensive Care Medicine, Saint Antoine University Hospital, Paris, France
| | - Emmanuelle Appartis
- Neurophysiology Department, Saint Antoine University Hospital, Paris, France
| | - Alain Cariou
- AP-HP.Centre, Medical ICU, Cochin Hospital, Paris, France
- University Paris Cité, Medical School, Paris, France
| | - Olivier Varnet
- APHP, Department of Physiology, Bichat-Claude Bernard University Hospital, 75018, Paris, France
| | - Paul Henri Jost
- APHP, Department of Anesthesiology and Intensive Care, Henri Mondor Hospital, Creteil, France
| | | | - Vincent Degos
- APHP, Department of Anesthesiology and Neurointensive Care, Pitié Salpétrière Hospital, Paris, France
| | - Loic Le Guennec
- APHP, Medical ICU, Pitié Salpétrière Hospital, Paris, France
| | - Lionel Naccache
- APHP, Department of Physiology, Pitié Salpétrière Hospital, Paris, France
| | | | | | - Charles Gregoire
- Department of Intensive Care, Rothschild Hospital Foundation, Paris, France
| | - David Cortier
- Department of Intensive Care, Foch Hospital, Paris, France
| | | | - Jean-François Timsit
- APHP, Department of Intensive Care Medicine, Bichat-Claude Bernard University Hospital, 46 rue Henri Huchard, 75018, Paris, France
- Université Paris Cité, INSERM UMR 1137, IAME, Paris, France
| | - Mikael Mazighi
- APHP Nord, Department of Neurology, Lariboisière University Hospital, Department of Interventional Neuroradiology, Fondation Rothschild Hospital, FHU Neurovasc, Paris, France
- Université Paris Cité, INSERM UMR 1144, Paris, France
| | - Romain Sonneville
- APHP, Department of Intensive Care Medicine, Bichat-Claude Bernard University Hospital, 46 rue Henri Huchard, 75018, Paris, France.
- Université Paris Cité, INSERM UMR 1137, IAME, Paris, France.
| |
Collapse
|
32
|
Ma X, Wang H, Ye G, Zheng X, Wang Y. Hsa_circ_0018401 and miR-127-5p Expressions Are Diagnostic and Prognostic Markers for Traumatic Brain Injury (TBI) in Trauma Patients. Neuroscience 2024; 545:59-68. [PMID: 38492795 DOI: 10.1016/j.neuroscience.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
This study investigated the potentials of hsa_circ_0018401 and miR-127-5p in traumatic brain injury (TBI) diagnosis, stratification and outcome prediction. A retrospective analysis of clinical data and blood samples of n = 109 TBI patients was performed. Expression levels of hsa_circ_0018401 and miR-127-5p were measured using Real-time PCR. The diagnostic values, as well as the values in TBI stratification, of hsa_circ_0018401 and miR-127-5p were assessed by receiver operating characteristic analyses. The prognostic impacts were investigated for one-year endpoint events using multivariable Cox regression analyses and receiver operating characteristic analysis. The target genes for miR-127-5p were predicted. An upregulation of hsa_circ_0018401 and a downregulation of miR-127-5p expression was detected in patients with TBI, and the highest or lowest levels were found in moderate/severe TBI. A negative correlation between miR-423-3p level and Dual luciferase reporter assay verified the binding relationship between hsa_circ_0018401 and miR-127-5p. Hsa_circ_0018401 and miR-127-5p, used alone or combinedly, showed clinical values for TBI diagnosis and stratification, as well as outcome prediction. The proteins for target genes covered TBI-related functions and pathways. Therefore, hsa_circ_0018401 and miR-127-5p could represent promising new biomarkers to identify TBI from healthy, moderate/severe TBI from mild TBI, as well as to predict the TBI outcome.
Collapse
Affiliation(s)
- Xiancun Ma
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Huimin Wang
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Gaige Ye
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Xin Zheng
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Yu Wang
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| |
Collapse
|
33
|
Chen DY, Wu PF, Zhu XY, Zhao WB, Shao SF, Xie JR, Yuan DF, Zhang L, Li K, Wang SN, Zhao H. Risk factors and predictive model of cerebral edema after road traffic accidents-related traumatic brain injury. Chin J Traumatol 2024; 27:153-162. [PMID: 38458896 PMCID: PMC11138350 DOI: 10.1016/j.cjtee.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 03/10/2024] Open
Abstract
PURPOSE Cerebral edema (CE) is the main secondary injury following traumatic brain injury (TBI) caused by road traffic accidents (RTAs). It is challenging to be predicted timely. In this study, we aimed to develop a prediction model for CE by identifying its risk factors and comparing the timing of edema occurrence in TBI patients with varying levels of injuries. METHODS This case-control study included 218 patients with TBI caused by RTAs. The cohort was divided into CE and non-CE groups, according to CT results within 7 days. Demographic data, imaging data, and clinical data were collected and analyzed. Quantitative variables that follow normal distribution were presented as mean ± standard deviation, those that do not follow normal distribution were presented as median (Q1, Q3). Categorical variables were expressed as percentages. The Chi-square test and logistic regression analysis were used to identify risk factors for CE. Logistic curve fitting was performed to predict the time to secondary CE in TBI patients with different levels of injuries. The efficacy of the model was evaluated using the receiver operator characteristic curve. RESULTS According to the study, almost half (47.3%) of the patients were found to have CE. The risk factors associated with CE were bilateral frontal lobe contusion, unilateral frontal lobe contusion, cerebral contusion, subarachnoid hemorrhage, and abbreviated injury scale (AIS). The odds ratio values for these factors were 7.27 (95% confidence interval (CI): 2.08 - 25.42, p = 0.002), 2.85 (95% CI: 1.11 - 7.31, p = 0.030), 2.62 (95% CI: 1.12 - 6.13, p = 0.027), 2.44 (95% CI: 1.25 - 4.76, p = 0.009), and 1.5 (95% CI: 1.10 - 2.04, p = 0.009), respectively. We also observed that patients with mild/moderate TBI (AIS ≤ 3) had a 50% probability of developing CE 19.7 h after injury (χ2 = 13.82, adjusted R2 = 0.51), while patients with severe TBI (AIS > 3) developed CE after 12.5 h (χ2 = 18.48, adjusted R2 = 0.54). Finally, we conducted a receiver operator characteristic curve analysis of CE time, which showed an area under the curve of 0.744 and 0.672 for severe and mild/moderate TBI, respectively. CONCLUSION Our study found that the onset of CE in individuals with TBI resulting from RTAs was correlated with the severity of the injury. Specifically, those with more severe injuries experienced an earlier onset of CE. These findings suggest that there is a critical time window for clinical intervention in cases of CE secondary to TBI.
Collapse
Affiliation(s)
- Di-You Chen
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China; Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Peng-Fei Wu
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Xi-Yan Zhu
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wen-Bing Zhao
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shi-Feng Shao
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing-Ru Xie
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dan-Feng Yuan
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liang Zhang
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kui Li
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shu-Nan Wang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Hui Zhao
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
34
|
Ge Q, Lu H, Geng X, Chen X, Liu X, Sun H, Guo Z, Sun J, Qi F, Niu X, Wang A, He J, Sun W, Xu L. Serum metabolism alteration behind different etiology, diagnosis, and prognosis of disorders of consciousness. Chin Neurosurg J 2024; 10:12. [PMID: 38594757 PMCID: PMC11003070 DOI: 10.1186/s41016-024-00365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Patients with disorders of consciousness (DoC) exhibit varied revival outcomes based on different etiologies and diagnoses, the mechanisms of which remain largely unknown. The fluctuating clinical presentations in DoC pose challenges in accurately assessing consciousness levels and prognoses, often leading to misdiagnoses. There is an urgent need for a deeper understanding of the physiological changes in DoC and the development of objective diagnostic and prognostic biomarkers to improve treatment guidance. METHODS To explore biomarkers and understand the biological processes, we conducted a comprehensive untargeted metabolomic analysis on serum samples from 48 patients with DoC. Patients were categorized based on etiology (TBI vs. non-TBI), CRS-R scores, and prognosis. Advanced analytical techniques, including PCA and OPLS-DA models, were employed to identify differential metabolites. RESULTS Our analysis revealed a distinct separation in metabolomic profiles among the different groups. The primary differential metabolites distinguishing patients with varying etiologies were predominantly phospholipids, with a notable decrease in glycerophospholipids observed in the TBI group. Patients with higher CRS-R scores exhibited a pattern of impaired carbohydrate metabolism coupled with enhanced lipid metabolism. Notably, serum concentrations of both LysoPE and PE were reduced in patients with improved outcomes, suggesting their potential as prognostic biomarkers. CONCLUSIONS Our study underscores the critical role of phospholipid metabolism in the brain's metabolic alterations in patients with DoC. It identifies key biomarkers for diagnosis and prognosis, offering insights that could lead to novel therapeutic targets. These findings highlight the value of metabolomic profiling in understanding and potentially treating DoC.
Collapse
Affiliation(s)
- Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hezhen Lu
- China-Japan Union Hospital of Jilin University, Changchun, China
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoli Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueling Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Liu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Haidan Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jiameng Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Feng Qi
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xia Niu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Aiwei Wang
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Wei Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Long Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| |
Collapse
|
35
|
Eghzawi A, Alsabbah A, Gharaibeh S, Alwan I, Gharaibeh A, Goyal AV. Mortality Predictors for Adult Patients with Mild-to-Moderate Traumatic Brain Injury: A Literature Review. Neurol Int 2024; 16:406-418. [PMID: 38668127 PMCID: PMC11053597 DOI: 10.3390/neurolint16020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
Traumatic brain injuries (TBIs) represent a significant public health concern, with mild-to-moderate cases comprising a substantial portion of incidents. Understanding the predictors of mortality among adult patients with mild-to-moderate TBIs is crucial for optimizing clinical management and improving outcomes. This literature review examines the existing research to identify and analyze the mortality predictors in this patient population. Through a comprehensive review of peer-reviewed articles and clinical studies, key prognostic factors, such as age, Glasgow Coma Scale (GCS) score, the presence of intracranial hemorrhage, pupillary reactivity, and coexisting medical conditions, are explored. Additionally, this review investigates the role of advanced imaging modalities, biomarkers, and scoring systems in predicting mortality following a mild-to-moderate TBI. By synthesizing the findings from diverse studies, this review aims to provide clinicians and researchers with valuable insights into the factors influencing mortality outcomes in adult patients with a mild-to-moderate TBI, thus facilitating more informed decision making and targeted interventions in clinical practice.
Collapse
Affiliation(s)
- Ansam Eghzawi
- Insight Research Institute, Flint, MI 48507, USA; (A.E.); (A.A.); (S.G.); (I.A.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Department of Research, Insight Hospital and Medical Center, Chicago, IL 60616 USA
| | - Alameen Alsabbah
- Insight Research Institute, Flint, MI 48507, USA; (A.E.); (A.A.); (S.G.); (I.A.)
| | - Shatha Gharaibeh
- Insight Research Institute, Flint, MI 48507, USA; (A.E.); (A.A.); (S.G.); (I.A.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Iktimal Alwan
- Insight Research Institute, Flint, MI 48507, USA; (A.E.); (A.A.); (S.G.); (I.A.)
- Department of Research, Insight Hospital and Medical Center, Chicago, IL 60616 USA
| | - Abeer Gharaibeh
- Insight Research Institute, Flint, MI 48507, USA; (A.E.); (A.A.); (S.G.); (I.A.)
- Department of Research, Insight Hospital and Medical Center, Chicago, IL 60616 USA
| | - Anita V. Goyal
- Department of Emergency Medicine, Insight Hospital and Medical Center, Chicago, IL 60616, USA
| |
Collapse
|
36
|
Muehlschlegel S, Rajajee V, Wartenberg KE, Alexander SA, Busl KM, Creutzfeldt CJ, Fontaine GV, Hocker SE, Hwang DY, Kim KS, Madzar D, Mahanes D, Mainali S, Meixensberger J, Sakowitz OW, Varelas PN, Weimar C, Westermaier T. Guidelines for Neuroprognostication in Critically Ill Adults with Moderate-Severe Traumatic Brain Injury. Neurocrit Care 2024; 40:448-476. [PMID: 38366277 PMCID: PMC10959796 DOI: 10.1007/s12028-023-01902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 02/18/2024]
Abstract
BACKGROUND Moderate-severe traumatic brain injury (msTBI) carries high morbidity and mortality worldwide. Accurate neuroprognostication is essential in guiding clinical decisions, including patient triage and transition to comfort measures. Here we provide recommendations regarding the reliability of major clinical predictors and prediction models commonly used in msTBI neuroprognostication, guiding clinicians in counseling surrogate decision-makers. METHODS Using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology, we conducted a systematic narrative review of the most clinically relevant predictors and prediction models cited in the literature. The review involved framing specific population/intervention/comparator/outcome/timing/setting (PICOTS) questions and employing stringent full-text screening criteria to examine the literature, focusing on four GRADE criteria: quality of evidence, desirability of outcomes, values and preferences, and resource use. Moreover, good practice recommendations addressing the key principles of neuroprognostication were drafted. RESULTS After screening 8125 articles, 41 met our eligibility criteria. Ten clinical variables and nine grading scales were selected. Many articles varied in defining "poor" functional outcomes. For consistency, we treated "poor" as "unfavorable". Although many clinical variables are associated with poor outcome in msTBI, only the presence of bilateral pupillary nonreactivity on admission, conditional on accurate assessment without confounding from medications or injuries, was deemed moderately reliable for counseling surrogates regarding 6-month functional outcomes or in-hospital mortality. In terms of prediction models, the Corticosteroid Randomization After Significant Head Injury (CRASH)-basic, CRASH-CT (CRASH-basic extended by computed tomography features), International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT)-core, IMPACT-extended, and IMPACT-lab models were recommended as moderately reliable in predicting 14-day to 6-month mortality and functional outcomes at 6 months and beyond. When using "moderately reliable" predictors or prediction models, the clinician must acknowledge "substantial" uncertainty in the prognosis. CONCLUSIONS These guidelines provide recommendations to clinicians on the formal reliability of individual predictors and prediction models of poor outcome when counseling surrogates of patients with msTBI and suggest broad principles of neuroprognostication.
Collapse
Affiliation(s)
- Susanne Muehlschlegel
- Departments of Neurology and Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Katharina M Busl
- Departments of Neurology and Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Gabriel V Fontaine
- Departments of Pharmacy and Neurosciences, Intermountain Health, Salt Lake City, UT, USA
| | - Sara E Hocker
- Department of Neurology, Saint Luke's Health System, Kansas City, MO, USA
| | - David Y Hwang
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keri S Kim
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL, USA
| | - Dominik Madzar
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dea Mahanes
- Departments of Neurology and Neurosurgery, University of Virginia Health, Charlottesville, VA, USA
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Oliver W Sakowitz
- Department of Neurosurgery, Neurosurgery Center Ludwigsburg-Heilbronn, Ludwigsburg, Germany
| | | | - Christian Weimar
- Institute of Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
- BDH-Klinik Elzach, Elzach, Germany
| | - Thomas Westermaier
- Department of Neurosurgery, Helios Amper Klinikum Dachau, Dachau, Germany.
- Faculty of Medicine, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
37
|
Gabbe BJ, Keeves J, McKimmie A, Gadowski AM, Holland AJ, Semple BD, Young JT, Crowe L, Ownsworth T, Bagg MK, Antonic-Baker A, Hicks AJ, Hill R, Curtis K, Romero L, Ponsford JL, Lannin NA, O'Brien TJ, Cameron PA, Cooper DJ, Rushworth N, Fitzgerald M. The Australian Traumatic Brain Injury Initiative: Systematic Review and Consensus Process to Determine the Predictive Value of Demographic, Injury Event, and Social Characteristics on Outcomes for People With Moderate-Severe Traumatic Brain Injury. J Neurotrauma 2024. [PMID: 38115598 DOI: 10.1089/neu.2023.0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The objective of the Australian Traumatic Brain Injury (AUS-TBI) Initiative is to develop a data dictionary to inform data collection and facilitate prediction of outcomes of people who experience moderate-severe TBI in Australia. The aim of this systematic review was to summarize the evidence of the association between demographic, injury event, and social characteristics with outcomes, in people with moderate-severe TBI, to identify potentially predictive indicators. Standardized searches were implemented across bibliographic databases to March 31, 2022. English-language reports, excluding case series, which evaluated the association between demographic, injury event, and social characteristics, and any clinical outcome in at least 10 patients with moderate-severe TBI were included. Abstracts and full text records were independently screened by at least two reviewers in Covidence. A pre-defined algorithm was used to assign a judgement of predictive value to each observed association. The review findings were discussed with an expert panel to determine the feasibility of incorporation of routine measurement into standard care. The search strategy retrieved 16,685 records; 867 full-length records were screened, and 111 studies included. Twenty-two predictors of 32 different outcomes were identified; 7 were classified as high-level (age, sex, ethnicity, employment, insurance, education, and living situation at the time of injury). After discussion with an expert consensus group, 15 were recommended for inclusion in the data dictionary. This review identified numerous predictors capable of enabling early identification of those at risk for poor outcomes and improved personalization of care through inclusion in routine data collection.
Collapse
Affiliation(s)
- Belinda J Gabbe
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Health Data Research UK, Swansea University Medical School, Swansea University, Singleton Park, United Kingdom
| | - Jemma Keeves
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin School of Population Health, Curtin University, Bentley, WA, Australia
| | - Ancelin McKimmie
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Adelle M Gadowski
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Andrew J Holland
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney School of Medicine, Westmead, Australia
| | - Bridgette D Semple
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Jesse T Young
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
- Clinical Sciences Murdoch Children's Research Institute, Parkville, VIC, Australia
- School of Population and Global Health, The University of Western Australia, Perth, WA, Australia
- Justice Health Group, Curtin School of Population Health, Curtin University, Bentley, WA, Australia
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Louise Crowe
- Clinical Sciences Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Tamara Ownsworth
- School of Applied Psychology and the Hopkins Centre, Griffith University, Brisbane, Australia
| | - Matthew K Bagg
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin School of Population Health, Curtin University, Bentley, WA, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
| | - Ana Antonic-Baker
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, VIC, Australia
- School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Regina Hill
- Regina Hill Effective Consulting Pty. Ltd., Melbourne, VIC, Australia
| | - Kate Curtis
- Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Illawarra Shoalhaven LHD, Wollongong, NSW, Australia
- George Institute for Global Health, Newtown, NSW, Australia
| | | | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, VIC, Australia
- School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Natasha A Lannin
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Alfred Health, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Peter A Cameron
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- National Trauma Research Institute, Melbourne, VIC, Australia
- Emergency and Trauma Centre, The Alfred Hospital, Melbourne, VIC, Australia
| | - D Jamie Cooper
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred, Melbourne, VIC, Australia
| | | | - Melinda Fitzgerald
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin School of Population Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
38
|
Gao L, Chang Y, Lu S, Liu X, Yao X, Zhang W, Sun E. A nomogram for predicting the necessity of tracheostomy after severe acute brain injury in patients within the neurosurgery intensive care unit: A retrospective cohort study. Heliyon 2024; 10:e27416. [PMID: 38509924 PMCID: PMC10951500 DOI: 10.1016/j.heliyon.2024.e27416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Objective This retrospective study was aimed to develop a predictive model for assessing the necessity of tracheostomy (TT) in patients admitted to the neurosurgery intensive care unit (NSICU). Method We analyzed data from 1626 NSICU patients with severe acute brain injury (SABI) who were admitted to the Department of NSICU at the Affiliated People's Hospital of Jiangsu University between January 2021 and December 2022. Data of the patients were retrospectively obtained from the clinical research data platform. The patients were randomly divided into training (70%) and testing (30%) cohorts. The least absolute shrinkage and selection operator (LASSO) regression identified the optimal predictive features. A multivariate logistic regression model was then constructed and represented by a nomogram. The efficacy of the model was evaluated based on discrimination, calibration, and clinical utility. Results The model highlighted six predictive variables, including the duration of NSICU stay, neurosurgery, orotracheal intubation time, Glasgow Coma Scale (GCS) score, systolic pressure, and respiration rate. Receiver operating characteristic (ROC) analysis of the nomogram yielded area under the curve (AUC) values of 0.854 (95% confidence interval [CI]: 0.822-0.886) for the training cohort and 0.865 (95% CI: 0.817-0.913) for the testing cohort, suggesting commendable differential performance. The predictions closely aligned with actual observations in both cohorts. Decision curve analysis demonstrated that the numerical model offered a favorable net clinical benefit. Conclusion We developed a novel predictive model to identify risk factors for TT in SABI patients within the NSICU. This model holds the potential to assist clinicians in making timely surgical decisions concerning TT.
Collapse
Affiliation(s)
- Liqin Gao
- Department of Neurosurgical Intensive Care Unit, Affiliated People's Hospital of Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China
| | - Yafen Chang
- Department of Neurosurgical Intensive Care Unit, Affiliated People's Hospital of Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China
| | - Siyuan Lu
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China
| | - Xiyang Liu
- Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China
| | - Xiang Yao
- Department of Orthopaedics, Affiliated People's Hospital of Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China
| | - Wei Zhang
- Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China
| | - Eryi Sun
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China
| |
Collapse
|
39
|
Liu T, Yu S, Liu M, Zhao Z, Yuan J, Sha Z, Liu X, Qian Y, Nie M, Jiang R. Cognitive impairment in Chinese traumatic brain injury patients: from challenge to future perspectives. Front Neurosci 2024; 18:1361832. [PMID: 38529265 PMCID: PMC10961372 DOI: 10.3389/fnins.2024.1361832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Traumatic Brain Injury (TBI) is a prevalent form of neurological damage that may induce varying degrees of cognitive dysfunction in patients, consequently impacting their quality of life and social functioning. This article provides a mini review of the epidemiology in Chinese TBI patients and etiology of cognitive impairment. It analyzes the risk factors of cognitive impairment, discusses current management strategies for cognitive dysfunction in Chinese TBI patients, and summarizes the strengths and limitations of primary testing tools for TBI-related cognitive functions. Furthermore, the article offers a prospective analysis of future challenges and opportunities. Its objective is to contribute as a reference for the prevention and management of cognitive dysfunction in Chinese TBI patients.
Collapse
Affiliation(s)
- Tao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Shaohui Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhihao Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu Qian
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
40
|
Yousefi O, Farrokhi A, Taheri R, Ghasemi H, Zoghi S, Eslami A, Niakan A, Khalili H. Effect of low fibrinogen level on in-hospital mortality and 6-month functional outcome of TBI patients, a single center experience. Neurosurg Rev 2024; 47:95. [PMID: 38413402 DOI: 10.1007/s10143-024-02326-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
In patients affected by traumatic brain injury (TBI), hypofibrinogenemia within the initial hours of trauma can be expected due to vascular and inflammatory changes. In this study, we aimed to evaluate the effect of hypofibrinogenemia on the in-hospital mortality and 6-month functional outcomes of TBI patients, admitted to Rajaee Hospital, a referral trauma center in Shiraz, Iran. This study included all TBI patients admitted to our center who had no prior history of coagulopathy or any systemic disease, were alive on arrival, and had not received any blood product before admission. On admission, hospitalization, imaging, and 6-month follow-up information of included patients were extracted from the TBI registry database. The baseline characteristics of patients with fibrinogen levels of less than 150 mg/dL were compared with the cases with higher levels. To assess the effect of low fibrinogen levels on in-hospital mortality, a uni- and multivariate was conducted between those who died in hospital and survivors. Based on the 6-month GOSE score of patients, those with GOSE < 4 (unfavorable outcome) were compared with those with a favorable outcome. A total of 3049 patients (84.3% male, 15.7% female), with a mean age of 39.25 ± 18.87, met the eligibility criteria of this study. 494 patients had fibrinogen levels < 150 mg/dl, who were mostly younger and had lower average GCS scores in comparison to cases with higher fibrinogen levels. By comparison of the patients who died during hospitalization and survivors, it was shown that fibrinogen < 150 mg/dl is among the prognostic factors for in-hospital mortality (OR:1.75, CI: 1.32:2.34, P-value < 0.001), while the comparison between patients with the favorable and unfavorable functional outcome at 6-month follow-up, was not in favor of prognostic effect of low fibrinogen level (OR: 0.80, CI: 0.58: 1.11, P-value: 0.19). Hypofibrinogenemia is associated with in-hospital mortality of TBI patients, along with known factors such as higher age and lower initial GCS score. However, it is not among the prognostic factors of midterm functional outcome.
Collapse
Affiliation(s)
- Omid Yousefi
- Trauma Research Center, Department of Neurosurgery, Shahid Rajaee Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirmohammad Farrokhi
- Trauma Research Center, Department of Neurosurgery, Shahid Rajaee Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Taheri
- Trauma Research Center, Department of Neurosurgery, Shahid Rajaee Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadis Ghasemi
- Trauma Research Center, Department of Neurosurgery, Shahid Rajaee Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv (KNU), Kyiv, Ukraine
| | - Sina Zoghi
- Trauma Research Center, Department of Neurosurgery, Shahid Rajaee Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Eslami
- Trauma Research Center, Department of Neurosurgery, Shahid Rajaee Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Niakan
- Trauma Research Center, Department of Neurosurgery, Shahid Rajaee Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hosseinali Khalili
- Trauma Research Center, Department of Neurosurgery, Shahid Rajaee Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
41
|
Haseeb A, Oduoye MO, Jawed I. Letter to the editor "effect of continuous hypertonic saline infusion on clinical outcomes in patients with traumatic brain injury". Neurosurg Rev 2024; 47:96. [PMID: 38413416 DOI: 10.1007/s10143-024-02331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Affiliation(s)
- Abdul Haseeb
- Department of Medicine, Jinnah Sindh Medical University, Rafiqi H J Shaheed Road, Karachi, Pakistan.
| | | | - Inshal Jawed
- Department of Medicine, Dow University of Health Sciences, Mission Rd, Karachi, Sindh, Pakistan
| |
Collapse
|
42
|
Ali HT, Sula I, AbuHamdia A, Elejla SA, Elrefaey A, Hamdar H, Elfil M. Nervous System Response to Neurotrauma: A Narrative Review of Cerebrovascular and Cellular Changes After Neurotrauma. J Mol Neurosci 2024; 74:22. [PMID: 38367075 PMCID: PMC10874332 DOI: 10.1007/s12031-024-02193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/19/2024]
Abstract
Neurotrauma is a significant cause of morbidity and mortality worldwide. For instance, traumatic brain injury (TBI) causes more than 30% of all injury-related deaths in the USA annually. The underlying cause and clinical sequela vary among cases. Patients are liable to both acute and chronic changes in the nervous system after such a type of injury. Cerebrovascular disruption has the most common and serious effect in such cases because cerebrovascular autoregulation, which is one of the main determinants of cerebral perfusion pressure, can be effaced in brain injuries even in the absence of evident vascular injury. Disruption of the blood-brain barrier regulatory function may also ensue whether due to direct injury to its structure or metabolic changes. Furthermore, the autonomic nervous system (ANS) can be affected leading to sympathetic hyperactivity in many patients. On a cellular scale, the neuroinflammatory cascade medicated by the glial cells gets triggered in response to TBI. Nevertheless, cellular and molecular reactions involved in cerebrovascular repair are not fully understood yet. Most studies were done on animals with many drawbacks in interpreting results. Therefore, future studies including human subjects are necessarily needed. This review will be of relevance to clinicians and researchers interested in understanding the underlying mechanisms in neurotrauma cases and the development of proper therapies as well as those with a general interest in the neurotrauma field.
Collapse
Affiliation(s)
| | - Idris Sula
- College of Medicine, Sulaiman Al Rajhi University, Al Bukayriyah, Al Qassim, Saudi Arabia
| | - Abrar AbuHamdia
- Department of Medical Laboratory Science, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | | | - Hiba Hamdar
- Medical Learning Skills Academy, Beirut, Lebanon
- Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Mohamed Elfil
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
43
|
Song X, Zhang Y, Tang Z, Du L. Advantages of nanocarriers for basic research in the field of traumatic brain injury. Neural Regen Res 2024; 19:237-245. [PMID: 37488872 PMCID: PMC10503611 DOI: 10.4103/1673-5374.379041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/01/2023] [Accepted: 05/06/2023] [Indexed: 07/26/2023] Open
Abstract
A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue. To overcome this problem, researchers have begun to focus on nanocarriers and other brain-targeting drug delivery systems. In this review, we summarize the epidemiology, basic pathophysiology, current clinical treatment, the establishment of models, and the evaluation indicators that are commonly used for traumatic brain injury. We also report the current status of traumatic brain injury when treated with nanocarriers such as liposomes and vesicles. Nanocarriers can overcome a variety of key biological barriers, improve drug bioavailability, increase intracellular penetration and retention time, achieve drug enrichment, control drug release, and achieve brain-targeting drug delivery. However, the application of nanocarriers remains in the basic research stage and has yet to be fully translated to the clinic.
Collapse
Affiliation(s)
- Xingshuang Song
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yizhi Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ziyan Tang
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lina Du
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
44
|
Qu X, Song X, Da L, Zhang C, Zhang Y, Sun Y, Qiao Z, Ha L, Li L, Hu R. Predictors of Outcome After Traumatic Brain Injury: Experience at a Tertiary Healthcare Facility in Inner Mongolia, China. World Neurosurg 2024; 182:e478-e485. [PMID: 38048962 DOI: 10.1016/j.wneu.2023.11.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is 1 of the leading causes of death in all age groups globally. Understanding TBI causative factors and early interventions that may result in poor outcomes plays an important role in decreasing the mortality and disability associated with TBI. METHODS In this retrospective case-control study, we collected electronic case data from patients with TBI who visited our hospital between 2018 and 2022. We collected patient information from accident to discharge, and by using linear regression predicted factors influencing death from TBI. RESULTS A total of 957 patients with a mean age of 56.4 ± 17.0 years and a Glasgow Coma Scale score of 12 ± 3.7 on admission were included in the study. Of the total, 54 patients died in the hospital. Multifactorial logistic regression showed that the Glasgow Coma Scale scores, degree of injury on admission, surgical treatment, and brainstem hemorrhage all had a significant effect on the survival status of the patients at discharge. CONCLUSIONS Understanding the causes, patterns, and distribution of people with TBI in this study will benefit our country and others to develop policies, research, health management, and rehabilitation tools at the national level.
Collapse
Affiliation(s)
- XingBo Qu
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - XiaoMing Song
- Department of Mathematics, School of Mathematical Sciences, Inner Mongolia University, Hohhot, China
| | - Lin Da
- Department of Mathematics, School of Mathematical Sciences, Inner Mongolia University, Hohhot, China
| | - ChunYu Zhang
- Department of Neurology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yan Zhang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - YanDong Sun
- Department of Rehabilitation Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - ZhuoJun Qiao
- Department of Rehabilitation Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - LiYa Ha
- Department of Rehabilitation Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - LanJun Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Riletemuer Hu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
45
|
Caceres E, Divani AA, Rubinos CA, Olivella-Gómez J, Viñán-Garcés AE, González A, Alvarado-Arias A, Bathia K, Samadani U, Reyes LF. PaCO2 Association with Traumatic Brain Injury Patients Outcomes at High Altitude: A Prospective Single-Center Cohort Study. RESEARCH SQUARE 2024:rs.3.rs-3876988. [PMID: 38343855 PMCID: PMC10854293 DOI: 10.21203/rs.3.rs-3876988/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background partial pressure of carbon dioxide (PaCO2) is generally known to influence outcome in patients with traumatic brain injury (TBI) at normal altitudes. Less is known about specific relationships of PaCO2 levels and clinical outcomes at high altitudes. Methods This is a prospective single-center cohort of consecutive TBI patients admitted to a trauma center located at 2600 meter above sea level. An unfavorable outcome was defined as the Glasgow Outcome Scale-Extended (GOSE) < 4 at 6-month follow-up. Results 81 patients with complete data, 80% (65/81) were men, and median (IQR) age was 36 (25-50) years). Median Glasgow Coma Scale (GCS) on admission was 9 (6-14), 49% (40/81) were severe (GCS: 3-8), 32% (26/81) moderate (GCS 12 - 9), and 18% (15/81) mild (GCS 13-15) TBI. The median (IQR) Abbreviated Injury Score of the Head (AISh) was 3 (2-4). Frequency of an unfavorable outcome (GOSE < 4) was 30% (25/81), median GOSE was 4 (2-5), and 6-month mortality was 24% (20/81). Comparison between patients with favorable and unfavorable outcomes revealed that those with unfavorable outcome were older, median [49 (30-72) vs. 29 (22-41), P < 0.01], had lower admission GCS [6 (4-8) vs. 13 (8-15), P < 0.01], higher AIS head [4 (4-4) vs. 3(2-4), p < 0.01], higher APACHE II score [17(15-23) vs 10 (6-14), < 0.01), higher Charlson score [0(0-2) vs. 0 (0-0), P < 0.01] and higher PaCO2 (mmHg), mean ± SD, 39 ± 9 vs. 32 ± 6, P < 0.01. In a multivariate analysis, age (OR 1.14 95% CI 1.1-1.30, P < 0.01), AISh (OR 4.7 95% CI 1.55-21.0, P < 0.05), and PaCO2 (OR 1.23 95% CI: 1.10-1.53, P < 0.05) were significantly associated with the unfavorable outcomes. When applying the same analysis to the subgroup on mechanical ventilation, AISh (OR 5.4 95% CI: 1.61-28.5, P = 0.017) and PaCO2 (OR 1.36 95% CI: 1.13-1.78, P = 0.015) remained significantly associated with the unfavorable outcome. Conclusion Higher PaCO2 levels are associated with an unfavorable outcome in ventilated TBI patients. These results underscore the importance of PaCO2 level in TBI patients and whether it should be adjusted for populations living at higher altitudes.
Collapse
Affiliation(s)
| | - Afshin A Divani
- University of New Mexico - Albuquerque: The University of New Mexico
| | - Clio A Rubinos
- University of North Carolina at Chapel Hill Health Sciences Library: The University of North Carolina at Chapel Hill
| | | | | | | | - Alexis Alvarado-Arias
- University of Mississippi University Hospital: The University of Mississippi Medical Center
| | - Kunal Bathia
- University of Mississippi University Hospital: The University of Mississippi Medical Center
| | | | | |
Collapse
|
46
|
Chen J, Zhao W, Zhu X, Yang L, Geng C, Zhang X, Wang Y. The value of computed tomography angiography in predicting the surgical effect and prognosis of severe traumatic brain injury. Sci Rep 2024; 14:1819. [PMID: 38245634 PMCID: PMC10799957 DOI: 10.1038/s41598-024-52385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
It is difficult to predict the surgical effect and outcome of severe traumatic brain injury (TBI) before surgery. This study aims to approve an evaluation method of computed tomography angiography (CTA) to predict the effect of surgery and outcome in severe TBI. Between January 2010 and January 2020, we retrospectively reviewed 358 severe TBI patients who underwent CTA at admission and reexamination. CTA data were evaluated for the presence of cerebrovascular changes, including cerebrovascular shift (CS), cerebral vasospasm (CVS), large artery occlusion (LAO), and deep venous system occlusion (DVSO). Medical records were reviewed for baseline clinical characteristics and the relationship between CTA changes and outcomes. Cerebrovascular changes were identified in 247 (69.0%) of 358 severe TBI patients; only 25 (10.12%) of them had poor outcomes, and 162 (65.6%) patients had a good recovery. Eighty-three (23.18%) patients were diagnosed with CVS, 10 (12.05%) had a good outcome, 57 (68.67%) had severe disability and 16 (19.28%) had a poor outcome. There were twenty-six (7.3%) patients who had LAO and thirty-one (8.7%) patients who had DVSO; no patients had good recovery regardless of whether they had the operation or not. Cerebrovascular injuries and changes are frequent after severe TBI and correlate closely with prognosis. CTA is an important tool in evaluating the severity, predicting the operation effect and prognosis, and guiding therapy for severe TBI. Well-designed, multicenter, randomized controlled trials are needed to evaluate the value of CTA for severe TBI in the future.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Xingyuan North Road No. 101, Liangxi District, Wuxi, 214044, Jiangsu Province, China
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Wei Zhao
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Xingyuan North Road No. 101, Liangxi District, Wuxi, 214044, Jiangsu Province, China
| | - Xiaoming Zhu
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Xingyuan North Road No. 101, Liangxi District, Wuxi, 214044, Jiangsu Province, China
| | - Likun Yang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Xingyuan North Road No. 101, Liangxi District, Wuxi, 214044, Jiangsu Province, China
| | - Chengjun Geng
- Department of Imaging, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Xu Zhang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Xingyuan North Road No. 101, Liangxi District, Wuxi, 214044, Jiangsu Province, China
| | - Yuhai Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Xingyuan North Road No. 101, Liangxi District, Wuxi, 214044, Jiangsu Province, China.
| |
Collapse
|
47
|
Che Y, Wu W, Qian X, Sheng Z, Zhang W, Zheng J, Chen J, Wang Y. The neuroprotection of controlled decompression after traumatic epidural intracranial hypertension through suppression of autophagy via PI3K/Akt signaling pathway. Heliyon 2024; 10:e23753. [PMID: 38226265 PMCID: PMC10788442 DOI: 10.1016/j.heliyon.2023.e23753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/25/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Acute intracranial hypertension (AIH) is a common and tricky symptom that inflicts upon patients after traumatic brain injury (TBI). A variety of clinical options have been applied for the management of AIH, such as physiotherapy, medication, surgery and combination therapy. Specifically, controlled decompression (CDC) alleviates the extent of brain injury and reduces the incidence of a series of post-TBI complications, thereby enhancing the prognosis of patients suffering from acute intracranial hypertension. The objective of the present project is to illuminate the potential molecular mechanism that underlies the neuroprotective effects of CDC in a rat model of traumatic epidural intracranial hypertension (TEIH). Herein, we observed the functional recovery, the degree of brain edema, the level of apoptosis, the expressions of neuronal cell autophagy-related signaling pathway proteins (including Akt, p-Akt, LC3 and Beclin-1) in rat TEIH model at 24 h post-surgery. The results showed in comparison with rapid decompression (RDC), CDC reduced the degree of brain edema, diminished the level of cellular apoptosis and enhanced neurological function, and whereas the neuroprotective effect of CDC could be reversed by rapamycin (Rap). The expressions of Beclin-1 and LC3 in CDC group were significantly lower than those of RDC group, and the expression levels of these two proteins were significantly elevated after the addition of Rap. The expression of p-Akt in CDC group was considerably enhanced than RDC group. After the addition of LY294002, a PI3K/Akt pathway inhibitor, p-Akt protein expression was reduced, and the neuroprotective effect of the rats was markedly inhibited. Taken together, our data demonstrate the superior neuroprotective effect of CDC with regard to alleviating early brain edema, improving the neurological status, suppressing apoptosis and inhibiting neuronal autophagy via triggering PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Che
- Wuxi Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| | - Wei Wu
- Department of Laboratory, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| | - Xiao Qian
- Wuxi Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| | - Zhengwei Sheng
- Wuxi Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| | - Wang Zhang
- Wuxi Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| | - Jie Zheng
- Wuxi Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| | - Junhui Chen
- Wuxi Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| | - Yuhai Wang
- Wuxi Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| |
Collapse
|
48
|
Wang W, Li Z, Yan Y, Wu S, Yao X, Gao C, Liu L, Yu Y. LIPUS-induced neurogenesis:A potential therapeutic strategy for cognitive dysfunction in traumatic brain injury. Exp Neurol 2024; 371:114588. [PMID: 37907126 DOI: 10.1016/j.expneurol.2023.114588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Traumatic brain injury (TBI) precipitates cellular membrane degeneration, phospholipid degradation, neuronal demise, impaired brain electrical activity, and compromised neuroplasticity, ultimately leading to acute and chronic brain dysfunction. Low-intensity pulsed ultrasound (LIPUS) is an emerging brain therapy with the characteristics of non-invasive, high spatial resolution, and high stimulation depth. Herein, we established a controlled cortical impact model to investigate the potential reparative mechanisms of LIPUS in TBI, employing a multi-faceted research methodology encompassing behavioral assessments, immunofluorescence, neuroelectrophysiology, scratch detection of primary cortical neurons, metabolomics and transcriptomics. Our findings demonstrate that LIPUS promotes hippocampal neurogenesis following brain injury, accomplished through the elevation of phosphatidylcholine levels in the hippocampus of TBI mice. Consequently, LIPUS enhances neural electrical activity and augments neural plasticity within the CA1 subregion of the hippocampus, effectively restoring neuronal function and cognitive capabilities in TBI mice. These findings shed light on the promising role of LIPUS in TBI brain rehabilitation, offering new perspectives and theoretical foundations for future studies in this domain.
Collapse
Affiliation(s)
- Wenzhu Wang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, PR China; Wenzhou Medical University, Zhejiang, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
| | - Zihan Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
| | - Yitong Yan
- China Rehabilitation Science Institute, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
| | - Shuo Wu
- First Hospital of Qinhuangdao, Qinhuangdao, Hebei, PR China
| | - Xinyu Yao
- First Hospital of Qinhuangdao, Qinhuangdao, Hebei, PR China
| | - Chen Gao
- China Rehabilitation Science Institute, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
| | - Lanxiang Liu
- First Hospital of Qinhuangdao, Qinhuangdao, Hebei, PR China.
| | - Yan Yu
- China Rehabilitation Science Institute, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China.
| |
Collapse
|
49
|
An T, Dong Z, Li X, Ma Y, Jin J, Li L, Xu L. Comparative analysis of CRASH and IMPACT in predicting the outcome of 340 patients with traumatic brain injury. Transl Neurosci 2024; 15:20220327. [PMID: 38529016 PMCID: PMC10961482 DOI: 10.1515/tnsci-2022-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 03/27/2024] Open
Abstract
Background Both the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) and the Corticosteroid randomization after significant head injury (CRASH) models are globally acknowledged prognostic algorithms for assessing traumatic brain injury (TBI) outcomes. The aim of this study is to externalize the validation process and juxtapose the prognostic accuracy of the CRASH and IMPACT models in moderate-to-severe TBI patients in the Chinese population. Methods We conducted a retrospective study encompassing a cohort of 340 adult TBI patients (aged > 18 years), presenting with Glasgow Coma Scale (GCS) scores ranging from 3 to 12. The data were accrued over 2 years (2020-2022). The primary endpoints were 14-day mortality rates and 6-month Glasgow Outcome Scale (GOS) scores. Analytical metrics, including the area under the receiver operating characteristic curve for discrimination and the Brier score for predictive precision were employed to quantitatively evaluate the model performance. Results Mortality rates at the 14-day and 6-month intervals, as well as the 6-month unfavorable GOS outcomes, were established to be 22.06, 40.29, and 65.59%, respectively. The IMPACT models had area under the curves (AUCs) of 0.873, 0.912, and 0.927 for the 6-month unfavorable GOS outcomes, with respective Brier scores of 0.14, 0.12, and 0.11. On the other hand, the AUCs associated with the six-month mortality were 0.883, 0.909, and 0.912, and the corresponding Brier scores were 0.15, 0.14, and 0.13, respectively. The CRASH models exhibited AUCs of 0.862 and 0.878 for the 6-month adverse outcomes, with uniform Brier scores of 0.18. The 14-day mortality rates had AUCs of 0.867 and 0.87, and corresponding Brier scores of 0.21 and 0.22, respectively. Conclusion Both the CRASH and IMPACT algorithms offer reliable prognostic estimations for patients suffering from craniocerebral injuries. However, compared to the CRASH model, the IMPACT model has superior predictive accuracy, albeit at the cost of increased computational intricacy.
Collapse
Affiliation(s)
- Tingting An
- Department of Critical Care Medicine, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zibei Dong
- Department of Critical Care Medicine, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiangyang Li
- Department of Critical Care Medicine, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yifan Ma
- Department of Critical Care Medicine, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jie Jin
- Department of Critical Care Medicine, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Liqing Li
- Department of Critical Care Medicine, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lanjuan Xu
- Department of Critical Care Medicine, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
50
|
Li S, Qiu N, Ni A, Hamblin MH, Yin KJ. Role of regulatory non-coding RNAs in traumatic brain injury. Neurochem Int 2024; 172:105643. [PMID: 38007071 PMCID: PMC10872636 DOI: 10.1016/j.neuint.2023.105643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Traumatic brain injury (TBI) is a potentially fatal health event that cannot be predicted in advance. After TBI occurs, it can have enduring consequences within both familial and social spheres. Yet, despite extensive efforts to improve medical interventions and tailor healthcare services, TBI still remains a major contributor to global disability and mortality rates. The prompt and accurate diagnosis of TBI in clinical contexts, coupled with the implementation of effective therapeutic strategies, remains an arduous challenge. However, a deeper understanding of changes in gene expression and the underlying molecular regulatory processes may alleviate this pressing issue. In recent years, the study of regulatory non-coding RNAs (ncRNAs), a diverse class of RNA molecules with regulatory functions, has been a potential game changer in TBI research. Notably, the identification of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and other ncRNAs has revealed their potential as novel diagnostic biomarkers and therapeutic targets for TBI, owing to their ability to regulate the expression of numerous genes. In this review, we seek to provide a comprehensive overview of the functions of regulatory ncRNAs in TBI. We also summarize regulatory ncRNAs used for treatment in animal models, as well as miRNAs, lncRNAs, and circRNAs that served as biomarkers for TBI diagnosis and prognosis. Finally, we discuss future challenges and prospects in diagnosing and treating TBI patients in the clinical settings.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Na Qiu
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Andrew Ni
- Warren Alpert Medical School, Brown University, 222 Richmond Street, Providence, RI, 02903, USA
| | - Milton H Hamblin
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 1212 Webber Hall, 900 University Avenue, Riverside, CA, 92521, USA
| | - Ke-Jie Yin
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|