1
|
Eme J, Martinez Bautista G, Keneda A, Tate K, Melancon G, Crossley DA. Cardiovascular responses of embryonic alligator (Alligator mississippiensis) exposed to 10% O 2 and sodium cyanide (NaCN), a chemoreflex-inducing compound. Comp Biochem Physiol A Mol Integr Physiol 2025; 305:111865. [PMID: 40220950 DOI: 10.1016/j.cbpa.2025.111865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
The possibly interactive effects of changes in atmospheric respiratory gases (hypoxia or hypercapnia) and pharmacological chemoreceptor stimulation have not been assessed previously. We present a series of experimental protocols investigating embryonic alligators' capacity to modulate a cardiovascular neural chemoreflex response to a known chemoreceptor stimulant, sodium cyanide (NaCN). We incubated alligator embryos in 21 % (normoxia) and 10 % O2 (hypoxia) beginning at 20 % of embryonic incubation, and at 70 % and 90 % of incubation we measured heart rate and blood pressure responses to NaCN. These NaCN responses also included examining the effects of NaCN after 1-h exposure to 10 % O2., ganglionic blockade with hexamethonium chloride and α-adrenergic blockade with phentolamine. Injections of NaCN into the chorioallantoic artery caused a rapid bradycardia followed by a secondary hypertension, which can be attributed to an autonomic nervous system mediated reflex loop. We compared the heart rate response to injections of 1 mg kg-1 NaCN before and after a 1-h 10 % O2 exposure, and it was clear that embryonic alligators lacked capacity to change the intensity of cardiovascular responses to this compound. Hexamethonium greatly lessened the rapid bradycardia, and at 90 % of incubation, the secondary hypertensive response to NaCN appeared due to α-adrenergic stimulation, as phentolamine lessened the response. Collectively, data indicate that while a cardiovascular chemoreflex can be induced by NaCN, the heart rate response lacks plasticity and is not modulated by hypoxic incubation in embryonic alligators.
Collapse
Affiliation(s)
- John Eme
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | | | - Audrey Keneda
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kevin Tate
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - George Melancon
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA 70643, USA
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
2
|
Leonard EM, Porteus CS, Brink D, Milsom WK. Fish gill chemosensing: knowledge gaps and inconsistencies. J Comp Physiol B 2024; 194:1-33. [PMID: 38758303 DOI: 10.1007/s00360-024-01553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
In this review, we explore the inconsistencies in the data and gaps in our knowledge that exist in what is currently known regarding gill chemosensors which drive the cardiorespiratory reflexes in fish. Although putative serotonergic neuroepithelial cells (NEC) dominate the literature, it is clear that other neurotransmitters are involved (adrenaline, noradrenaline, acetylcholine, purines, and dopamine). And although we assume that these agents act on neurons synapsing with the NECs or in the afferent or efferent limbs of the paths between chemosensors and central integration sites, this process remains elusive and may explain current discrepancies or species differences in the literature. To date it has been impossible to link the distribution of NECs to species sensitivity to different stimuli or fish lifestyles and while the gills have been shown to be the primary sensing site for respiratory gases, the location (gills, oro-branchial cavity or elsewhere) and orientation (external/water or internal/blood sensing) of the NECs are highly variable between species of water and air breathing fish. Much of what has been described so far comes from studies of hypoxic responses in fish, however, changes in CO2, ammonia and lactate have all been shown to elicit cardio-respiratory responses and all have been suggested to arise from stimulation of gill NECs. Our view of the role of NECs is broadening as we begin to understand the polymodal nature of these cells. We begin by presenting the fundamental picture of gill chemosensing that has developed, followed by some key unanswered questions about gill chemosensing in general.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Cosima S Porteus
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| | - Deidre Brink
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Porteus C, Kumai Y, Abdallah SJ, Yew HM, Kwong RW, Pan Y, Milsom WK, Perry SF. Respiratory responses to external ammonia in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2021; 251:110822. [DOI: 10.1016/j.cbpa.2020.110822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023]
|
4
|
de Lima TM, de Ramos B, de Souza Tavares M, Leidens D, Ayres BS, Maciel FE, Nery LEM. Emersion behavior of the semi-terrestrial crab Neohelice granulata during hypoxic conditions: Lactate as a trigger. Comp Biochem Physiol A Mol Integr Physiol 2020; 252:110835. [PMID: 33144155 DOI: 10.1016/j.cbpa.2020.110835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 11/26/2022]
Abstract
Climate changes affecting aquatic environments are increasing, and the resultant environmental challenges require animals to adopt alternative compensatory behavioral and physiological strategies. In particular, low levels of dissolved O2 are a regular problem for estuarine animals, leading to activation of a series of behavioral and physiological responses. This study on the semi-terrestrial crab Neohelice granulata examined patterns of emersion behavior under different levels of dissolved O2 availability and the role of lactate in this behavior. Emersion behavior was recorded for 4.5 h for crabs in water at four different levels of dissolved O2 (6, 3, 2, and 1 mg O2/L) and with free access to air. Oxygen consumption and hemolymphatic lactate levels were measured using the same experimental design. Emersion behavior was also recorded for 70 min in normoxic water after lactate or saline injections. Crabs increased their emersion behavior only in severe hypoxia (1 mg O2/L), and O2 consumption decreased under more severe hypoxic conditions. Despite the increase in emersion behavior, which leads to higher O2 availability, an increase in hemolymphatic lactate levels indicates that the animals still need to resort to anaerobic pathways to fulfill their metabolic demand. Furthermore, animals injected with lactate showed higher emersion behaviors than animals injected with a saline solution even in normoxia. These results suggest that the increase in hemolymphatic lactate can act directly or indirectly as a trigger for the increase in emersion behavior in the semi-terrestrial crab N. granulata.
Collapse
Affiliation(s)
- Tábata Martins de Lima
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS 96201-300, Brazil.
| | - Bruna de Ramos
- Programa de Pós-Graduação em Gerenciamento Costeiro, Instituto de Oceanografia, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS 96201-300, Brazil
| | - Margarita de Souza Tavares
- Instituto de Oceanografia, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS 96201-300, Brazil
| | - Danusa Leidens
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS 96201-300, Brazil
| | - Bruna Soares Ayres
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS 96201-300, Brazil
| | - Fábio Everton Maciel
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS 96201-300, Brazil
| | - Luiz Eduardo Maia Nery
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS 96201-300, Brazil
| |
Collapse
|
5
|
Xu M, Sun T, Tang X, Lu K, Jiang Y, Cao S, Wang Y. Title: CO 2 and HCl-induced seawater acidification impair the ingestion and digestion of blue mussel Mytilus edulis. CHEMOSPHERE 2020; 240:124821. [PMID: 31546185 DOI: 10.1016/j.chemosphere.2019.124821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Anthropogenic CO2 emissions lead to seawater acidification that reportedly exerts deleterious impacts on marine organisms, especially on calcifying organisms such as mussels. A 21-day experiment focusing on the impacts of seawater acidification on the blue mussel, Mytilus edulis, was performed in this study, within which two acidifying treatments, CO2 enrichment and HCl addition, were applied. Two acidifying pH values (7.7 and 7.1) and the alteration of the key physiological processes of ingestion and digestion were estimated. To thoroughly investigate the impact of acidification on mussels, a histopathological study approach was adopted. The results showed that: (1) Seawater acidification induced either by CO2 enrichment or HCl addition impaired the gill structure. Transmission electron microscope (TEM) results suggested that the most obvious impacts were inflammatory lesions and edema, while more distinct alterations, including endoplasmic reticulum edema, nuclear condensation and chromatin plate-like condensation, were placed in the CO2-treated groups compared to HCl-treated specimens. The ciliary activity of the CO2 group was significantly inhibited simultaneously, leading to an obstacle in food intake. (2) Seawater acidification prominently damaged the structure of digestive glands, and the enzymatic activities of amylase, protease and lipase significantly decreased, which might indicate that the digestion was suppressed. The negative impacts induced by the CO2 group were more severe than that by the HCl group. The present results suggest that acidification interferes with the processes of ingestion and digestion, which potentially inhibits the energy intake of mussels.
Collapse
Affiliation(s)
- Mengxue Xu
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Pilot Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Tianli Sun
- National Marine Hazard Mitigation Service, Beijing, 100194, China.
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Pilot Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Keyu Lu
- Department of Geography, University College London, London, UK.
| | - Yongshun Jiang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Sai Cao
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Pilot Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Pilot Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
6
|
Gilmour KM, Perry SF. Conflict and Compromise: Using Reversible Remodeling to Manage Competing Physiological Demands at the Fish Gill. Physiology (Bethesda) 2018; 33:412-422. [DOI: 10.1152/physiol.00031.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The structural features of the fish gill necessary for oxygen uptake also favor undesirable, passive movements of ions and water. Reversible gill remodeling is one solution to this conflict. Cell masses that limit functional surface area are lost when oxygen availability decreases in hypoxia or oxygen demand increases with exercise or high temperature. However, much remains to be learned about how widespread reversible gill remodeling is among fish species, and how and why it occurs.
Collapse
Affiliation(s)
| | - Steve F. Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Treatment with the selective serotonin reuptake inhibitor, fluoxetine, attenuates the fish hypoxia response. Sci Rep 2016; 6:31148. [PMID: 27499056 PMCID: PMC4976378 DOI: 10.1038/srep31148] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022] Open
Abstract
The selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLX), the active ingredient of the antidepressant drug Prozac, inhibits reuptake of the neurotransmitter, serotonin (5-HT; 5-hydroxytryptamine), into cells by the 5-HT transporter (SERT). Given the role of 5-HT in oxygen detection and the cardiovascular and ventilatory responses of fish to hypoxia, we hypothesized that treatment of the Gulf toadfish, Opsanus beta, with FLX would interfere with their response to hypoxia. Toadfish treated intra-arterially with 3.4 μg.g−1 FLX under normoxic conditions displayed a transient tachycardia and a biphasic caudal arterial blood pressure (PCA) response that are in direct conflict with the typical hypoxia response. Fish injected intraperitoneally with FLX under normoxia had resting cardiovascular and ventilatory parameters similar to controls. Upon exposure to hypoxia, control toadfish exhibit a significant bradycardia, reduction in PCA and an increase in ventilatory amplitude (VAMP) without any changes in ventilatory frequency (fV). Fish treated IP with 10 μg.g−1 FLX showed an interference in the cardiovascular and ventilatory response to hypoxia. Interestingly, when treated with 25 μg.g−1 FLX, the bradycardia and VAMP response to hypoxia were similar to control fish while the PCA response to hypoxia was further inhibited. These results suggest that SERT inhibition by FLX may hinder survival in hypoxia.
Collapse
|
8
|
Ern R, Esbaugh AJ. Hyperventilation and blood acid–base balance in hypercapnia exposed red drum (Sciaenops ocellatus). J Comp Physiol B 2016; 186:447-60. [DOI: 10.1007/s00360-016-0971-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/02/2016] [Accepted: 02/12/2016] [Indexed: 01/07/2023]
|
9
|
Belão T, Zeraik V, Florindo L, Kalinin A, Leite C, Rantin F. Control of cardiorespiratory function in response to hypoxia in an air-breathing fish, the African sharptooth catfish, Clarias gariepinus. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:130-40. [DOI: 10.1016/j.cbpa.2015.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 12/17/2022]
|
10
|
Abdallah SJ, Jonz MG, Perry SF. Extracellular H+ induces Ca2+ signals in respiratory chemoreceptors of zebrafish. Pflugers Arch 2014; 467:399-413. [DOI: 10.1007/s00424-014-1514-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/07/2014] [Accepted: 04/03/2014] [Indexed: 01/28/2023]
|
11
|
Zeraik VM, Belão TC, Florindo LH, Kalinin AL, Rantin FT. Branchial O2 chemoreceptors in Nile tilapia Oreochromis niloticus: Control of cardiorespiratory function in response to hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:17-25. [DOI: 10.1016/j.cbpa.2013.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 01/15/2023]
|
12
|
Esbaugh AJ, Heuer R, Grosell M. Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost, Opsanus beta. J Comp Physiol B 2012; 182:921-34. [PMID: 22581071 DOI: 10.1007/s00360-012-0668-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/11/2012] [Accepted: 04/14/2012] [Indexed: 11/27/2022]
Abstract
The oceanic carbonate system is changing rapidly due to rising atmospheric CO(2), with current levels expected to rise to between 750 and 1,000 μatm by 2100, and over 1,900 μatm by year 2300. The effects of elevated CO(2) on marine calcifying organisms have been extensively studied; however, effects of imminent CO(2) levels on teleost acid-base and respiratory physiology have yet to be examined. Examination of these physiological processes, using a paired experimental design, showed that 24 h exposure to 1,000 and 1,900 μatm CO(2) resulted in a characteristic compensated respiratory acidosis response in the gulf toadfish (Opsanus beta). Time course experiments showed the onset of acidosis occurred after 15 min of exposure to 1,900 and 1,000 μatm CO(2), with full compensation by 2 and 4 h, respectively. 1,900-μatm exposure also resulted in significantly increased intracellular white muscle pH after 24 h. No effect of 1,900 μatm was observed on branchial acid flux; however, exposure to hypercapnia and HCO(3)(-) free seawater compromised compensation. This suggests branchial HCO(3)(-) uptake rather than acid extrusion is part of the compensatory response to low-level hypercapnia. Exposure to 1,900 μatm resulted in downregulation in branchial carbonic anhydrase and slc4a2 expression, as well as decreased Na(+)/K(+) ATPase activity after 24 h of exposure. Infusion of bovine carbonic anhydrase had no effect on blood acid-base status during 1,900 μatm exposures, but eliminated the respiratory impacts of 1,000 μatm CO(2). The results of the current study clearly show that predicted near-future CO(2) levels impact respiratory gas transport and acid-base balance. While the full physiological impacts of increased blood HCO(3)(-) are not known, it seems likely that chronically elevated blood HCO(3)(-) levels could compromise several physiological systems and furthermore may explain recent reports of increased otolith growth during exposure to elevated CO(2).
Collapse
Affiliation(s)
- Andrew J Esbaugh
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
| | | | | |
Collapse
|
13
|
Bilberg K, Malte H, Wang T, Baatrup E. Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 96:159-65. [PMID: 19923013 DOI: 10.1016/j.aquatox.2009.10.019] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/06/2009] [Accepted: 10/15/2009] [Indexed: 05/08/2023]
Abstract
Silver nanoparticles are utilised in an increasing amount of products, and discharge to the aquatic environment is inevitable. Fish gills are in direct contact with the ambient water, making them potential exposed and vulnerable to suspended silver nanoparticles. The present study investigates the effect of silver nanoparticles (average 81 nm) on the oxygen consumption (M(O2)) in Eurasian perch (Perca fluviatilis), expressed by the basal metabolic rate (BMR) and the critical oxygen tension (P(crit)) below which the fish can no longer maintain aerobic metabolism. For comparison, the impact of silver nitrate (AgNO(3)), was examined as well. Perch were exposed to nominal concentrations of 63, 129 and 300 microg L(-1) silver nanoparticles and 39 and 386 microg L(-1) AgNO(3), respectively, plus controls which were not exposed to silver. M(O2) measured by automated intermittent closed respirometry. After one day acclimatization in the respirometer, the pre-exposure BMR was determined together with P(crit). Hereafter, nanoparticles or silver nitrate were added to the test tank and BMR and P(crit) were measured again the following day. The results demonstrate that nanosilver had no impact on the BMR, whereas exposure to 386 microg L(-1) AgNO(3) resulted in a significant raise in BMR. P(crit) was increased approximately 50% after exposure to 300 microg L(-1) nanosilver plus 31% and 48% by 39 microg L(-1)and 386 microg L(-1) silver nitrate, respectively. These findings reveal that exposure to nanosilver results in impairment of the tolerance to hypoxia. Possibly, nanosilver affects the gills externally, reducing the diffusion conductance which then leads to internal hypoxia during low water oxygen tensions (P(O2)).
Collapse
Affiliation(s)
- Katrine Bilberg
- Faculty of Science, Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Ny Munkegade 120, Aarhus C, Denmark
| | | | | | | |
Collapse
|